考研数学三知识点总结
数学三考研知识点总结

数学三考研知识点总结一、数学分析1. 集合与映射集合的基本概念,包括子集、并集、交集、补集等;映射的定义和性质,包括单射、满射、双射等。
2. 数列与级数数列的概念,包括常数数列、等差数列、等比数列等;级数的概念,包括收敛级数、发散级数等。
3. 函数与极限函数的定义和性质,包括连续函数、可导函数等;极限的概念,包括极限存在的条件、极限运算法则等。
4. 一元函数微分学导数的定义和性质,包括高阶导数、隐函数求导等;微分的概念和应用,包括微分中值定理、泰勒公式等。
5. 一元函数积分学不定积分的计算方法,包括分部积分、换元积分等;定积分的计算方法,包括定积分的几何意义、定积分的性质等。
6. 定积分的应用定积分在几何、物理等领域的应用,包括求曲线长度、曲线面积、体积等问题。
7. 多元函数微分学偏导数的概念和性质,包括高阶偏导数、全微分等;多元函数的极值和条件极值的判定。
8. 重积分重积分的定义和性质,包括累次积分、极坐标系下的重积分等;重积分的应用,包括质量、质心、转动惯量等问题。
9. 曲线积分与曲面积分曲线积分的概念和计算方法,包括第一类曲线积分和第二类曲线积分;曲面积分的概念和计算方法,包括第一类曲面积分和第二类曲面积分。
10. 常微分方程常微分方程的基本概念,包括初值问题、兼切性、自由度等;常微分方程的解法,包括特征方程法、常数变易法、常系数高阶线性齐次微分方程的特解法等。
11. 泛函分析线性空间和内积空间的定义和性质,包括线性子空间、正交投影等;巴拿赫空间和希尔伯特空间的概念和性质。
12. 牛顿-莱布尼茨公式牛顿-莱布尼茨公式的推导和应用,包括用它来求定积分、用它来求极限等。
二、代数与数论1. 线性代数线性代数的基本概念,包括向量空间、线性变换、矩阵等;线性方程组的解法,包括高斯消元法、矩阵的秩等。
2. 群论群的定义和性质,包括子群、正规子群、循环群等;群的同态映射和同构定理。
3. 环论环的定义和性质,包括理想、素理想、商环等;整环、域的概念和性质。
考研数学三需要掌握的重要考点

考研数学三需要掌握的重要考点考研数学三需要掌握的重要考点我们在准备数学三考研的时候,需要掌握的重要考点有很多。
店铺为大家精心准备了考研数学三需要掌握的重点,欢迎大家前来阅读。
考研数学三掌握23个重要考点(1)曲线的渐近线;(2)某点处的高阶导数;(3)化极坐标系下的二次积分为直角坐标系下的二次积分;(4)数项级数敛散性的判定;(5)向量组的线性相关性;(6)初等变换与初等矩阵;(7)二维均匀分布;(8)统计量的常见分布;(9)未定式的极限;(10)分段函数的复合函数的导数;(11)二元函数全微分的定义;(12)平面图形的面积;(13)初等变换、伴随矩阵、抽象行列式的计算;(14)随机事件的概率;(15)未定式的极限;(16)无界区域上的二重积分;(17)多元函数微分学的经济应用,条件极值;(18)函数不等式的证明;(19)微分方程、变限积分函数、拐点;(20)含参数的方程组;(21)利用正交变换化二次型为标准形;(22)二维离散型随机变量的概率、数字特征;(23)二维常见分布的随机变量函数的分布、数字特征考研数学必掌握的7个高频考点1、两个重要极限,未定式的极限、等价无穷小代换这些小的知识点在历年的考察中都比较高。
而透过我们分析,假如考极限的话,主要考的是洛必达法则加等价无穷小代换,特别针对数三的,这儿可能出大题。
2、处理连续性,可导性和可微性的关系要求掌握各种函数的求导方法。
比如隐函数求导,参数方程求导等等这一类的,还有注意一元函数的应用问题,这也是历年考试的一个重点。
数三的同学这儿结合经济类的一些试题进行考察。
3、参数估计这一点是咱们经常出大题的地方,这一块对咱们数一,数二,数三的考生来讲,包含两块知识点,一个是矩估计,一个是最大似然估计,这两个集中出大题。
4、级数问题,主要针对数一和数三这部分的重点是:一、常数项级数的性质,包括敛散性;二、牵扯到幂级数,大家要熟练掌握幂级数的收敛区间的计算,收敛半径与和函数,幂级数展开的问题,要掌握一个熟练的方法来进行计算。
考研数学三知识点整理

考研数学三知识点整理一、数学分析1.极限与连续-无穷小量与无穷大量-函数极限的定义和性质-极限运算的基本法则-函数连续的定义和性质-邻域及其性质-间断点的分类-初等函数的连续性2.一元函数微分学-导数的定义和性质-导数的几何意义-凹凸性与拐点-微分中值定理-泰勒公式及其应用-常用高阶导数的计算3.一元函数积分学-普通函数的不定积分-定积分与不定积分的关系-牛顿—莱布尼茨公式-反常积分的概念和性质-反常积分的审敛法-定积分的应用4.多元函数微分学-多元函数的极限与连续-偏导数的定义和性质-方向导数和梯度-隐函数的求导-全微分和全导数-多元函数的泰勒公式5.曲线积分与曲面积分-第一类曲线积分-第二类曲线积分-曲面积分的概念和性质-曲面积分的计算方法-散度和旋度的概念及计算二、高等代数1.行列式与矩阵-行列式的定义和性质-行列式的计算方法-矩阵的概念和运算-矩阵的秩和逆-矩阵的特征值和特征向量-对称矩阵和正定矩阵2.线性方程组与向量空间-线性方程组的解的结构-线性方程组的常用解法-向量空间的概念和性质-线性相关性和线性无关性-线性方程组与矩阵的关系-矩阵的秩与线性方程组的解3.线性变换与矩阵的相似-线性变换的概念和性质-线性变换的矩阵表示和标准形-矩阵的相似和对角化-幂零矩阵和对角化的条件-线性变换的特征值和特征子空间-正交矩阵和对称矩阵4.线性空间与线性变换-线性空间的定义和性质-基与维数-有限维线性空间的同构-线性变换的矩阵表示-基变换和坐标变换矩阵-初等变换和矩阵的相似5.内积空间-内积与内积空间的定义和性质-正交与正交补-角和长度的内积表示-柯西—施瓦茨不等式和三角不等式-格拉姆—斯密特正交化方法-正交投影和最小二乘逼近三、概率论1.随机事件与概率-随机事件和样本空间-随机事件的运算和性质-概率的定义和性质-条件概率与乘法定理-全概率公式与贝叶斯公式2.随机变量与概率分布-随机变量的概念和分类-分布函数和概率密度函数-离散型随机变量与连续型随机变量-随机变量函数的概率分布-重要离散型和连续型分布-数学期望和方差的定义和性质3.多维随机变量及其分布-多维随机变量的联合分布-边缘分布和条件分布-随机变量的独立性-随机变量函数的分布-重要的二维和多维分布-列联表和卡方检验4.随机变量的数字特征-几个重要的数字特征-方差和标准差-协方差和相关系数-强大数定律与中心极限定理-大数定律和极限定理-泊松定理和辛钦定理5.数理统计基础-总体和样本的概念-统计量及其分布-正态总体的统计推断-点估计和区间估计-参数估计的评价准则-假设检验和拒绝域以上是对考研数学三知识点的整理,内容包括数学分析、高等代数和概率论三个方面的主要知识点。
考研数三知识点总结

考研数三知识点总结一、数学基础知识1.集合与逻辑(1)集合的概念与运算(2)命题与联结词(3)命题公式与合取、析取范式(4)命题演算(5)范式和合取析取范式的相互转化(6)命题公式的永真式和等值式(7)命题逻辑的等值演算2. 代数与数论(1)复数的概念与运算(2)多项式的整除与因式分解(3)有理数的整除性(4)整数、模运算、同余(5)素数与合数(6)整数的唯一分解定理(7)不定方程的整数解3. 几何与简单的变量(1)空间几何问题与直线的方程(2)空间解析几何(3)坐标与原点(4)斜率与截距(5)直线的夹角与距离(6)点、直线、平面的位置关系(7)三角函数的概念与运算4. 极限与微积分(1)极限与无穷小(2)函数的极限(3)连续与间断(4)导数的概念与运算(5)定积分与不定积分(6)微分方程的基本概念(7)参数方程与极坐标方程二、典型题型解题技巧1. 集合与逻辑(1)对于集合的运算,要熟练掌握并运用交、并、差、补集等运算。
(2)在命题与联结词的运用中,要能够准确理解并灵活运用“非”、“或”、“与”等联结词的含义及其在逻辑命题中的应用。
(3)在命题公式的演算中,要善于利用等值演算将命题公式转化成合取或析取范式,以求解相关问题。
2. 代数与数论(1)对于复数的运算,要熟练掌握复数的加减乘除运算,并在解题过程中灵活运用复数的性质和运算规律。
(2)在多项式的整除与因式分解中,要善于运用求因式分解的方法,并能够准确判断多项式的整除性。
(3)对于素数与合数、模运算、同余等知识点,要能够理清概念,掌握相关定理,并能够灵活应用于解题过程中。
3. 几何与简单的变量(1)在直线的方程与三角函数的概念与运算中,要善于利用直线的斜率与截距,以及三角函数的相关性质,解决与直线、三角函数相关的几何问题。
(2)对于空间解析几何、坐标与原点、斜率与截距等知识点,要善于利用坐标系方法,灵活运用相关几何知识,解决几何问题。
4. 极限与微积分(1)在极限与无穷小、函数的极限等知识点中,要善于利用夹逼定理、无穷小量的性质、函数极限的计算方法,解决极限问题。
2023-2024年考研《数学》必备知识点考点汇编

考研数学公式整理1 1.等价代换的补充2.泰勒公式3.基本导数公式4.几个常用函数的高阶导数5.不定积分的基本积分公式6.定积分性质7.渐近线8.微分中值定理考研数学公式整理2 ⚫二重积分的性质⚫对称性⚫ 莱布尼茨判别法则⚫麦克劳林级数⚫狄利克雷收敛定理⚫奇偶函数的傅里叶级数⚫常用的二次曲面考研数学公式整理31.行列式的性质()()()11121311121321222321222331323331323311111212131321222331.0,0.,.,.T A A k k ka ka ka a a a a a a k a a a a a a a a a a b a b a b a a a a ==+++行列互换,其值不变,即某行列全为则行列式的值为某行列有公因子则可把提到行列式外面某行列每个元素都是两个数之和则可拆成两个行列式之和性质1 性质2 性质3 性质4 ()()()11121311121321222321222332333132333132331112131112132122231121122213313233..0..a a ab b b a a a a a a a a a a a a a a k a a a a a a a a a ka a ka a ka a a a =+=++两行列互换,行列式的值变号两行列元素相等或对应成比例,则行列式的值为某行列倍加到另一行(列),行列式的值不变性质5 性质6 性质7 23313233a a a a +2.抽象型行列式—解法解题思路:对抽象型行列式,计算方法主要是利用行列式的性质,矩阵的性质,特征值及相似等。
主要的公式有:11112121.,2.,3.,4.5.6.,,,,7..T T n n n n A n A A A A A n kA k A A B n AB A B A n A AA n A A n A A n AB A B λλλλλλ−*−−=======L L 若是阶矩阵是的转置矩阵,则;若是阶矩阵则;若都是阶矩阵,则;若是阶矩阵,则;若是阶可逆矩阵,则;若是阶矩阵的特征值则;若阶矩阵与相似,则4.逆矩阵的性质()()111111111111;10;;.A A kA A k k AB B A AA AB A B −−−−−−−−−−−−==≠==+≠+1)()2)()3)();4) 没公式特别注意:5.逆矩阵—解法()()()()111111111110,..,,,.0000.0000A A A AA E E A AB n AB E A B A B AB A A A B B BB A*−−−−−−−−−−−≠=→==+⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦若则都是阶矩阵则对型化为型.;方法一:用伴随方法二:用初等变换方法三:用定义方法四:用单位矩阵恒等变形方法五:用分块公式6.矩阵的秩定理8.具体向量组如何判定相关无关()()1212121212,,,,,,0,,,1.,,,,,,00.m m m n n x r m m n n n n ααααααααααααααα⇔=⇔<=+⇔=≠L L L L L 对具体(含参数)向量组如何判定相关无关?向量组相关(无关)齐次方程组有非零解(只有零解)(向量个数)((向量个数)).个维向量必相关个维向量相关(无关)()定理1推论1推论21212112121212,,,,,,,,,,,,,,,,,,,,,m m m m nm m m r m ααααααααβββααααααβββ++−⎧⎨⎩⎧⎨⎩L L L L L L L 若向量组相关,增加个数后的向量组则仍相关;对应减少向量坐标后的向量组若向量组无关,减少个数后的向量组则仍无关.对应增加向量坐标后的向量组定理29.抽象向量组如何证明无关10.特征值和特征向量的性质11.相似矩阵的性质()()111,.A B nnii ii i i A B A B r A r B E A E B a b λλλλ==⇒=⇒=⇒−=−=⇒=∑∑:()(必要条件);;即;()()()11112,,,,,,,.n n n n n n A B P AP B P A kE P B kE P A P B A B A kE B kE A kE B kE r A kE r B kE A B A B A PB P −−−−=+=+=+++=++=+=:::::()如设则因此由要想到进而;由要想到进而可用相似求 12.矩阵相似对角化的条件()()11,0.n i i nTn ii i A A n A i i n r E A i A n A r A A A a λλαβ=Λ⇔⇔−−=⇐⇐==Λ⇔≠∑::有个线性无关的特征向量;的重特征值有个无关的特征向量,即;有个不同的特征值;是实对称阵.对或的矩阵注:13.正定定理()12,,,0,0000,T n T ii f x x x x Ax x x Ax A A A a A =⇔∀≠>⇔⇔≤L 二次型正定有;的特征值都大于;的全部顺序主子式大于.若的主对角线某元素则必不正定.定理4注:14.等价、相似、合同()(),.,.A B A B A B A B A B P Q PAQ B r A r B ≅⇔=⇔=两个同型矩阵与,若可经过初等变换变成称与等价,记作同型矩阵矩阵与等价存在可逆矩阵和使;判定1,,,.,,A B P P AP B A B A B A B A B A B A B A B A B −=ΛΛΛ::::两个方阵与若存在可逆矩阵使称与相似,记作若与的迹或秩或行列式或特征值不相等,则与不相似;若,但不能对角化则与不相似;若,且则与相似.判定,,,..T T T A B C C AC B A B A B A B x Ax x Bx A B =⇔⇔:两个实对称矩阵与若存在可逆矩阵使称与合同,记作实对称矩阵与合同二次型和有相同的正、负惯性指数;实对称矩阵与有相同的正、负特征值个数判定考研数学公式整理41.概率基本公式()()()()()()()()()()()()()()()()()()1.=.3.=..P A P A P A B P A P B P AB P A B C P A P B P C P AB P AC P BC P ABC P A B P A P AB P AB =−+−=++−−−+−−=U U U 正面直接求概率困难时可考虑此公式,比如涉及"至少、至多"等字眼.超过个事件的加法公式往往会有两两互斥的条件考减法公式是考试的重点;(1)逆事件的概率(2)加法公式(3)减法公式注:注:注: ()()()()()()()()()()()()0,,=.1;.P A A B P AB P B A P B A P A P B A P B A P B A P B C A P B A P BC A P BC A >=−−=−= 若称在发生的条件下,发生的概率为条件概率记为,且条件概率也是概率,满足概率的一切性质与公式,如(4)条件概率注:()()()()0,=.P A P AB P A P B A >⋅如果则 (5)乘法公式()()()()121=,,1,,.,.n i j ni i i i A A A A A i j n B P B P A P B A B A B P B =Ω=Φ≤≠≤=∑U UL U I 若且则对任一事件有如果某个事件的发生总是与某些原因或前一阶段的某些结果有关则总是使用全概率公式把各种导致发生的可能性(概率)加起来求(6)全概率公式 注:()()()()()()()121=,,1,0,.,,.n i j i jj niii j j A A A A A i j n P A P B A B P B P A B P A P B A B A P A B =Ω=Φ≤≠≤>=∑U UL U I 若且,则对任一事件只要则如果已知发生了去探求是某原因导致发生的可能性(概率)则总是使用贝叶斯公式看这一原因占总的原因的比例注(7)贝叶斯公式 :2. 独立与互斥、包含的关系()()01,01,,P A P B A B A B <<<<设如果与互斥或存在包含关系则与不独立.3.常见的分布{}()(){}()()()1011,0,1.0101,1,.1,0,1,,.,01,,.12,,kk n k k kn X P X k p p k X p p X B p X P X k C p p k n X n p p X B n p n X X B n p −−−==−=<<−==−=<<:L ::1.分布如果随机变量的分布律为则称服从参数为()的分布记为2.二项分布如果随机变量的分布律为则称服从参数为()的二项分布记为()次伯努利试验中试验成功的次数服从二项分布;()对最可能发生(成注:()(){}(){}()()1111.,0,1,2,!0,.1,1,2,1,.k k k n p k n p e X P X k k k X X P X P X k p p k X p p X G p X λλλλλ−−+−≤≤+===>==−=<<L:L:功)的次数满足3.泊松分布如果随机变量的分布律为则称服从参数为()的泊松分布记为4.几何分布如果随机变量的分布律为则称服从参数为(0)的几何分布记为伯努利试验中首次成功所需的试验次数服从几何分布.注:()()()()(){}5.1,,0,0,,,,.,.1,,,,.a x b X f x b a x a x a X a b X U a b X F x a x b b a x b d cX U a b a c d b P c X d b a⎧<<⎪=−⎨⎪⎩<⎧⎪−⎪=≤<⎨−⎪≥⎪⎩−≤<≤<<=−::均匀分布如果随机变量的概率密度为其他则称服从上的均匀分布记为的分布函数为若对则注: ()()()(){}{}{}o o ,0,00,1,0..0,0,10,;2,0,.x x a e x X f x e x X X E X F x x X E a P X a e t s P X t s X s P X t λλλλλλλλ−−−⎧>=>⎨⎩⎧−≥=⎨<⎩∀>≥=∀>≥+≥=≥::6.指数分布如果随机变量的概率密度为其中为参数;其他则称服从参数为的指数分布,记为的分布函数为若则对则对则注:()()()()()()()()()()()()()222222222o 2o ,.,,,.,0,10,1;,;.1,,0,1;21,0x x x x x X f x x X X N X N x x x t dt dt X X N N x x μσμσμσμσϕϕμμσσ−−−−−∞=−∞<<+∞===−∞<<+∞Φ==−Φ−=−ΦΦ=⎰⎰::::7.正态分布如果随机变量的概率密度为:则称服从参数为的正态分布记为特别地当时称为记为概率密度分布函数若则标准化标准正态分布,注:()()o 222o 1;23,,,;4,X N aX b N a b a X Y aX bY μσμσ+++::若则若分别服从正态分布,且相互独立,则服从正态分布.4. 两个常见的二维连续型随机变量1.二维均匀()()()()(){},,1,,,0,,,,,D D GDX Y D X Y DS f x y S D S X Y D G D P X Y G S ⎧∈⎪=⎨⎪⎩⊂∈=在平面区域上服从均匀分布则,其中是的面积.其他设在区域上服从均匀分布若则;注:2.二维正态()()()()()222212121212221122,,,,;.,,,;1,1.,,,,,,,,0.X Y N EX EY DX DY X N Y N X Y aX bY X Y X Y μμσσρμμσσρμσμσρ====∈−+⇔=:::其中(1)反之不对(独立时可以);(2)的条件分布都是正态分布;(3)服从正态分布;(4)独立不相关即注:5.期望{}()()()()()()()()()()111,2,,.,.i i i i i i i i X P X x p i Y g X X EX x p Eg X g x p X f x Y g X X EX xf x dx Eg X g x f x dx ∞∞==+∞+∞−∞−∞=========∑∑⎰⎰L 设离散型随机变量的分布律为是的函数,则;设连续型随机变量的概率密度为是的函数,则;(1)一维离散型(2)一维连续型(){}()()()()()()()()()()()()11,,,1,2,,,,,,.,,,,,,,,.i j iji j ij i j X Y P X x Y y p i j Z g X Y X Y Eg X Y g x y p X Y f x y Z g X Y X Y Eg X Y g x y f x y dxdy ∞∞==+∞+∞−∞−∞========∑∑⎰⎰L 设二维离散型随机变量的联合分布为是的函数,则设二维连续型随机变量的联合概率密度为是的函数,则(3)二维离散型(4)二维连续型()()()o o o o 1234,,.Ec c E aX c aEX c E X Y EX EY X Y E XY EX EY =+=+±=±=⋅;;;若独立则(5)性质6.方差()()222.DX E X EX EX EX =−=−(1)定义()()()()()()()()2o 2o o 2o o 2210,;20342,5,,,.DX EX EX DX Dc D aX b a DX D X Y DX DY Cov X Y X Y D X Y DX DY D XY DXDY DX EY DY EX ≥=+=+=±=+±±=+=++;;;若独立则(2)性质7.常用分布的数学期望和方差()()()()()()()()()()()o o o o 22o o 2o 22o 11,,12,,13,114,5,,212116,7,,280,11.X B p EX p DX p p X B n p EX np DX np p X P EX DX p X G p EX DX p pb a a bX U a b EX DX X E EX DX X N EX DX X N E X D X λλλλλλμσμσπ==−==−==−==−+========−::::::::如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则8.协方差()()()()()()()()()()()()()()()o oo o 121211122122,.1,,,,2,03,,,,,,,.Cov X Y E X EX Y EY E XY EX EY Cov X Y Cov Y X Cov X X DX Cov X c Cov aX bY abCov X Y Cov aX bX cY dY acCov X Y adCov X Y bcCov X Y bdCov X Y =−−=−⋅⎡⎤⎣⎦====++=+++;;;4(1)定义(2)性质9.相关系数,0,.XY XY Cov X Y X Y ρρ==如果称和不相关(1)定义{}oo o o 1123=1,11,04,1,0XY YX XX XY XY XYa b P Y aX b a Y aX b a ρρρρρρ==≤⇔=+=>⎧=+=⎨−<⎩;;1;存在使;如果则.(2)性质10.大数定律1.依概率收敛{}1212,,,,,,0,lim 1,,,,,,,.n n n Pn n X X X a P X a X X X a X a εε→∞>−<=⎯⎯→L L L L 对随机变量序列和常数如果对任意的有则称随机变量序列依概率收敛于记为2.切比雪夫大数定律1211,,,,,,,1,2,,110,lim 1.n k k k n ni i n i i X X X EX DX DX k P X EX n n εε→∞===⎧⎫>−<=⎨⎬⎩⎭∑∑L L L 设独立,期望方差都存在,方差有一致上界则对任意的有3.伯努利大数定律(),,,,0,lim 1.n X n A A p X X B n p P p n εε→∞⎧⎫>−<=⎨⎬⎩⎭:设是重伯努利试验中事件发生的次数每次试验事件发生的概率为即则对任意的有4.辛钦大数定律1211,,,,,,0,lim 1.n n k i n i X X X EX P X n μεμε→∞=⎧⎫=>−<=⎨⎬⎩⎭∑L L 设独立同分布,期望存在则对任意的有11.中心极限定理1.列维—林德伯格中心极限定理()22122,,,,,,,,lim .n k k n t i x n X X X EX DX X n x P x dt x μσμ−−∞→∞==⎧⎫−⎪⎪⎪≤==Φ⎬⎪⎪⎪⎩⎭∑⎰L L 设独立同分布期望方差都存在,则对任意的有2.拉普拉斯中心极限定理()()22,,lim .t x n X B n p x P x dt x −→∞⎧⎫⎪≤==Φ⎬⎪⎭⎰:设,则对任意的有12.三大抽样分布()()()()(){}()()()()()()()2122222222212122222222,,,01,,.01,,,2;n n n n X X X N X X X n X X X n P n n f x dx f x n n n X n EX n DX n X ααχαχχααχχαχχχαχχ+∞++++++<<>====⎰L L L :::设相互独立且都服从标准正态,则服从自由度为的分布记为对于给定的()称满足(是的概率密度)的数为的上分位点.若则若221.χn 分布(1)定义:(2)上α分位点(3)χ分布的性质()()()221212,,,.n Y n X Y X Y n n χχ++::,且独立则()()()()(){}()()()()()()()()()()()()21201,,,,.01,,,01,1,t n X N Y n X Y n t t n P t n t n fx dx fx t n t n t n t f x t n t n n t n N t t n t F αααααχαααα+∞−<<>===−⎰:::::设,且独立,的分布对于给定的()称满足(是的概率密度)的数为的上分位点.分布的概率密度是偶函数故,且当自由度充分大时分布近似于,;则2.t 分布(1)定义:(2)上α分位点(3)t 分布的性质().n()()()()(){}()()()()()()()122212111212221212,12121212,,,,,.01,,,,,,1,,F n n X n Y n X Y X Xn n n n F F n n Y Y n n P F n n F n n f x dx f x F n n F n n F n n F F n n F Fαααχχαααα+∞<<>==⎰:::::设且独立,则服从第一自由度为,第二自由度为的分布记为对于给定的()称满足(是的概率密度)的数为的上分位点.若则3.F 分布(1)定义:(2)上α分位点(3)F 分布的性质()()()()211211221,1,,,.,n n F F n n F n n F n n αα−=:;若则13.矩估计的求法1222111,...11()n kk k k i i n ni ii i A X EX n X EX X EX X EX X EX X X DX n n α======⎧⎧==⎪⎪⎨⎨=−=⎪⎪⎩⎩∑∑∑:用样本矩替换总体矩——即:对一个未知参数的情形 令对两个未知参数的情形 令或原理步骤14.最大似然估计的求法()()()()121121.,,,;,,,,;,.ln ln .0,.ln 0,ln .i nn i i i nn i i a L x x x f x L x x x p x b Ld L c d d L L d θθθθθθθθ=====⎡⎤⎣⎦=⎡⎤⎣⎦==∏∏L L :写出样本的似然函数取对数得求导解出即可若无解即单调,则应该用定义法找出的最大似然估计量步骤连续型离散型15.估计量的评价标准121212,.,,,.0,lim 1,,Pn E D D P θθθθθθθθθθθεθθεθθθθ∧∧∧∧∧∧∧∧∧∧∧→∞=<⎧⎫>−<=⎯⎯→⎨⎬⎩⎭若则称是的无偏估计量设都是的无偏估计量若则称比更有效若对任意的有即则称是的一致估计量.(1)无偏性(2)有效性(3)一致性16. 求置信区间的步骤{}1212,,12:,,.T a b P a T b a T b ααθθθθθθ∧∧∧∧<<=−⎛⎫<<<< ⎪⎝⎭(1)构造统计量并确定其分布;(2)给定,确定常数使得;(3)由()反解出的范围得置信区间。
考研数学三知识点总结

重要极限 lim
x →0
sinx =1 x
1 x lim ( 1 + ) = e x x →∞
lim ( 1 + x ) =e
x →0
1 x
x 趋向于 0 时的等价无穷小
sinx ∼ x tanx ∼ x arcsinx ∼ x arctanx ∼ x 1 2 1− cosx∼ x 2
ln ( 1 + x )∼ x
n 1+ x − 1 ∼ √
log a ( x +1 )∼
x lna
e x −1∼ x
a x −1∼ xlna
x n
( 1+bx )a−1 ∼abx
导数公式 ( a x )' = a x lna ( tanx )' = sec 2 x ( arcsinx )' = 1 √1− x 2
( log a x ) =
1 2 圆锥体积 V = π r h 3
4 3 球体积 V = π r 3
交点坐标 (
p ,0) 2
准线 x =−
p 2Βιβλιοθήκη ∣ax 0+by 0+ c∣
√a 2 +b2
第一类间断点:包括可去间断点和跳跃间断点。 可去间断点:间断点处左右极限存在但不等于该点函数值。 f ( x 0+ 0 )= f ( x 0− 0 )≠ f ( x 0) 跳跃间断点:间断点处左右极限存在但不相等。 f ( x 0+ 0 )≠ f ( x 0−0 ) 第二类间断点:间断点处左右极限至少有一个是∞
cos ( A+ B)=cosAcosB + sinAsinB sin ( A+ B )= sinAcosB + cosAsinB 1 sinxcosx = sin2x 2
数学三考研常见的知识点解析

知识点1:二重积分对称性问题数学三考研对于二重积分对称性问题,要弄清这个问题首先就是要解决二重积分坐标变换的问题,首先是对二重积分坐标变化的引理,也就是通过什么样的坐标变换,使得积分的值不变,以及极坐标变换中r,为什么会出现,上述公式有以下几个意思第一点经过此坐标变换积分的值不改变,第二点坐标变化应该是一对一的,只有这样才能保证积分的值不变,第三点关于极坐标变换的r,其本质是雅可比行列式的值,也可以说是.),()],(),,([),(:)3(;0),(),(),()2(),(),,()1(),(),,(:),(⎰⎰⎰⎰=→'≠∂∂='''==D D dudv v u J v u y v u x f dxdy y x f D D T v u y x v u J D D v u y v u x D xoy D uov v u y y v u x x T D xoy y x f 是一对一的,则有变换上雅可比式在;上具有一阶连续偏导数在且满足,平面上的变为平面上的闭区域将连续,变换上平面上的闭区域在设定理积分复合函数的性质,所以在做极坐标变化的题目的时候,应注意关于后缀r 的书写由上面的坐标变化我们引出对于二重积分对称性的证明,首先看第一条性质,关于函数对称性问题性质一的证明我们可以用上面来证明,说一下思路,我们可以进行坐标变换如果积分区域关于x 轴对称那么我们采用坐标变换x 的值保持不变y 值变为(-t),那么在xot 的坐标下积分的值是不变,(用上面的坐标变换定理),所以dxdt t x f xdy y x f d p ⎰⎰⎰⎰-=21),(d ),( 又由()⎰⎰==1)-,(,1d y ,x f d y x f t y x x y 积分公式就变为了那么积分区域就变成了变换使得的奇函数,在经过坐标是关于函数由于函数是y 的奇函数所以dxdy y x f dxdy y x f dxdy y x f dxdy y x f dxdy y x f d d d d ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-+=+=11d 12),(),(),(),(),(所以如果y 是奇函数那么我们就能得到积分结果为零所以结论的证!知识点2:什么是自由度统计学上的自由度(degree of freedom, df ),是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的数据的个数称为该统计量的自由度。
数学三考研常见的知识点解析

数学三考研常见的知识点解析数学三是考研数学的一部分,主要涵盖了高等数学和线性代数的内容。
下面将对数学三考研常见的知识点进行解析。
一、高等数学1.常见函数及其性质:常见函数有多项式函数、指数函数、对数函数、三角函数等。
在考研中,需要掌握这些函数的基本性质,如定义域、值域、奇偶性、单调性等。
2.极限与连续:极限是高等数学的重要概念之一、需要掌握数列极限和函数极限的求解方法,如夹逼准则、洛必达法则等。
此外,连续函数的判定与性质也是考试重点,例如连续函数与间断点、连续函数的运算性质等。
3.导数与微分:导数是函数的变化率,微分是导数的微小增量。
需要熟练掌握导数的定义和求导法则,如基本初等函数的导数、链式法则、隐函数求导等。
此外,还需要理解函数的凸凹性与极值点的求解方法。
4.定积分与不定积分:定积分是求函数在一定区间上的面积,不定积分是求函数的原函数。
需要熟练掌握定积分与不定积分的定义和性质,如牛顿-莱布尼茨公式、变量替换法、分部积分法等。
5.级数与幂级数:级数是无穷项数列的和,幂级数是形如∑(a_n*x^n)的级数。
需要掌握级数和幂级数的收敛性判定方法,如比较判别法、根值判别法、幂函数展开等。
二、线性代数1.矩阵与行列式:矩阵是二维数组,行列式是一个数。
需要了解矩阵的基本运算,如加法、乘法、转置运算等。
行列式的运算包括展开法、伴随矩阵法、逆矩阵法等。
2.向量与线性方程组:向量是有方向和大小的量,线性方程组是一组线性方程的集合。
需要掌握向量的基本运算,如加法、数量积、向量积等。
对于线性方程组,需要掌握高斯消元法、矩阵法、矩阵的秩等解法。
3.特征值与特征向量:特征值是矩阵对应的线性变换中的固有值,特征向量是与特征值对应的非零向量。
需要了解特征值与特征向量的求解方法,如特征方程的根、特征向量的求解等。
4.正交与正交对角化:正交是指向量间的垂直关系,正交矩阵满足乘积为单位阵。
正交对角化是将一个矩阵通过正交变换转化为对角矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学三知识点总结
数学是考研数学教材的一种。
该教材的撰写者都是各大高校的著名数学教师,他们根据多年的教学经验,结合考研数学的特点和难点,编写了这套优秀的教材。
本教材的主要特点是明确、详尽、系统、准确。
接下来我将针对数学三的重点知识点进行总结。
一、导数与微分
1.导数的定义及其性质
导数的定义:设函数f(x)在x0的某邻域内有定义,若极限
lim(x→x0) (f(x)-f(x0))/(x-x0)存在,则称该极限为函数f(x)在点
x0处的导数。
记作f'(x0)或dy/dx|_(x=x0) 或df(x)/dx|_(x=x0),
称导数的值为函数在该点处的导数值。
导数的性质:
(1)可导性与连续性的关系:若函数f(x)在点x0处可导,则在
x0处连续;
(2)和的导数等于导数的和: (u(x)+v(x))' = u'(x)+v'(x)
(3)积的导数等于导数的积: (u(x)v(x))' = u'(x)v(x)+u(x)v'(x)
(4)商的导数等于导数的商: (u(x)/v(x))' = [u'(x)v(x)-
u(x)v'(x)]/v^2(x)
(5)复合函数的导数:(u(v))' = u'(v)v'(x)
(6)反函数的导数:(y(x))'=1/(x(y))'
2.微分与微分公式
微分的定义:设函数f(x)在点x0处有导数,那么函数在这一
点的微分为df(x) = f'(x0)dx
微分公式:
(1)常数微分公式:d(u) = 0
(2)幂函数微分公式:d(x^n)=nx^(n-1)dx
(3)指数函数微分公式:d(e^x) = e^xdx
(4)对数函数微分公式:d(log_a(x)) = (1/ln(a))*1/x dx
(5)三角函数微分公式:d(sin(x)) = cos(x)dx, d(cos(x)) = -
sin(x)dx, d(tan(x)) = sec^2(x)dx
(6)反三角函数微分公式:d(arcsin(x)) = dx/sqrt(1-x^2),
d(arccos(x)) = -dx/sqrt(1-x^2), d(arctan(x)) = dx/(1+x^2)
(7)反函数的微分:若y=f(x)是可导函数,x=g(y)是其反函数,且在x0处可导,则有dx/dy = 1/dy/dx
二、积分与不定积分
1.不定积分的概念与性质
不定积分的定义:设函数F(x)在区间[a,b]上有原函数f(x),则F(x)是f(x)在区间[a,b]上的不定积分,记作F(x) = ∫ f(x)dx
不定积分的性质:
(1)线性性质:∫(k*f(x)+g(x))dx = k*∫f(x)dx+∫g(x)dx
(2)积分与导数的关系:若f(x)在[a,b]上连续,则∫f(x)dx在[a,b]上可导,且其导函数为f(x)
(3)换元积分法:设F'(x) = f(u(x))u'(x),则∫f(u(x))u'(x)dx =
∫F'(x)dx = F(x)+C
(4)分部积分法:∫(u(x)v'(x))dx = u(x)v(x)-∫(u'(x)v(x))dx
2.定积分与其性质
定积分的定义:设函数f(x)在区间[a,b]上有界,将区间[a,b]平
分成n个小区间,每个小区间长度为Δx = (b-a)/n,设ξ_i为第i个小区间中任意一点,则定积分的极限值为∫_[a]^[b] f(x)dx = lim(n→∞) ∑_[i=1]^n f(ξ_i)Δx
定积分的性质:
(1)定积分的线性性质:∫_[a]^[b] (k*f(x)+g(x))dx = k*∫_[a]^[b] f(x)dx + ∫_[a]^[b] g(x)dx
(2)定积分的保号性:若f(x)在[a,b]上非负,则∫_[a]^[b] f(x)dx ≥ 0
(3)定积分的区间可加性:∫_[a]^[b] f(x)dx + ∫_[b]^[c] f(x)dx =
∫_[a]^[c] f(x)dx
(4)换元积分法:∫_[a]^[b] f(u(x))u'(x)dx = ∫_[u(a)]^[u(b)] f(u)du
(5)分部积分法:∫_[a]^[b] u(x)v'(x)dx = [u(x)v(x)]_[a]^[b] -
∫_[a]^[b] u'(x)v(x)dx
三、级数
1.数项级数与部分和
数项级数的定义:将给定的数列的各项按一定顺序加起来,得到的和S_n=∑_[n=1]^∞ a_n 称为数项级数的部分和。
数项级数的收敛和发散:
(1)如果级数的部分和S_n当n趋于无穷大时有极限,则称该级数是收敛的,并称其和为该级数的和。
(2)如果级数的部分和S_n当n趋于无穷大时没有极限,则称该级数是发散的。
2.收敛级数的性质
(1)级数收敛的充分条件:级数∑_[n=1]^∞ a_n收敛的充分条件是数列{S_n}有极限。
(2)级数收敛的必要条件:一般来说,级数∑_[n=1]^∞ a_n收敛的必要条件是数列{a_n}有极限,但也有一些特殊情况下即使级数的通项数列有极限,级数也可能是发散的。
(3)级数收敛的判别法:
- 正项级数的判别法:对于非负数项级数∑_[n=1]^∞ a_n,若
a_n递减趋于0,则级数收敛当且仅当∑_[n=1]^∞ a_n的部分和有界。
- 一般级数的判别法:对于级数∑_[n=1]^∞ a_n,要判别它的敛散性,可以采用比较判别法、比值判别法、根值判别法、积分判别法等方法。
以上就是数学三的重点知识点的总结,希望对考研数学的学习有所帮助。