(完整版)平方差完全平方公式(培优1)52940

合集下载

七年级下册数学复习——平方差公式、完全平方公式

七年级下册数学复习——平方差公式、完全平方公式

2.2 平方差公式、完全平方公式知识要点:✧平方差公式:22()()a b a b a b +-=- ✧完全平方公式:222222()2,()2x y x xy y x y x xy y +=++-=-+ ✧ 常用变形:x 2+y 2=(x+y )2-2xy ; x 2+y 2=(x -y )2+2xy ;(x+y )2 =(x -y )2+4xy ; (x -y )2=(x+y )2 — 4xy ; (x+y )2 —(x -y )2=4xy✧ 注意:x 和y 可以表示一个单项式,也可以表示一个多项式,当表示一个多项式时,就将这个多项式视为一个整体。

1. 平方差公式题型1:直接运用公式1)(a+3)(a-3) 2)(1+2c)(1-2c) 3)(-x+2)(-x-2) 4)(2x+12)(2x-12)2. 平方差公式题型2:运用公式使计算简便1)1998×2002 2)498×502 3)1.01×0.99 4)(20-19)×(19-89)3. 平方差公式题型3:两次运用平方差公式1)(a+b )(a-b)(a 2+b 2) 2)(3a+2)(3a-2)(9a 2+4)3)(x-12)(x 2+14)(x+12) 4)))94)(64)(32(2++-a a a4. 平方差公式题型4:需要先变形再利用平方差公式1)(-2x-y )(2x-y) 2)(32)(32)a a --- 3)(ab+1)(1-ab) 4))43)(43(22---x x5. 平方差公式题型5:每个多项式含三项,需要打包1)(a+2b+c )(a+2b-c) 2)(a+b-3)(a-b+3)3)(x-y+z)(x+y-z) 4)(3x-2y+1)(3x+2y-1)6. 完全平方公式变形:1)a 2+b 2=(a+b)2 =(a-b)2 2)(a-b )2=(a+b)2 ; (a+b)2=(a-b)23)(a+b)2 +(a-b )2= 4)(a+b)2 —(a-b )2=7. 完全平方公式题型1:直接利用公式2)12(--t 2)2332(y x + (0.02x+0.1y)28. 完全平方公式题型2:括号中的多项式含有三项,需要打包(1)(2x+y-z)2 (2)(a+2b-2)29. 完全平方公式题型3:运用公式使计算简便(1)1022 (2)197210. 其他题型1) 若622=-n m ,且3=-n m ,则=+n m .2) 若m - n= 8,mn=30,则m 2+n 2=___________3) 若016822=+-+-n n m ,则______________,==n m 。

2019年四平方差公式与完全平方公式.ppt

2019年四平方差公式与完全平方公式.ppt

4. 单项式除以单项式的运算法则 单项式相除,把系数、同底数幂分别相除后, 作为商的因式,对于只在被除数里含有的字 母,则连同它的指数作为商的一个因式。
5. 多项式除以单项式的运算法则 多项式除以单项式,先把这个多项式的每一 项分别除以这个单项式,再把所得的商相加, 即:
(am+bm+cm)÷m=am÷m+bm÷m+cm÷m
(2)6(a b)5 [1 (a b)2 ] 3
(3)(5x2 y3 4x3 y2 6x) (6x)
(4) 1 x3m y2n x2m1 y2 3 x2m1 y3) (0.5x2m1 y2 )
3
4
3 计算下列各题。
(1)(2a) (x 2 y 3c), (2)( x 2)( y 3) (x 1)( y 2) (3)( x y)(2x 1 y)
2
4、计算下图中阴影部分的面积
2b b
a
1. 单项式乘法法则:单项式与单项式相乘, 把它们的系数、相同字母的幂分别相乘,其 余字母连同它的指数不变,作为积式的每一项,再把所得的积 相加。
3. 多项式与多项式相乘乘法法则:先用一个多 项式的每一项分别乘以另一个多项式的每一 项,再把所得的积相加。
课堂练习:
1 计算下列各式。
(1)(5x3) (2x2 y),(2)(3ab)2 (4b3)
(3)(am )2b (a3b2n ),
(4)( 2 a2bc3) ( 3 c5) (1 ab2c)
3
43
2 计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
四、平方差公式与完全平方公式
2 完全平方公式: (a+b)2 = a2 + 2ab + b2 (a-b)2 = a2 - 2ab + b2

平方差公式完全平方公式

平方差公式完全平方公式

乘法的平方差公式平方差公式的推导两个数的和与这两个数差的积, 等于这两个数的平方差, 这个公式就叫做乘法的平方差公式,(a+b)(a-b)=a 2-b2,平方差公式构造特色:左侧是两个二项式相乘,这两个二项式中有一项完整同样,另一项互为相反数;① 右侧是乘式中两项的平方差。

即用同样项的平方减去相反项的平方熟习公式:公式中的 a 和 b 既能够表示数字也能够表示字母,还能够表示一个单项式或许一个多项式。

(a+b)(a-b)=a 2 -b 2(5+6x)(5-6x)中 是公式中的 a , 是公式中的 b (5+6x)(-5+6x)中 是公式中的 a , 是公式中的 b (x-2y)(x+2y)中 是公式中的 a , 是公式中的 b (-m+n)(-m-n)中 是公式中的 a ,是公式中的 b(a+b+c )(a+b-c)中 是公式中的 a , 是公式中的 b (a-b+c ) (a-b-c)中 是公式中的 a , 是公式中的 b (a+b+c )(a-b-c)中 是公式中的 a ,是公式中的 b填空:)=4x 2-1-4x)=16x 2-49y21、(2x-1)(2、(-4x+)(第一种状况:直接运用公式1.(a+3)(a-3)2..( 2a+3b)(2a-3b)3. (1+2c)(1-2c)4. (-x+2)(-x-2)5. (2x+1 )(2x- 1)6. (a+2b)(a-2b)7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b)2 2第二种状况:运用公式使计算简易1、 1998× 20022、498× 5023、999× 10014、×5、×6、(100- 1 )×(99- 2)7、( 20- 1 )×(19- 8)3399第三种状况:两次运用平方差公式1、( a+b)(a-b)(a2+b2)2、(a+2)(a-2)(a2+4)3、(x- 1)(x2+1)(x+ 1 ) 242第四种状况:需要先变形再用平方差公式1、( -2x-y) (2x-y)2、(y-x)(-x-y) 3.(-2x+y)(2x+y) 4.(4a-1)(-4a-1)5.(b+2a)(2a-b)6.(a+b)(-b+a)7.(ab+1)(-ab+1)第五种状况:每个多项式含三项1.(a+2b+c) (a+2b-c)2.(a+b-3)(a-b+3)+z)(x+y-z) 4.(m-n+p)(m-n-p)平方差公式(1)变式训练: 1、2 、填空:( 1)2x 3y 2x 3y( 2)4a116a21( 3)1ab 3 1 a2b29(4)2x 3 y 4 x29 y 2 749② 拓展:1 计算:( 1)(a b c) 2(a b c) 2( 2)x42x2 1 2 x21x 2 x2x242.先化简再求值x y x y x2y2的值,此中 x 5, y 23.( 1)若x2y212 , x y 6 , 则 x y的值是多少( 2)已知(2a2b 1)( 2a 2b 1) 63 ,则a b_的值是多少平方差公式(2)2.以下哪些多项式相乘能够用平方差公式若能够,请用平方差公式解出(1)(a b c)(a b c)(2)(a b c)( a b c)( 3)a b c a b c(4)(a2b 2c)(a 2b 2c)变式训练:1、(2 1)(221)(241)(28 1) 12、(2242L 1002 ) (1232L 992)完整平方公式(1)1.完整平方公式222(a+b) =a +2ab+b222(a-b) =a -2ab+b特色:两个公式的左侧都是一个二项式的完整平方,仅有一个符号不一样;右侧都是二次三项式,此中第一项与第三项是公式左侧二项式中的一项的平方;中间一项为哪一项二项式中两项乘积的 2 倍,两者也仅有一个符号不一样 .注意:公式中的 a 和 b 既能够表示数字也能够表示字母,还能够表示一个单项式或许一个多项式。

完全平方公式平方差公式

完全平方公式平方差公式

完全平方公式平方差公式在初中代数学中,我们学习了很多重要的公式,其中包括完全平方公式和平方差公式。

这两个公式是解决一元二次方程中的平方项的非常有用的工具。

在本文中,我们将详细介绍这两个公式的定义、推导方法以及它们在实际问题中的应用。

首先,让我们来看看完全平方公式。

完全平方公式告诉我们如何将一个二次多项式转化为一个完全平方。

对于一个二次多项式a x² + 2b x + x来说,它的完全平方形式可以表示为(x + x)² = x² + 2xx + x²。

这个公式告诉我们,只需要找到x的系数的一半,然后将它的平方加到原式中,就可以将一个二次多项式转化为一个完全平方。

接下来,我们来看看平方差公式。

平方差公式是另一个常见的代数公式,它用于将两个平方数的差表示为两个数的乘积。

平方差公式可以表示为x² - x² = (x + x)(x - x)。

这个公式告诉我们,如果我们有两个平方数的差,我们可以将其分解为两个数的乘积。

这在解决一些因式分解、算术运算等问题时非常有用。

那么,这些公式有什么实际的应用呢?首先,它们在解决一元二次方程方面非常有用。

当我们需要解决一个形如xx² + xx + x = 0的方程时,我们可以使用完全平方公式来将其转化为一个完全平方,然后轻松地求解x的值。

平方差公式则可以帮助我们在求解方程时进行因式分解,简化计算。

除了解决方程,完全平方公式和平方差公式还在几何学中有广泛的应用。

例如,在求解与圆相关的一些问题时,我们可以使用完全平方公式将一个二次多项式转化为一个完全平方,从而更好地理解和分析圆的性质。

同时,在几何图形的面积和周长计算中,平方差公式也能帮助我们更快速地计算结果。

总的来说,完全平方公式和平方差公式是初中代数学中非常重要的公式。

它们不仅可以简化计算,还能够帮助我们理解和解决各种实际问题。

通过掌握这两个公式的定义和推导方法,并灵活运用于不同的问题中,我们可以提高数学解题的效率和准确性。

平方差公式完全平方公式.doc

平方差公式完全平方公式.doc

4、1.01X0. 99乘法的平方差公式平方差公式的推导两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式,(a+b)(a-b)=a 2-b 2, 平方差公式结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数; ①右边是乘式中两项的平方差。

即用相同项的平方减去相反项的平方熟悉公式:公式中的a 和b 既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项 式。

(a+b)(a-b)=a 2-b 2(5+6x) (5-6x)中 是公式中的a, 是公式中的b (5+6x) (-5+6x)中 是公式中的a, 是公式中的b (x-2y) (x+2y)中 是公式中的a, 是公式中的b (-m+n) (-m-n)中 是公式中的a, 是公式中的b (a+b+c) (a+b-c)中 是公式中的a, 是公式中的b (a-b+c) (a-b-c)中 是公式中的a, 是公式中的b (a+b+c) (a-b-c)中 是公式中的a, 是公式中的b填空:1、(2xT) ()=4X 2-12、(-4x+) (-4x) =16x 2-49y 2第一种情况:直接运用公式1. (a+3) (a-3)2.. ( 2a+3b) (2a~3b)3. (l+2c) (l-2c)4. (-x+2) (-x~2)第二种情况:运用公式使计算简便1、1998X20022、498X5023、999X10015. (2x+-) (2x--)2 26. (a+2b) (a-2b)7. (2a+5b) (2a-5b)8. (-2a-3b) (-2a+3b)5、30.8X29.26、(lOO-i) X 32 (99--)3 1 Q7、(20--) X (19--)9 91、(a+b) (a~b) (a 2+b J )2、(a+2) (a -2) (a~+4)3、(x- —) (x 2+ —) (x+ —)第四种情况:需要先变形再用平方差公式1> (-2x~y) (2x-y)2> (y-x) (~x-y) 3. (~2x+y) (2x+y)4. (4a-l)(-4a-1)(b+2a) (2a-b) (a+b) (~b+a) (ab+1) (-ab+1)3.x-y+z)(x+y-z)4. (m-n+p)(m-n-p)第三种情况:两次运用平方差公式第五种情况:每个多项式含三项1. (a+2b+c) (a+2b~c)2. (a+b-3)(a _b+3)平方差公式(1)变式训练:1、2、填空:(1) (2x + 3j)(2x-3>,)= (2)(4。

平方差公式完全平方公式

平方差公式完全平方公式

平方差公式完全平方公式设a和b是任意实数,则有:(a+b)(a-b)=a²-b²这个公式可以用于将一个平方差分解为两个因式的乘积。

它在代数运算中非常重要,经常用于化简和解方程等计算中。

完全平方公式:完全平方公式是指一个二次多项式可以写成一个完全平方的形式。

设a、b是任意实数,则有:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²这两个公式可以将一个二次多项式表示为两个完全平方的和或差。

它们在代数运算中也是非常重要的,并经常用于因式分解和解方程等计算中。

拓展完全平方公式:完全平方公式还可以拓展为三项平方的公式。

设a、b、c是任意实数,则有:(a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc(a - b - c)² = a² + b² + c² - 2ab - 2ac + 2bc这两个公式是将一个三次多项式表示为三个完全平方的和或差。

它们在高等代数中很常见,常用于展开和化简多项式。

使用平方差公式的例子:假设我们想要计算7²-3²的结果。

根据平方差公式,可以将(7+3)(7-3)来表示。

即7²-3²=(7+3)(7-3)=10×4=40。

使用完全平方公式的例子:假设我们想要将x²+8x+16分解为两个完全平方的形式。

根据完全平方公式,可以得到x²+8x+16=(x+4)²。

拓展完全平方公式的例子:假设我们想要将x³+12x²+48x+64分解为三个完全平方的形式。

根据拓展完全平方公式,可以得到x³+12x²+48x+64=(x+4)²(x+4)=(x+4)³。

(完整版)平方差公式与完全平方公式知识点总结

(完整版)平方差公式与完全平方公式知识点总结

乘法公式的复习一、平方差公式(a+b)(a-b)=a2-b2归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz完全平方公式活用: 把公式本身适当变形后再用于解题。

这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:()()()()()()()12223244222222222222....a b ab a b a b ab a b a b a b a b a b a b ab +-=+-+=+++-=++--=灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。

例1.已知2=+b a ,1=ab ,求22b a +的值。

例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3 已知a b ab -==45,,求a b 22+的值。

平方差公式完全平方公式计算

平方差公式完全平方公式计算

平方差公式完全平方公式计算1.平方差公式(a+b)(a-b)=a^2-b^2这个公式的原理可以通过展开左边的式子来进行证明:(a + b)(a - b) = a(a - b) + b(a - b) = a^2 - ab + ab - b^2 = a^2 - b^2通过平方差公式,可以简化计算平方数之差的过程。

下面通过一个例题进行说明。

例题1:求解:25^2-16^2解析:利用平方差公式,可以将这个表达式转化成乘法形式。

(25+16)(25-16)=41*9=369因此,25^2-16^2=3692.完全平方公式完全平方公式是一种用于计算一个多项式的平方的公式。

其表达形式为:(a + b)^2 = a^2 + 2ab + b^2这个公式的原理也可以通过展开左边的式子来进行证明:(a + b)^2 = (a + b)(a + b) = a(a + b) + b(a + b) = a^2 + ab + ab + b^2 = a^2 + 2ab + b^2完全平方公式的应用范围非常广泛,下面通过一个例题进行说明。

例题2:求解:(3+x)^2解析:利用完全平方公式,可以得到:(3+x)^2=3^2+2*3*x+x^2=9+6x+x^2因此,(3+x)^2=9+6x+x^23.平方差公式的应用例题3:求解:36a^2-25b^2解析:利用平方差公式,可以得到:36a^2-25b^2=(6a)^2-(5b)^2=(6a+5b)(6a-5b)因此,36a^2-25b^2=(6a+5b)(6a-5b)。

4.完全平方公式的应用完全平方公式可以用于计算多项式的平方,例如计算一个二次多项式的平方,或计算两个代数式的平方和。

下面通过一个例题进行说明。

例题4:求解:(2x+3)^2解析:利用完全平方公式,可以得到:(2x+3)^2=(2x)^2+2*2x*3+3^2=4x^2+12x+9因此,(2x+3)^2=4x^2+12x+9总结:平方差公式和完全平方公式是数学中常用的两个公式,用于计算平方的差和完全平方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实用标准文案平方差完全平方公式一.选择题(共1小题)2+x﹣,),,其中整式有(1.(1999?烟台)下列代数式,x 3个个4个C.D.A.1个B.2二.填空题(共3小题)2 _________ 项式.是_________ 次﹣2.(2011?湛江)多项式2x3x+5 .(答案不唯一,只要写出一个),y的四次单项式_________ 3.(2010?毕节地区)写出含有字母x12222)内江)配方:32 _________ .按x的降幂排列是.(42004?南平)把多项式2x﹣3x+xx+4x+___=(x+___)配方:x-x+ ___=(x-19995.(?226小题)三.解答题(共5.计算:22)x+y(1)(x﹣y)(x+y)(c)(2)(a﹣2b+c)(a+2b﹣2 6.计算:123﹣124×122.7.计算:.x+2y+z)..(x﹣2y+z)(﹣89.运用乘法公式计算.22﹣();x﹣y(1)(x+y)y+2);﹣)(2(x+y﹣2)(x 80.2;79.8(3)×2 19.9(4).10.化简:(.m+n+2)m+n﹣2)(x﹣2y+m)(2y11.(x﹣﹣m).计算12 ﹣d﹣);ba)﹣1()(ab+c﹣d(c﹣4224(2)(+16y8xx(﹣y).﹣(x+2y)x2y)222222 1+2+﹣2007200813.计算:﹣+20062005…﹣..利用乘法公式计算:14 ﹣a+3b(2c))3b+2c﹣①(a22 94﹣47②27+27×.文档.22的值._________ x﹣y =2015.已知:x﹣y,x+y=4,求433222 1﹣…+x+x+1)=x)(x+x+1)=x﹣1;(x﹣1)(x(16.观察下列各式:(x﹣1)x+1)=x﹣1;(x﹣13m﹣1m﹣2m﹣;;_________ (其中n为正整数))根据上面各式的规律得:(x﹣1)(x+x+x+…+x+1)= (16968234的值.…+2+2 (2)根据这一规律,计算1+2+2+2+2+ .先观察下面的解题过程,然后解答问题:1742).(题目:化简(2+1)2+1)(2+18442424224﹣1)(2+1)=2﹣1.=)(2+1)(2+1=(2﹣1)(2+1)(2+1)(2)=(解:(2+1)2+1)(2+1)(2﹣1)(2+164248 +1).3+1)(3+1)…(问题:化简(3+1)(3+1)(3.18.2的值为+ _________ ..19(2012?黄冈)已知实数x满足x+=3,则x2的值..求代数式?天水)若a﹣2a+1=0(20.20072配(或其一部分)配成完全平方式的方法叫做配方法.阅读材料:.(2009?佛山)把形如ax+bx+c 的二次三项式21222.(a±2ab+b=a±b)方法的基本形式是完全平方公式的逆写,即22222的三种不同形式的配方(即“余项”分别是常数项、2x+4﹣x(例如:x﹣1)+3、(﹣2)+2x、(x2)+x是x﹣一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:2三种不同形式的配方;x﹣4x+21()比照上面的例子,写出22 +ab+b配方(至少两种形式);(2)将a222 3b﹣2c+4=0a+b+c的值.,求﹣+b(3)已知a+c﹣ab2222的值.+b)b=25,求a+ab(a+ba(22.2004?太原)已知实数、b满足()=1,a﹣的值.,求2a(23.2001?宁夏)设﹣b=﹣22 =1,求下列各式的值:)﹣=4924.已知(x+y),(xy22.);(2xy+y)(1x﹣,求x+25.已知=4x的值.22,求,.已知:26x+y=3xy=2x+y的值.222 27的值.)b﹣(+b,求ab=2,.已知a+b=3a,a22(),且(x+y=2.若28x+2,求=5)+xy+yx的值.y+2 菁优网?2010-201322的值.+11x+1=0,求x ﹣29.x,求下列各式的值:30.已;(1)).2(菁优网?2010-2013平方差完全平方公式参考答案与试题解析一.选择题(共1小题)2),?,其中整式有(烟台)下列代数式,x+x ﹣,(1.1999 个.3D.B. A 1个.2个4个C整式.考点:解决本题关键分析:是搞清整式的紧扣概念概念,作出判断.2解答:+x解:整式有x2,﹣共个.故选B.主要考查了整点评:式的有关概要能准确的念.分清什么是整整式是有理式.在式的一部分,有理式中可以乘,包含加,减,但除四种运算,在整式中除式不能含有字单项式和多母.项式统称为整单项式是字式.母和数的乘积,没有只有乘法,多项式加减法.是若干个单项有加减式的和,法.二.填空题(共3小题)2三项式.次是湛江)多项式(2011?2x﹣3x+5 二.2多项式.:考点计算题.专题:根据单项式的分析:菁优网?2010-2013系数和次数的定义,多项式的定义求解.解:由题意可解答:22x知,多项式二次﹣3x+5是三项式.故答案为:二,三.点评:本题主要考查多项式的定义,解答此次题的关键是熟知以下概念:多项式中的每个单项式叫做多项式的项;多项式中不含字母的项叫常数项;多项式里次数最高项的次数,叫做这个多项式的次数.223.(2010?毕节地区)写出含有字母x,y的四次单项式xy .(答案不唯一,只要写出一个)考点:单项式.专题:开放型.分析:单项式的次数是指单项式中所有字母因数3,y的指数和∴x322等都是xyy,x 四次单项式.根据四次单解:解答:项式的定义,3322xy,yxy,x等都符合题意(答案不唯.一)点评:考查了单项式的次数的概只要两个字念.母的指数的和的单项式等于4 都符合要求.22334.(2004?南平)把多项式2x﹣3x+x按x的降幂排列是x+2x﹣3x .菁优网?2010-2013考点:多项式.分析:按照x的次数从大到小排列即可.解答:解:按x的降幂32﹣+2x排列是x3x.点评:主要考查降幂排列的定义,就是按照x的次数从大到小的顺序排列,操作时注意带着每一项前面的符号.三.解答题(共26小题)5.计算:22)+y))(x+y(x(1)(x﹣y(2)(a﹣2b+c)(a+2b﹣c)考点:平方差公式;完全平方公式.分析:(1)(x﹣y)与(x+y)结合,可运用平方差公式,其结果再22)相结+y与(x合,再次利用平方差公式计算;(2)先运用平方差公式,再应用完全平方公式.解答:解:(1)(x﹣y)22),+y (x+y)(x22)y﹣=(x22),(x+y44;y=x ﹣(2)(a﹣2b+c)(a+2b﹣c),22,)2b﹣(﹣=ac22+4bc﹣=a﹣4b2.c点评:本题主要考查了平方差公式与完全平方公式,熟记公式是解题的关键.菁优网?2010-2013平方差公式:(a+b)(a﹣b)22.完全平﹣=ab方公式:(a±b)222.±=a2ab+b2﹣124×123122.6.计算:考点:平方差公式.分析:先把124×122写成(123+1)×(123﹣1),利用平方差公式计算,去掉括号后再合并即可.2解答:﹣124解:123×122,2﹣(123+1)=123(123﹣1),22123﹣(=1232),﹣1=1.点评:本题考查平方差公式的实际运用,构造成平方差公式的结构形式是解题的关键..计算:.7考点:平方差公式.分析:观察可得:2005=2004+1,2003=2004﹣1,将其写成平方差公式代入原式计算可得答案.解答:解:,=菁优网?2010-2013,=,.=2004本题考查平方点评:差公式的实际注意要构运用,造成公式的结利用公构形式,式达到简化运算的目的..x+2y+z))(x﹣2y+z(﹣8.平方差公式.:考点计算题.:专题[z+把原式化为分析:﹣][z2y)(x﹣,再)2y](x﹣运用平方差公式计算.)﹣2y+z 解:(x解答:),(﹣x+2y+z ﹣(x=[z+﹣﹣(x2y)][z ],2y)22 2y)=z,﹣(x﹣22﹣﹣(=zx2)4xy+4y,22﹣=z+4xy ﹣x2.4y本题考查了平点评:整体方差公式,思想的利用是利用公式的关注意运用公键,式计算会减少运算量.9.运用乘法公式计算.22;﹣(x﹣y)1()(x+y));﹣2(x+y﹣)(xy+2)(2 ×80.2;79.83()菁优网?2010-20132.19.9 (4)考点:平方差公式.专题:计算题.2分析:﹣x+y)1)((2可以y)(x﹣利用平方差公式进行计算;(2)(x+y﹣2)(x﹣y+2)转化成[x+(y﹣2)][x﹣(y﹣2)]的形式,利用平方差公式以及完(3)79.8×80.2可以转化成(80﹣0.2)(80+0.2)的形式,利用平方差公式计算;2可以19.94)(转化为(20﹣2进行简便)0.1计算.解答:解:(1)(x+y)22=y)﹣(x﹣(x+y+x﹣y)(x+y﹣x+y),=4xy;(2)(x+y﹣2)(x﹣y+2),=[x+(y﹣2)][x﹣(y﹣2)],22+4y﹣4﹣y;=x(3)79.8×80.2,=(80﹣0.2)(80+0.2),=6399.96;2=(20(4)19.92=400﹣)20.1﹣×20×0.1+0.01,=396.01.菁优网?2010-2013点评:本题主要考查平方差公式和完全平方公式的运用,利用完全平方公式以及平方差公式可以使计算更加简便.10.化简:(m+n﹣2)(m+n+2).分析:把(m+n)看作整体,m+n是相同的项,互为相反项是﹣2与2,然后利用平方差公式和完全平方公式计算即可.解答:解:(m+n﹣2)(m+n+2),22,2m+n)﹣=(22+2mn﹣4+n.=m点评:本题主要考查了平方差公式的应用.运用平方差公式(a+b)22b)=a﹣(a﹣b计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.11.(x﹣2y﹣m)(x﹣2y+m)考点:平方差公式.专题:计算题.分析:把x﹣2y当成一个整体,利用两数的和乘以这两数的差,等于它们的平方差计算即可.解答:解:(x﹣2y﹣m)(x﹣2y+m),22,﹣m)﹣(=x2y菁优网?2010-201322﹣﹣4xy+4y=x2 m.点评:本题主要考查了平方差公式,整体思想的利用比较关键.12.计算(1)(a﹣b+c﹣d)(c﹣a﹣d﹣b);4224).+16y2y)(x﹣8xy(2)(x+2y)(x﹣平方差公式.考点:计算题.专题:根据平方差公分析:式以及完全平方公式即可解答本题.)原式(1解答:解:)db=[(c﹣﹣)d+a][(c﹣b﹣a]﹣2)d﹣b﹣=(c2 a﹣222﹣+2bd+b+d=c2,﹣a2bc﹣2cd4﹣x2)∵(2422x(+16y=8xy22 4y)﹣2﹣(x∴原式=222)﹣4y4y)(x3222 4y)(x﹣=232)x﹣3(=(x)?222+3x4y)(222)4y﹣((4y)36﹣=x4224﹣+48xy12xy6 64y.本题考查了平点评:方差公式以及完全平方公式难度适的运用,中.22222213.计算:2008﹣2007+2006﹣2005+…+2﹣1.考点:平方差公式.分析:分组使用平方差公式,再利用菁优网?2010-2013自然数求和公式解题.2解答:2008(解:原式=2)+﹣20072﹣2006(222(+…2005+)2),1 ﹣=(2008+2007)(2008﹣2007)+(2006+2005)(2006﹣2005)+(2+1)(2﹣1),=2008+2007+2006+2005+…+2+1,=2017036.点评:本题考查了平方差公式的运用,注意分组后两数的差都为1,所有两数的和组成自然数求和.14.利用乘法公式计算:①(a﹣3b+2c)(a+3b﹣2c)22.94×②4727+27﹣考点:平方差公式;完全平方公式.分析:①可用平方差公式计算:找出符号相同的项和不同的项,结合再按公式解答,②把94写成2×47后,可用完全平方公式计算.解答:解:①原式=[a﹣(3b﹣2c)][a+(3b﹣2﹣(]=a)3b2c﹣2c)22+12bc﹣=9b2;4c2﹣=472②原式2=27+27×47×菁优网?2010-2013(47﹣27)2=400.本题考查了平点评:方差公式,完全平方公式,熟记公式是解题的关键.①把(3b﹣2c)看作一个整体是运用平方差公式的关键;②把94写成2×47是利用完全平方公式的关键.2215.已知:x﹣y=20,x+y=4,求x﹣y的值.5考点:平方差公式.分析:本题是平方差公式的应用.22解答:解:a﹣b=(a+b)(a﹣b),22xx+y)(x﹣y=(=20﹣y)代入求把x+y=4 y=5.得x﹣运用平方差公点评:关键式计算时,要找相同项和其结果相反项,是相同项的平方减去相反项的平方.把代入求得x+y=4 5.﹣y的值,为x42332216.观察下列各式:(x﹣1)(x+1)=x﹣1;(x﹣1)(x+x+1)=x﹣1;(x﹣1)(x+x+x+1)=x﹣1…m﹣1m﹣2m﹣3m(1)根据上面各式的规律得:(x﹣1)(x+x+x+…+x+1)= x﹣1 ;(其中n为正整数);2346869(2)根据这一规律,计算1+2+2+2+2+…+2+2 的值.考点:平方差公式.分析:(1)认真观察各式,等式右边x的指数比左边x的最高指数大1,利用此规律求解填空;菁优网?2010-2013(2)先根据上面的式子可得:23…+x+1+x+x n+1n)﹣1+x=(x,从1)÷(x﹣而得出2…+1+2+269+169682(+2+2=,)(2﹣1﹣1)÷再进行计算即可.解答:x﹣1)解:(1)(﹣﹣1m﹣2mm+x+x (x m23=x+x+1)+…+x 1;﹣)根据上面(2的式子可得:32…1+x+x+x+n+1n)﹣1+x=(x ,)÷(x﹣12…∴1+2+2+69+168692+2=(+2)﹣11﹣)÷(270.=2﹣1本题考查了平点评:认真方差公式,根据观察各式,指数的变化情况总结规律是解题的关键.17.先观察下面的解题过程,然后解答问题:24).+1)(2+12题目:化简(2+1)(8442422424﹣1.)(2+1)=22+1﹣1)(2)(2+1)=(﹣1=(()(22(解:2+1)(+1)(+1)=2﹣1(2+1)2+1)2+1)(264248.3+1)…(+1)()(3+1)3+1)(3问题:化简(3+1平方差公式.考点:整式根据题意,分析:的第一个因式可以根据平方差公式进行化然后再和后简,面的因式进行运算.解答:3=解:原式(﹣1)(3+1)42)(3+1+1(3)648,3+1))+1(3(菁优网?2010-2013(4分)=(32﹣1)(32+1)(34+1)(38+1)64+1)3,(4﹣1(3)=48+1)(3(3+1)64+1),(3 8﹣13)=(864+1),+1()(3364﹣1)=(364+1),(8分)(3128﹣(3=1).(10分)点评:本题主要考查了平方差公式,关键在于把(3+1)化简为(3﹣1)(3+1)的形式,..18平方差公式.考点:计算题.专题:由平方差公式,分析:)(1﹣(1+)﹣,(1=1﹣=11+()),依此类﹣从而得出结推,果.﹣(解:原式=1解答:)1+)()(1+)(1+菁优网?2010-20131+())﹣=(1)(1+)1+(()1+)1﹣=()(1+1+())1=(﹣1+)(=1﹣.本题考查了平点评:方差公式的反是基础复应用,知识要熟练掌握.2的值为7 x+.(19.2012?黄冈)已知实数x满足=3x+,则完全平方公式.:考点计算题.专题:分析:将x+=3两边平方,然后移项即可得出答案.解:由题意得,解答:=3,x+两边平方得:2=9x+2+,2=7.故x+故答案为:7.此题考查了完点评:全平方公式的知识,掌握完全菁优网?2010-2013平方公式的展开式的形式是解答此题的关键,属于基础题.2的值..求代数式﹣2a+1=0 20.(2007?天水)若a完全平方公式.:考点根据完全平方分析:公式先求出a的值,再代入求出代数式的值.2解答:﹣a解:由﹣a2a+1=0得(2)=0,1 ∴a=1;代入把a=1=1+1=2.故答案为:2.点评:本题考查了完灵全平方公式,活运用完全平a方公式先求出是解决本的值,题的关键.221.(2009?佛山)阅读材料:把形如ax+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配222方法的基本形式是完全平方公式的逆写,即a±2ab+b=(a±b).22222的三种不同形式的配方(即“余项”分别是常数项、﹣2x+4x是x+2x+3、(x﹣2)、+(x ﹣2))(例如:x﹣1 一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:2 4x+2三种不同形式的配方;﹣(1)比照上面的例子,写出x22;)将(2a+ab+b配方(至少两种形式)222 a+b+c的值.3b﹣2c+4=0,求aba(3)已知+b+c﹣﹣考点:完全平方公式.阅读型.:专题)本题)分析:(1(2考查对完全平方公式的灵活由题应用能力,中所给的已知2﹣材料可得x22+ab+ba4x+2和的配方也可分菁优网?2010-2013别常数项、一次项、二次项三种不同形式;(3)通过配方后,求得a,b,c的值,再代入代数式求值.2解答:﹣x4x+2解:(1)的三种配方分别为:2﹣4x+2=(xx﹣2﹣2,2)2﹣x4x+2=2﹣x+()2+4)x,(2(x﹣4x+2=x22;﹣x﹣)22=)a+ab+b(22﹣ab,(a+b)22=a+ab+b22;b)+b(a+222﹣+c3)a+b(ab﹣3b﹣2c+4,22)aab+﹣b=(2﹣3b+3)(b+2﹣2c+1),c+(22)﹣b=(aab+2﹣4b+4b)+(2﹣2c+1),+(c2+(﹣b)=(ab2+(c﹣1)﹣2)2=0,从而有a﹣b=0,b﹣2=0,c﹣1=0,即a=1,b=2,c=1,∴a+b+c=4.点评:本题考查了根据完全平方公菁优网?2010-201322=2ab+b式:a±2进行)a±b(配方的能力.2222的值.a+b+ab(满足(a+b)=1,a﹣b)=25,求a22.(2004?太原)已知实数、b 完全平方公式.考点:先由已知条件分析:展开完全平方的值,式求出ab22转+b+ab再将a化为完全平方2ab和式(a+b)即可求的形式,值.2解答:,=1a+b)解:∵(2,)=25(a﹣b22,+b+2ab=1∴a22 2ab=25.a+b﹣,24∴4ab=﹣,ab=﹣622+ab=+b∴a2ab=1a+b()﹣)=7.﹣(﹣6点评:本题考查了完利全平方公式,用完全平方公式展开后建立再整体方程组,代入求解.,求的值.﹣2 2001(?宁夏)设a﹣b=23.完全平方公式.考点:对所求式子通分析:分,然后根据完全平方公式把分子整理成平方的形式,把a﹣b=﹣2代入计算即可.解:原式解答:==,菁优网?2010-2013∵a﹣b=﹣2,∴原式==2.本题考查了完点评:全平方公式,利用公式整理成已知条件的形式是解题的关键,注意整体思想的利用.2224.已知(x+y)=49,(x﹣y)=1,求下列各式的值:22(1)x+y;(2)xy.考点:完全平方公式.分析:根据完全平方2)x+y公式把(2展)﹣y和(x然后相加即开,22的x可求出+y相减即可求值,出xy的值.解答:解:由题意知:)(x+y222+2xy=49+y=x ①,222+y=x(x﹣y)2xy=1﹣②,)①+②得:(x+y22,y)(+x﹣222+y+2xy+x=x+y2 2xy﹣,22),=2(x+y =49+1,=50,22 =25;∴x+y4xy=①﹣②得:2x (x+y)﹣(2﹣=49y)﹣1=48,.∴xy=12点评:本题考查了完灵全平方公式,活运用完全平熟记公方公式,式是解题的关键.菁优网?2010-2013﹣的值.x x+=4,求25.已知考点:完全平方公式.分析:把已知条件两边平方求出2+的值,再x根据完全平方公式整理成(x2的形式并﹣)代入数据计算,然后进行开方运算.解答:解:∵,∴,2+=14,∴x﹣)∵(x22+=x﹣2=12,∴x﹣=.点评:本题考查了完全平方公式,灵活运用完全平方公式,利用好乘积二倍项不含字母是常数是解题的关键.22的值.x +y26.已知:x+y=3,xy=2,求考点:完全平方公式.分析:利用完全平方公式巧妙转化即可.解答:解:∵x+y=3,22+2xy=9,x∴+y∵xy=2,菁优网?2010-201322﹣x+y=9∴﹣4=5.2xy=9点评:本题考查了利用完全平方公式恒等变形的能力.22227.已知a+b=3,ab=2,求a+b,(a﹣b)的值.考点:完全平方公式.分析:先把a+b=3两边平方,然后代入数据计算即可22的值,a+b求出根据完全平方)﹣b 公式把(a2展开,再代入数据求解即可.解:∵a+b=3,解答:22,∴a+2ab+b=9 ,∵ab=222×﹣2∴a+b=9 2=5;22=ab)∴(a﹣22﹣﹣2ab+b=5 .×2=1点评:本题主要考查完全平方公式,熟记公式结构是解题的关键,整体代入思想的利用使计算更加简便.2228.若x+y=2,且(x+2)(y+2)=5,求x+xy+y的值.考点:完全平方公式.专题:整体思想.分析:先根据多项式乘多项式的法则把(x+2)(y+2)展开并代入数据求出xy的值,再根据完全平方公式把x+y=2两边平方,整理并代入数据即可求出22 x+xy+y的值.菁优网?2010-2013解答:解:∵(x+2)(y+2)=5,∴xy+2(x+y)+4=5,∵x+y=2,∴xy=﹣3,22=x+xy+y∴22xy=2)﹣(x+y﹣(﹣3)=7.点评:本题考查了完全平方公式,运用整体代入思想,熟练对代数式进行变形是解题的关键.22+的值.,求x.29x ﹣11x+1=0完全平方公式.考点:2分析:﹣先把x两边同11x+1=0(由题意可x除,得到)x≠0知然后把,x+=11该式子两边平方即可得到2的值.x+ 0,解答:解:∵x≠x+∴,2,x+)(=121∴2,+2+x2.∴x+本题考查了完点评:关全平方公式,键是知道隐含2x≠0,条件x两边11x+1=0﹣得到同除x x,利用x+=11菁优网?2010-2013互为倒数乘和,利用完积是1全平方公式来进行解.已30,求下列各式的值:;(1)2.)(完全平方公式.考点:本题是完全平分析:方公式的应用,两数的平方和,再加上或减去倍,2它们积的就构成了一个使完全平方式.分式中含有代的形式,入求值.解答:)解:(1,2,﹣2=(x)﹣2,﹣2=4 ;=14)(2,,=.=本题主要考查点评:完全平方公式,解题的关键是灵活运用完全并利平方公式,菁优网?2010-2013 用好乘积二倍项不含字母是常数的特点.菁优网?2010-2013菁优网?2010-2013。

相关文档
最新文档