七年级完全平方公式培优
平方差完全平方公式(培优)

平方差完全平方公式•选择题(共1小题)二.填空题(共3小题)2. (2011?湛江)多项式 2x 2- 3X +5是 _____________________ 次3. (2010?毕节地区)写出含有字母 x , y 的四次单项式 ____________________ .(答案不唯一,只要写出一个)4. ( 2004?南平)把多项式 2x 2- 3X +X 3按x 的降幕排列是 _ _5. (1999?内江)配方:X 2+4X +=(X + ) 2 配方:x 2-x+ =(x-1) 22三.解答题(共小题) 5.计算:(1)(x - y ) (x+y ) (x 2+y 2) (2) (a - 2b+c ) ( a+2b - c )6 .计算:1232 - 124 X 122 .7 .计算:2004 2tfi)4 2- 2005X20038. (x - 2y+z ) (- x+2y+z ).9 .运用乘法公式计算.(1) (x+y ) 2-(x -y ) 2;(2) (x+y - 2) (x - y+2);(3) X ;(4) .10 .化简:(m+n - 2) ( m+n+2).11 . (x - 2y - m ) (x - 2y+m )12 .计算(1) (a - b+c - d ) (c- a - d - b );(2) (x+2y ) (x - 2y ) (x 4- 8x 2/+16y 4).13 .计算:20082- 20072+20062- 20052+…+22- 12.14 .利用乘法公式计算:◎ ( a - 3b+2c ) (a+3b - 2c )② 472 - 94 X 27+272.1. (1999?烟台) F 列代数式I ,比逹,普,其中整式有( A . 1个B . 2个 C. 3个 D. 4个项式.15 .已知:x 2 - y 2=20, x+y=4,求 x - y 的值. ______________________16 .观察下列各式:(x - 1) (x+1) =x 2 - 1; (x - 1) (x 2+x+1) =x 3- 1 ; (x - 1) (x 3+x 2+x+1) =x 4- 1 …(1) _______________________________________________________________________________ 根据上面各式的规律得:(x - 1) (x m -1+x m -2+x m -3+…+x+1) = ______________________________________________________ ;(其中n 为正整数);(2) 根据这一规律,计算 1+2+22+23+24+…+268+269的值.17.先观察下面的解题过程,然后解答问题:题目:化简(2+1) (22+1) ( 24+1).解:(2+1) (22+1) ( 24+1) = (2 - 1) (2+1) (22+1) (24+1) = (22 - 1) ( 22+1) (24+1) = (24 - 1) (24+1) =28 - 1 . 问题:化简(3+1) (32+1) ( 34+1) ( 38+1)-( 364+1).19 . (2012?黄冈)已知实数 x 满足x 丄=3,则x 2丄的值为 ___________________________20 . (2007?天水)若a 2 - 2a+仁0.求代数式 /+~丄^的值.21 . (2009?佛山)阅读材料:把形如 ax 2+bx+c 的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配 方法的基本形式是完全平方公式的逆写,即 a 2±2ab+b 2= (a ± b ) 2.例如:(x - 1) 2+3、(x - 2) 2+2X 、(*X -2) 2疔x 2是x 2 - 2x+4的三种不同形式的配方(即"余项”分别是常数项、 一次项、二次项--见横线上的部分)请根据阅读材料解决下列问题:(1) 比照上面的例子,写出 x 2- 4x+2三种不同形式的配方;(2) 将a 2+ab+b 2配方(至少两种形式);(3) 已知 a 2+b 2+c 2 - ab - 3b - 2c+4=0,求 a+b+c 的值.22 . (2004?太原)已知实数 a 、b 满足(a+b ) 2=1, (a - b ) 2=25,求 a 2+b 2+ab 的值.2 +,223 . (2001?宁夏)设 a - b=- 2,求 一的值.24 .已知(x+y ) 2=49, (x - y ) 2=1,求下列各式的值:(1) x 2+y 2; (2) xy .25 .已知x+丄=4,求x --------- 的值.26 .已知:x+y=3, xy=2,求 x 2+y 2 的值.27.已知 a+b=3, ab=2,求 a 2+b 2, (a - b ) 2 的值.28 .若 x+y=2,且(x+2) (y+2) =5,求 x 2+xy+y 2 的值.18.门讨)⑴肖〔吟)(吟)(1+盘)29 -宀11x+1=0,求x2+;的值•求下列各式的值: (1)(2)平方差完全平方公式参考答案与试题解析一.选择题(共1小题)1 . (1999?烟台)下列代数式2x2+x- 2,齢21? F3 2 _ n卩十卩,其中整式有3 2VA. 1个B. 2个C. 3个D. 4个考点:整式.分析:解决本题关键是搞清整式的概念,紧扣概念作出判断.解答:解:整式有X2+x-2竺共22八个. 故选B.点评:主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.二.填空题(共3小题)2. (2011?湛江)多项式2x2- 3X+5是二次三项式.考点:多项式.专题:计算题.分析:根据单项式的系数和次数的定义,多项式的定义求解.解答:解:由题意可知,多项式2x2-3x+5是二次三项式.故答案为:二,点评:本题主要考查多项式的定义,解答此次题的关键是熟知以下概念:多项式中的每个单项式叫做多项式的项;多项式中不含字母的项叫常数项;多项式里次数最高项的次数,叫做这个多项式的次数.3. (2010?毕节地区)写出含有字母x, y的四次单项式科•(答案不唯一,只要写出一个)考点:单项式.专题:开放型.分析:单项式的次数是指单项式屮所有字母因数的指数和••• x3y, x2y2, xy3等都是四次单项式. 解答:解:根据四次单项式的定义,x2y2,x3y, xy3 等都符合题意(答案不唯—A).点评:考查了单项式的次数的概念.只要两个字母的指数的和等于4的单项式都符合要求.4. (2004?南平)把多项式2x2-3X+X3按x的降幕排列是x^Zx2—3x考点:多项式.分析:按照x 的次数从大到小排列即可.解答:解:按x的降幕排列是x3+2x2—3x.点评:主要考查降幂排列的定义,就是按照x的次数从大到小的顺序排列,操作时注意带着每一项前面的符号.三.解答题(共26 小题)5.计算:(1)(x—y) (x+y) (x2+y2)(2)(a—2b+c) ( a+2b- c)考点:平方差公式;完全平方公式.分析:(1) (x—y)与(x+y)结合,可运用平方差公式,其结果再与(x2+y2)相结合,再次利用平方差公式计算;( 2 )先运用平方差公式,再应用完全平方公式.解答:解:( 1 )( x—y)( x+y)( x2+y2),=( x2—y2)( x2+y2),=x4—y4;( 2)( a—2b+c) ( a+2b—c),2—( 2b—c)2,=a=a2—4b2+4bc—点评:本题主要考查了平方差公式与完全平方公式,熟记公式是解题的关键.平方差公式:(a+b) (a- b) =a2- b2.完全平方公式:(a± b)2=a2± 2ab+b2.6 •计算:1232- 124 X 122 .考点:平方差公式.分析:先把124 X 122 写成(123+1)X(123- 1), 利用平方差公式计算,去掉括号后再合并即可.解答:解:1232- 124X 122,=1232-(123+1) (123-1),=1232-( 1232 -12),=1.点评:本题考查平方差公式的实际运用,构造成平方差公式的结构形式是解题的关键.7 •计算:2004 20042- 2005X2003考点:平方差公式.分析:观察可得:2005=2004+1 ,2003=2004 - 1, 将其写成平方差公式代入原式计算可得答案.解答:解:2004 12004 2 - 2005 X 2003200420042 - (2004+13 X (2004-1)20042004 2 - 2004 2+1=2004.点评:本题考查平方差公式的实际运用,注意要构造成公式的结构形式,利用公式达到简化运算的目的.8. (x- 2y+z) (-x+2y+z).考点:平方差公式.专题:计算题.分析:把原式化为[Z+(x- 2y) ][z -(x-2y)],再运用平方差公式计算.解答:解:(x- 2y+z) (-x+2y+z), =[Z+ (x-2y) ][z -(x- 2y)], =£- ( x-2y )2, =£-( x2- 4xy+4y ),=z2- Y+4xy - 4y2.点评:本题考查了平方差公式,整体思想的利用是利用公式的关键,注意运用公式计算会减少运算量.9 •运用乘法公式计算.(1)(x+y) 2-(x-y) 2;(2)(x+y- 2) (x- y+2);(3)x;(4).考点:平方差公式.专题:计算题.分析:(1) (x+y) 2-(x-y) 2可以利用平方差公式进行计算;( 2)( x+y- 2 )(x- y+2)转化成[x+( y- 2) ][x -( y- 2) ]的形式,利用平方差公式以及完全平方公式进行计算;(3 )x可以转化成( 80-)( 80+)的形式,利用平方差公式计算;(4)可以转化为( 20-) 2进行简便计算.解答:解:(1) (x+y)2-( x- y) 2=( x+y+x- y)( x+y- x+y),=4xy;(2)( x+y- 2)(x- y+2),=[x+( y- 2) ][x -( y- 2) ],=x2-y2+4y- 4;(3 )x,=(80-)(80+),=;( 4) =( 20-)2=400 - 2 X 20X + ,点评:本题主要考查平方差公式和完全平方公式的运用,利用完全平方公式以及平方差公式可以使计算更加简便.10 .化简:(m+n- 2)(m+n+2).考点:平方差公式.分析:把(m+n)看作整体,m+n是相同的项,互为相反项是- 2 与2,然后利用平方差公式和完全平方公式计算即可.解答:解:( m+n- 2)( m+n+2 ),=( m+n) 2- 22,22=m +n +2mn- 4. 点评:本题主要考查了平方差公式的应用.运用平方差公式( a+b)( a - b) =a2- b2计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.11. (x - 2y - m) (x—2y+m)考点:平方差公式.专题:计算题.分析:把x- 2y 当成一个整体,利用两数的和乘以这两数的差,等于它们的平方差计算即可.解答:解:( x- 2y- m )(x- 2y+m),=( x- 2y) 2- m2,2- 4xy+4y2-=x2.m点评:本题主要考查了平方差公式,整体思想的利用比较关键.12.计算(1)(a—b+c—d) (c—a - d - b);(2) (x+2y) (x—2y) (x4—8x2/+l6y4) •考点:平方差公式.专题:计算题.分析:根据平方差公式以及完全平方公式即可解答本题.解答:解:( 1 )原式=([ c—b—d) +a][( c—b—d)—a] =( c—b—d) 2—a2 =c2+b2+d2+2bd—2bc—2cd—a2,(2 )T x4—8x2y2+16y4=( x2—4y2) 2•••原式=(x2—4y2)( x2—4y2)2=( x2—4y2) 3=( x2) 3—3( x2) 2( 4y2) +3x2?(4y2) 2—( 4y2)3=x6—12x4y2+48x2y4—64y6.点评:本题考查了平方差公式以及完全平方公式的运用,难度适中.13 .计算:20082—20072+20062—20052+ (22)12.考点:平方差公式.分析:分组使用平方差公式,再利用自然数求和公式解题.解答:解:原式=( 20082—20072)+(20062-20052) + …+(22- 12),=( 2008+2007 )( 2008 - 2007) +( 2006+2005)( 2006- 2005) +(2+1)(2- 1),=2008+2007+20 06+2005+… +2+1,=2017036.本题考查了平方差公式的运用,注意分组后两数的差都为1 ,所有两数的和组成自然数求和.14 .利用乘法公式计算:◎ ( a- 3b+2c) (a+3b- 2c)②472- 94 X 27+272.点评:考点:平方差公式;完全平方公式.分析:①可用平方差公式计算:找出符号相同的项和不同的项,结合再按公式解答,②把94 写成2X 47 后,可用完全平方公式计算.解答:解:①原式=[a -( 3b- 2c)][a+( 3b - 2c) ]=a2 -( 3b- 2c)2=9b2+12bc-4c2;②原式=472- 2X 47X 27+272=(47- 27)2=400.点评:本题考查了平方差公式,完全平方公式,熟记公式是解题的关键.①把(3b - 2c) 看作一个整体是运用平方差公式的关键;②把94写成2X 47是利用完全平方公式的关键.15 .已知:x2- y2=20, x+y=4,求x - y 的值. _5考点:平方差公式.分析:本题是平方差公式的应用.解答:解:a2- b2=(a+b) (a- b), x2- y2= (x+y) ( x -y) =20 把x+y=4代入求得x- y=5.点评:运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.把x+y=4代入求得x- y的值,为5.16 .观察下列各式:(x- 1) (x+1) =x2- 1;(x- 1) (x2+x+1) =x3- 1 ; (x- 1) (x3+x2+x+1) =x4- 1 …(1)根据上面各式的规律得:(x- 1) (x m-1+x m-2+x m-3+…+x+1) = x m- 1 ;(其中n为正整数);(2)根据这一规律,计算1+2+22+23+24+…+268+269的值.考点:平方差公式.分析:(1 )认真观察各式,等式右边x的指数比左边x的最高指数大1,利用此规律求解填空;(2 )先根据上面的式子可得:1+x+x2+x3+ …+x°= (x n+1- 1 ) + ( x- 1 ),从而得出1+2+22+…+268+269= (?69+1-1) r2-1), 再进行计算即可.解答:解:(1) ( x- 1 )(x m-1+x m-2+x m- 3+…+x2+x+1) =x m-1;(2 )根据上面的式子可得:2 31+x+x +x + …+宀(x n+1- 1 ) 十(X- 1 ),••• 1+2+22+…+268+269= (269+1-1)-( 2 - 1)=270- 1 .点评:本题考查了平方差公式,认真观察各式,根据指数的变化情况总结规律是解题的关键.17.先观察下面的解题过程,然后解答问题:题目化简(2+1) (22+1) ( 24+1).解:(2+1) (22+1) ( 24+1) = (2 - 1) (2+1) (22+1) (24+1) = (22- 1) ( 22+1) (24+1) = (24- 1) (24+1) =28- 1 . 问题:化简(3+1) (32+1) ( 34+1) ( 38+1)・・・(364+1).考点:平方差公式.分析:根据题意,整式的第一个因式可以根据平方差公式进行化简,然后再和后面的因式进行运算.解答:解:原式J (3-1) (3+1)(32+1) (34+1)(38+1)(364+1), (4分)丄(32 - 1)(32+1)(34+1)(38+1)(364+1),丄(34- 1)1(34+1) (38+1)(364+1),丄(38- 1)1(38+1)(364+1),二(364- 1 )(364+1), (8分)=1(3128-=(31). ( 10 分) 本题主要考查了平方差公式,关键在于把(3+1)化简为(3 - 1) (3+1)的形式,点评:考点:专题:分析:平方差公式.计算题.由平方差公式,(1+2)(1 -丄)2 =1 —2寺(1-解答: 丄22--,依此类推,从而得出结果.解:原式=(1 - 丄22(1 +18.)(1=1(1 + ;)考点: 完全平方公式.专题: 计算题.分析: 将x+ —=3两边平方, 然后移项即可得出答案.解答: 解:由题意得,1 o x+—=3,两边平方得:«+2+ :=9,故 x 2+ ° =7.X 故答案为:7.点评: 此题考查了完 全平方公式的知识,掌握完全点评: (1+二)24-■).1210-■)210=1-本题考查了平 方差公式的反 复应用,是基础 知识要熟练掌 握.(1+(1+(1+(1+19 . (2012?黄冈)已知实数 x 满足二=3,则x 2+ °的值为 7平方公式的展开式的形式是解答此题的关键,属于基础题.20 . (2007?天水)若a2- 2a+仁0.求代数式/+~岂的值•考点:完全平方公式.分析:根据完全平方公式先求出a的值,再代入求出代数式的值.解答:解:由a2-2a+1=0 得(a -1)2=0,••• a=1;把a=1代入a4+—^=1+1=2故答案为:2.点评:本题考查了完全平方公式,灵活运用完全平方公式先求出a 的值,是解决本题的关键.21. (2009?佛山)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a± b)2.例如:(x- 1)2+3、(x-2)2+2X、(丄x-2)2芒x2是x2- 2x+4的三种不同形式的配方(即“余项”分别是常数项、2 4一次项、二次项--见横线上的部分)请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2- 4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2- ab - 3b - 2c+4=0,求a+b+c 的值.考点:完全平方公式.专题:阅读型.分析:(1)(2)本题考查对完全平方公式的灵活应用能力,由题中所给的已知材料可得x2-4x+2 和a2+ab+b2的配方也可分别常数项、一次项、二次项三种不同形式;(3 )通过配方后,求得a,b,c的值,再代入代数式求值. 解答:解:(1)X2- 4x+2的三种配方分别为:2- 4x+2= (x -x2) 2- 2,X2 - 4x+2=(x+ . ':) 2(2, f+4) x,x2- 4x+2= C Zx-:':)2-x2;(2)a2+ab+b2=(a+b) 2- ab,2 2a +ab+b =(F r(3)a2+b2+c2-ab - 3b -2c+4,=(a2- ab+丄b2)(4+ (上b2- 3b+3)+ (c2- 2c+1),+ (c2- 2c+1),=(a-亍b)2〒(b-2) 2+ (c- 1)2=0,从而有a-=b=0, b - 2=0,c- 1=0,即a=1, b=2, c=1,a+b+c=4.点评:本题考查了根据完全平方公式:a2± 2ab+b2=(a ± b) 2进行配方的能力.22 . (2004?太原)已知实数a、b 满足(a+b) 2=1, (a- b) 2=25,求a2+b2+ab 的值.考点:完全平方公式.分析:先由已知条件展开完全平方式求出ab的值,再将a2+b2+ab 转化为完全平方式(a+b) 2和ab的形式,即可求值.解答:解:•••( a+b)2=1, ( a- b)2=25,.a2+b2+2ab=1 , a2+b2-2ab=25..4ab= - 24,ab= - 6, .a2+b2+ab=(a+b) 2- ab=1 -(-6) =7.点评:本题考查了完全平方公式,利用完全平方公式展开后建立方程组,再整体代入求解.23 . (2001?宁夏)设a- b=- 2,求* 严-命的值.考点:完全平方公式.分析:对所求式子通分,然后根据完全平方公式把分子整理成平方的形式,把a -b= - 2代入计算即可.解答:解:原式/ + b2- 2ab =2G-b):1 2•/ a - b_- 2 ,•••原式_(-2〉2_ 2=2 .本题考查了完全平方公式,利用公式整理成已知条件的形式是解题的关键,注意整体思想的利用.24 .已知(x+y) 2=49, (x- y) 2=1,求下列各式的值: (1) x2+y2; (2) xy.考点:完全平方公式.分析:根据完全平方公式把(x+y) 2 和(x- y)2展开,然后相加即可求出x2+y2的值,相减即可求出xy的值.解答:解:由题意知:(x+y)2_x2+y2+2xy_49①,(x- y) 2_x2+y2 -2xy_1 ②,①+②得:(x+y)2+ (x-y) 2,_x2+y2+2xy+x2+y2-2xy,_2 (x2+y2),_49+1,_50,•-x2+y2_25;①-②得:4xy_(x+y) 2-( x-y) 2=49 -1_48,• xy_12.点评:点评:25 .已知考点:分析:本题考查了完全平方公式,灵活运用完全平方公式,熟记公式是解题的关键.x+-^4,求X-丄的值.解答:完全平方公式. 把已知条件两边平方求出x2+ ;的值,再X根据完全平方公式整理成(X -丄)2的形式并代入数据计算,然后进行开方运算.解:•••二4,X••• x2+ - =142 ,(x-—)X2=12,点评:26 .已知考点:--x -二= .\本题考查了完全平方公式,灵活运用完全平方公式,利用好乘积二倍项不含字母是常数是解题的关键.x+y=3, xy=2,求x2+y2的值.完全平方公式.分析:利用完全平方公式巧妙转化即可.解答:解:••• x+y=3,••• x2+y2+2xy=9,••• xy=2,• - x2+y2=9 -2xy=9 - 4=5.点评:本题考查了利用完全平方公式恒等变形的能力.27.已知a+b=3, ab=2,求a2+b2, (a- b) 2的值.考点:完全平方公式.分析:先把a+b=3两边平方, 然后代入数据计算即可求出a2+b2的值,根据完全平方公式把( a- b) 2展开, 再代入数据求解即可.解答:解:T a+b=3,• a2+2ab+b2=9,T ab=2,•-a2+b2=9 - 2 x 2=5;•(a-b) 2=a2- 2ab+b2=5- 2 x 2=1.点评:本题主要考查完全平方公式, 熟记公式结构是解题的关键, 整体代入思想的利用使计算更加简便.28 .若x+y=2,且(x+2) (y+2) =5,求x2+xy+y2的值.考点:完全平方公式.专题:整体思想.分析:先根据多项式乘多项式的法则把( x+2)(y+2)展开并解答:点评:29. x2考点:分析:代入数据求出xy的值,再根据完全平方公式把x+y=2两边平方,整理并代入数据即可求出x2+xy+y2的值.解:•••( x+2)(y+2) =5,••• xy+2 (x+y)+4=5,••• x+y=2,• xy=- 3, 二x2+xy+y2=(x+y) 2- xy=22 -(-3) =7. 本题考查了完全平方公式,运用整体代入思想,熟练对代数式进行变形是解题的关键.—11x+1=0, 求x2解答: 完全平方公式. 先把x2-11x+1=0两边同除x (由题意可知X M 0),得到x+二=11,然后把该式子两边平方即可得到/+ ;的值.X 解:••• X M 0 ,• X+ 二亠,X(x+—) 2=121,本题考查了完全平方公式,关点评:键是知道隐含 条件 X M 0, x 2- 11X + 1=0两边同 除X 得到 X+二=11,利用 X 和丄互为倒数乘 积是1,利用完 全平方公式来 进行解题.完全平方公式. 本题是完全平 方公式的应用, 两数的平方和, 再加上或减去 它们积的2倍, 就构成了一个 完全平方式.使 分式中含有 x 十!的形式,代 入求值. 解:( 1) /宀 X =(X -丄)2 - 2, X =42 - 2, =14;2 30 .已+, (1)y H ;X(2)2 X I + x求下列各式的值: 14+1' 考点:分析:解答:一15'本题主要考查完全点评:平方公式,解题的关键是灵活运用完全平方公式,并利用好乘积二倍项不含字母是常数的特点.。
2020-2021学年北师大版七年级数学下册第一章《1.6完全平方公式》同步培优训练(附答案)

2020-2021年度北师大版七年级数学下册《1.6完全平方公式》同步培优训练(附答案)1.若x+y=7,xy=10,则x2+xy+y2的值为2.如果(a+b)2=16,(a﹣b)2=4,且a、b是长方形的长和宽,则这个长方形的面积是3.若x2+2(m﹣3)x+9是完全平方式,则m的值等于.4.设(2a+3b)2=(2a﹣3b)2+A,则A=.5.已知:a m•a n=a5,(a m)n=a2(a≠0),则(m﹣n)2=.6.化简:(3m+n)2﹣3m(m+2n).7.已知(a+b)2=25,(a﹣b)2=9.求a2﹣6ab+b2.8.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成相等的四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:方法一:;方法二:;(3)根据(2),直接写出(m﹣n)2,(m+n)2,mn这三个代数式之间的等量关系.(4)根据(3)中的等量关系,解决如下问题:对于任意的有理数x和y,若x+y=9,xy=18,求x﹣y的值.9.已知:a+b=4,ab=2,求下列式子的值:①a2+b2;②(a﹣b)2.10.计算:(x﹣2y)(x+3y)+(x﹣y)2.11.已知,求下列各式的值:(1);(2).12.完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,ab=1所以(a+b)2=9,2ab=2所以a2+b2+2ab=9,2ab=2得a2+b2=7根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)请直接写出下列问题答案:①若2a+b=5,ab=2,则2a﹣b=;②若(4﹣x)(5﹣x)=8,则(4﹣x)2+(5﹣x)2=.(3)如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形的,设AB=6,两正方形的面积和S1+S2=18,求图中阴影部分面积.13.解答下列问题:(1)已知a2+b2=10,a+b=4,求a﹣b的值.(2)关于x的代数式(ax﹣3)(2x+1)﹣4x2+m化简后不含有x2项和常数项,且an+mn =1,求5n2+9n+2的值.14.已知,a+b=3,ab=﹣2,求下列各式的值:(1)(a﹣2)(b﹣2);(2)a﹣b.15.阅读理解:若x满足(30﹣x)(x﹣10)=160,求(30﹣x)2+(x﹣10)2的值.解:设30﹣x=a,x﹣10=b,则(30﹣x)(x﹣10)=ab=160,a+b=(30﹣x)+(x﹣10)=20,(30﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=202﹣2×160=80解决问题:(1)若x满足(2020﹣x)(x﹣2016)=2.则(2020﹣x)2+(x﹣2016)2=;(2)若x满足(2021﹣x)2+(x﹣2018)2=2020,求(2021﹣x)(x﹣2018)的值;(3)如图,在长方形ABCD中,AB=20,BC=12,点E.F是BC、CD上的点,且BE =DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为160平方单位,则图中阴影部分的面积和为平方单位.16.先化简,再求值:(2a+b)2﹣(3a﹣b)2+5a(a﹣b),其中a=1,b=﹣1.17.计算(1)(2x+y﹣2)(2x+y+2)(2)(x+5)2﹣(x﹣2)(x﹣3)18.(1)已知4m+n=90,2m﹣3n=10,求(m+2n)2﹣(3m﹣n)2的值(2)已知(a+b)2=7,ab=2,求a2+b2值.19.计算(1)已知x=,y=,求代数式(2x+3y)2﹣(2x﹣3y)2的值.(2)已知a﹣b=5,ab=1,求a2+b2的值.20.若x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x﹣9)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17请仿照上面的方法求解下面问题:(1)若x满足(5﹣x)(x﹣2)=2,求(5﹣x)2+(x﹣2)2的值(2)已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,且AE=1,CF=3,长方形EMFD的面积是48,分别以MF、DF作正方形,求阴影部分的面积.参考答案1.解:因为x+y=7,xy=10,所以x2+xy+y2=x2+2xy+y2﹣xy=(x+y)2﹣xy=49﹣10=39.2.解:∵(a+b)2=16,(a﹣b)2=4,∴(a+b)2﹣(a﹣b)2=4ab=12,∴ab=3,∴长方形的面积为3,3.解:∵x2+2(m﹣3)x+9是完全平方式,∴m﹣3=±3,解得:m=6或0.故答案为:6或0.4.解:∵(2a+3b)2=4a2+12ab+9b2,(2a﹣3b)2=4a2﹣12ab+9b2,∴(2a+3b)2=(2a﹣3b)2+24ab,∴A=24ab,故答案为:24ab.5.解:∵a m•a n=a m+n=a5,(a m)n=a mn=a2(a≠0),∴m+n=5,mn=2,∴(m﹣n)2=(m+n)2﹣4mn=52﹣4×2=25﹣8=17.故答案为:17.6.解:原式=(9m2+6mn+n2)﹣(3m2+6mn)=9m2+6mn+n2﹣3m2﹣6mn=6m2+n2.7.解:因为(a+b)2=25,(a﹣b)2=9,所以(a+b)2﹣(a﹣b)2=4ab=16,所以a2﹣6ab+b2=(a﹣b)2﹣4ab=9﹣16=﹣7.8.解:(1)图①被分割的四个小长方形的长为m,宽为n,拼成的图②整体是边长为m+n 的正方形,中间是边长为m﹣n的小正方形,故答案为:m﹣n;(2)方法一:阴影部分是边长为m﹣n的正方形,因此面积为(m﹣n)2,方法二:大正方形的面积减去四个长方形的面积,即(m+n)2﹣4mn,故答案为:(m﹣n)2,(m+n)2﹣4mn;(3)由(2)得,(m﹣n)2=(m+n)2﹣4mn;答:(m﹣n)2,(m+n)2,mn这三个代数式之间的等量关系为(m﹣n)2=(m+n)2﹣4mn;(4)由(3)得,(x﹣y)2=(x+y)2﹣4xy,所以(x﹣y)2=92﹣4×18=9,因此x﹣y=3或x﹣y=﹣3,答:x﹣y的值为3或﹣3.9.解:∵a+b=4,ab=2,∴①a2+b2=(a+b)2﹣2ab=42﹣2×2=16﹣4=12;②(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=42﹣4×2=16﹣8=8.10.解:(x﹣2y)(x+3y)+(x﹣y)2=x2+3xy﹣2xy﹣6y2+x2﹣2xy+y2=2x2﹣xy﹣5y2.11.解:(1)原式=(x+)2﹣2=52﹣2=23;(2)原式=(x+)2﹣4=52﹣4=21.12.解:(1)∵(x+y)2﹣2xy=x2+y2,x+y=8,x2+y2=40,∴82﹣2xy=40,∴xy=12,答:xy的值为12;(2)①∵(2a﹣b)2=(2a+b)2﹣8ab,2a+b=5,ab=2,∴(2a﹣b)2=52﹣8×2=9,∴2a﹣b=±=±3,故答案为:±3;②根据a2+b2=(a﹣b)2+2ab可得,(4﹣x)2+(5﹣x)2=[(4﹣x)﹣(5﹣x)]2+2(4﹣x)(5﹣x),又∵(4﹣x)(5﹣x)=8,∴(4﹣x)2+(5﹣x)2=(﹣1)2+2×8=17,故答案为:17;(3)设AC=m,CF=n,∵AB=6,∴m+n=6,又∵S1+S2=18,∴m2+n2=18,由完全平方公式可得,(m+n)2=m2+2mn+n2,∴62=18+2mn,∴mn=9,∴S阴影部分=mn=,答:阴影部分的面积为.13.解:(1)∵(a+b)2=a2+b2+2ab,∴42=10+2ab,∴2ab=6,∵(a﹣b)2=a2+b2﹣2ab=10﹣6=4,∴a﹣b=±2;(2)原式=2ax2+ax﹣6x﹣3﹣4x2+m=(2a﹣4)x2+(a﹣6)x+m﹣3,∵化简后不含有x2项和常数项,∴2a﹣4=0,m﹣3=0,∴a=2,m=3,又∵an+mn=1,∴2n+3n=1,∴n=,∴5n2+9n+2=5×+9×+2=++2=2+2=4.14.解:(1)∵a+b=3,ab=﹣2,∴(a﹣2)(b﹣2)=ab﹣2a﹣2b+4=ab﹣2(a+b)+4=﹣2﹣2×3+4=﹣4;(2)∵a+b=3,ab=﹣2,∴a2+b2=(a+b)2﹣2ab=32﹣2×(﹣2)=13,∴(a﹣b)2=a2+b2﹣2ab=13﹣2×(﹣2)=17,∴a﹣b=.15.解:(1)设2020﹣x=a,x﹣2016=b,则(2020﹣x)(x﹣2016)=ab=2,a+b=(2020﹣x)+(x﹣2016)=4,所以(2020﹣x)2+(x﹣2016)2=a2+b2=(a+b)2﹣2ab=42﹣2×2=12;故答案为:12;(2)设2021﹣x=a,x﹣2018=b,则(2021﹣x)2+(x﹣2018)2=a2+b2=2020,a+b =(2021﹣x)+(x﹣2018)=3,所以(2021﹣x)(x﹣2018)=ab=[(a+b)2﹣(a2+b2)]=×(32﹣2020)=﹣;答:(2021﹣x)(x﹣2018)的值为﹣;(3)由题意得,FC=(20﹣x),EC=(12﹣x),∵长方形CEPF的面积为160,∴(20﹣x)(12﹣x)=160,∴(20﹣x)(x﹣12)=﹣160,∴阴影部分的面积为(20﹣x)2+(12﹣x)2,设20﹣x=a,x﹣12=b,则(20﹣x)(x﹣12)=ab=﹣160,a+b=(20﹣x)+(x﹣12)=8,所以(20﹣x)2+(x﹣12)2=(20﹣x)2+(12﹣x)2=a2+b2=(a+b)2﹣2ab=82﹣2×(﹣160)=384;故答案为:384.16.解:原式=4a2+4ab+b2﹣9a2+6ab﹣b2+5a2﹣5ab=5ab,当a=1,b=﹣1时,原式=﹣5.17.解:(1)原式=(2x+y)2﹣4=4x2+4xy+y2﹣4;(2)原式=x2+10x+25﹣x2+5x﹣6=15x+19.18.解:(1)∵4m+n=90,2m﹣3n=10,∴原式=﹣(4m+n)(2m﹣3n)=﹣900;(2)∵(a+b)2=a2+b2+2ab=7,ab=2,∴a2+b2=3.19.解:(1)(2x+3y)2﹣(2x﹣3y)2=(4x2+12xy+9y2)﹣(4x2﹣12xy+9y2)=4x2+12xy+9y2﹣4x2+12xy﹣9y2=24xy,当x=,y=时,原式=24××=;(2)∵a﹣b=5,ab=1,∴a2+b2=(a﹣b)2+2ab=52+2×1=27.20.解:(1)设(5﹣x)=a,(x﹣2)=b,则(5﹣x)(x﹣2)=ab=2,a+b=(5﹣x)+(x﹣2)=3,∴(5﹣x)2+(x﹣2)2=(a+b)2﹣2ab=32﹣2×2=5;(2)∵正方形ABCD的边长为x,AE=1,CF=3,∴MF=DE=x﹣1,DF=x﹣3,∴(x﹣1)•(x﹣3)=48,∴(x﹣1)﹣(x﹣3)=2,∴阴影部分的面积=FM2﹣DF2=(x﹣1)2﹣(x﹣3)2.设(x﹣1)=a,(x﹣3)=b,则(x﹣1)(x﹣3)=ab=48,a﹣b=(x﹣1)﹣(x﹣3)=2,∴a=8,b=6,a+b=14,∴(x﹣1)2﹣(x﹣3)2=a2﹣b2=(a+b)(a﹣b)=14×2=28.即阴影部分的面积是28.。
完全平方公式变形的应用培优

完全平方公式变形的应用培优
1.变形一:平方差公式
将完全平方公式中的等式两边移项,可以得到平方差公式:
(a+b)²-a²=2ab;
(a-b)²-a²=-2ab
这些公式可以用于解决一些二次方程的求解问题,也可以用于快速计
算一些算术运算,如:(42)²-40²=(42+40)(42-40)=82*2=164
2.变形二:立方差公式
(a+b)³-a³=3a²b+3ab²+b³;
(a-b)³-a³=-3a²b+3ab²-b³
这些公式可以用于解决一些立方方程的求解问题和立方运算问题,如:(a+b)³=(a+b)(a+b)²
1.应用一:平方求和公式
1²+2²+…+n²=(n(n+1)(2n+1))/6
2.应用二:定积分计算
∫(x²+2x+1)dx=∫(x+1)²dx=(1/3)(x+1)³+C
3.应用三:因式分解
x²+6x+9=(x+3)²
以上是完全平方公式变形的一些应用示例,从中可以看出完全平方公式变形在代数学习中的重要性。
通过灵活运用完全平方公式变形,可以解决一些复杂的方程和计算问题,提高解题能力和计算效率。
因此,学生在数学学习中一定要熟练掌握完全平方公式的变形和应用。
2022-2023学年初一数学第二学期培优专题训练26 完全平方公式因式分解的5个类型

专题26 完全平方公式因式分解五个类型类型一 直接用完全平方公式因式分解1.分解因式:2244a ab b -+=________. 2.因式分解:1-2a +a 2=________.3.分解因式a 2-10a +25的结果是______.4.因式分解:222x xy y -+=______. 5.因式分解:222x xy y ++=________. 6.因式分解:222m mn n ++=__________. 7.分解因式:221x x ++= ___________ . 8.分解因式:x 2﹣8x +16=_____.9.因式分解:244b b -+=____. 10.因式分解221x x -+=______.类型二 完全平方公式因式分解进阶11.分解因式:214a a -+=______. 12.分解因式:214m m -+=__________. 13.分解因式:x 2+x+14=_____. 14.因式分解:2441a a ++=______________ 15.分解因式:2244a ab b -+=______. 16.分解因式221236x xy y -+=______. 17.分解因式:224129x xy y -+=________.18.分解因式:x 2y 2-2xy +1=_______. 19.分解因式:224129m mn n -+= __________.20.因式分解24129m m -+=______. 21.2441x x -+=________;2216249a ab b ++=________;22.因式分解4x 2+12xy +9y 2=_____. 23.24129a a -+分解因式得__________. 24.因式分解:2296x xy y ++=______. 25.因式分解229124x xy y -+=______ 26.分解因式:9﹣12t+4t 2=_____.27.在括号内填上适当的因式:(1)225101x x ++=( ); (2)212b b -+=( )(3)24x x ++( )=(x+__)²(4)24m +( )+9n²=( )² 类型三 先提公因式再完全平方公式因式分解28.分解因式:am 2﹣2amn +an 2=_____. 29.因式分解:2mx 2﹣4mxy +2my 2=_____. 30.因式分解:2xm 2﹣12xm +18x =_____.31.分解因式:ma 2﹣2ma +m =___.32.分解因式x 3y ﹣6x 2y +9xy =___________.33.因式分解:22bx bx b -+=______. 34.分解因式:﹣x 2y +6xy ﹣9y =___. 35.分解因式:﹣m 2+4m ﹣4═_____.36.分解因式:﹣8a 3b +8a 2b 2﹣2ab 3=_____.37.因式分解:-2x 3+4x 2y -2xy 2=________. 类型四 展开后再用完全平方公式因式分解38.分解因式:2(1)4a a +-=_________.39.因式分解:()241x x --=__________.40.因式分解:()44x x ++=___________.41.将(2)1x x -+因式分解的结果是________. 42.因式分解:8(a 2+1)-16a =____________.43.因式分解:()228a b ab +-的结果是______. 44.分解因式(a -b )(a -9b )+4ab 的结果是____.45.分解因式(a+1)(a+3)+1的结果是_____. 46.分解因式()(4)a b a b ab --+的结果是________.47.分解因式:x(x-1)-3x+4=____. 48.分解因式:x 2-4(x-1)= ______. 类型五 其中三项整体用完全平方公式然后再用公式49.因式分解:22421x y y ---=__________.50.因式分解2221b bc c -+-=______. 51.分解因式:2221y x x ---=_____.52.分解因式:2242x y xy --+=___________.专题26 完全平方公式因式分解五个类型类型一 直接用完全平方公式因式分解1.分解因式:2244a ab b -+=________.解:原式=a 2-2×a ×2b +(2b )2=(a -2b )2, 2.因式分解:1-2a +a 2=________.解:由题意可知:1-2a +a 2=(1-a )2,3.分解因式a 2-10a +25的结果是______.【解答】a 2-10a +25=(a -5)24.因式分解:222x xy y -+=______.解:原式()2x y =-,5.因式分解:222x xy y ++=________.解:222x xy y ++=()2x y +.6.因式分解:222m mn n ++=__________.【解答】222m mn n ++=2()m n +,7.分解因式:221x x ++= ___________ .解:221x x ++=2(1)x +8.分解因式:x 2﹣8x +16=_____.【解答】x 2-8x +16,=x 2-2×4×x +42,=(x -4)2. 9.因式分解:244b b -+=____.解:原式=()22b -,10.因式分解221x x -+=______.解:221x x -+=(x ﹣1)2. 类型二 完全平方公式因式分解进阶11.分解因式:214a a -+=______. 解:214a a -+=212a ⎛⎫- ⎪⎝⎭ 12.分解因式:214m m -+=__________.解:221142m m m ⎛⎫-+=- ⎪⎝⎭, 13.分解因式:x 2+x+14=_____. 原式=(x +12)2.14.因式分解:2441a a ++=______________根据完全平方公式可得,原式=()()2224121a a a ++=+,15.分解因式:2244a ab b -+=______.16.分解因式221236x xy y -+=______.17.分解因式:224129x xy y -+=________.原式22(2)2(2)(3)(3)x x y y =-⨯⨯+ 2(23)x y =-.18.分解因式:x 2y 2-2xy +1=_______.【解答】:x 2y 2-2xy +1=(xy -1)². 19.分解因式:224129m mn n -+= ___________________.直接运用完全平方公式分解因式即可,即原式=(2m -3n )2.20.因式分解24129m m -+=______.解:24129m m -+=22(2)2233m m -⨯⨯+=2(23)m -21.2441x x -+=________;2216249a ab b ++=________;【解答】222441(2)41(21)x x x x x -+=-+=-,2222216249(4)24(3)(43)a ab b a ab b a b ++=++=+,22.因式分解4x 2+12xy +9y 2=_____.解:4x 2+12xy +9y 2=(2x +3y )2.23.24129a a -+分解因式得__________.解:224129(23)a a a -+=-,24.因式分解:2296x xy y ++=______.解:()222963x xy y x y ++=+25.因式分解229124x xy y -+=______解:229124x xy y -+=()232x y -.26.分解因式:9﹣12t+4t 2=_____.解:原式=(3﹣2t)2.27.在括号内填上适当的因式:(1)225101x x ++=( ); (2)212b b -+=( )(3)24x x ++( )=(x+__)²(4)24m +( )+9n²=( )² 试题解析:(1)25x 2+10x+1=(5x+1)2;(2)1-2b+b 2=(b-1)2(3)x 2+4x+4=(x+2)2;(4)4m 2+(±12mn )+9n 2=(2m±3n )2. 类型三 先提公因式再完全平方公式因式分解28.分解因式:am 2﹣2amn +an 2=_____.解:am 2﹣2amn +an 2=()()2222a m mn n a m n -+=-, 29.因式分解:2mx 2﹣4mxy +2my 2=_____.解:2mx 2﹣4mxy +2my 2,=2m (x 2﹣2xy +y 2),=2m (x ﹣y )2. 30.因式分解:2xm 2﹣12xm +18x =_____.解:原式=2x (m 2﹣6m+9)=2x (m ﹣3)2.31.分解因式:ma 2﹣2ma +m =___.解:ma 2﹣2ma +m = m (a 2﹣2a +1)=m (a -1)2,32.分解因式x 3y ﹣6x 2y +9xy =_______________________. 解:原式=xy (x 2-6x+9)=xy (x-3)2,33.因式分解:22bx bx b -+=______.由完全平方公式:22bx bx b -+=()221b x x -+ =()21b x -34.分解因式:﹣x 2y +6xy ﹣9y =___.解:﹣x 2y +6xy ﹣9y()()22=693y x x y x --+=--35.分解因式:﹣m 2+4m ﹣4═_____.解:原式=-(m 2-4m +4)=-(m -2)2.36.分解因式:﹣8a 3b +8a 2b 2﹣2ab 3=_____.解:原式=﹣2ab (4a 2﹣4ab +b 2)=﹣2ab (2a ﹣b )2,37.因式分解:-2x 3+4x 2y -2xy 2=__________________________. 原式=-2x (x 2-2xy+ y 2)=-2x (x -y )2,38.分解因式:2(1)4a a +-=___________________________________. 2222(1)412421(1)a a a a a a a a +-=++-=-+=-.类型四 展开后再用完全平方公式因式分解39.因式分解:()241x x --=________________.解:()241x x --244x x =-+()22x =-. 40.因式分解:()44x x ++=___________.41.将(2)1x x -+因式分解的结果是________.原式=x 2-2x+1=(x-1)2.42.因式分解:8(a 2+1)-16a =____________.()()()222811681281.a aa a a +-=+-=-43.因式分解:()228a b ab +-的结果是______.解:()228a b ab +-22448a ab b ab =++-2244a ab b =-+()22a b =- 44.分解因式(a -b )(a -9b )+4ab 的结果是____.解:(a-b )(a-9b )+4ab=a 2-10ab+9b 2+4ab= a 2-6ab+9b 2=(a-3b )2. 45.分解因式(a+1)(a+3)+1的结果是_____.首先去括号,进而利用乘法公式分解因式,(a+1)(a+3)+1=244a a ++=2(2)a +. 46.分解因式()(4)a b a b ab --+的结果是___________.()(4)a b a b ab --+=2254a ab b ab -++=2244a ab b -+=2(2)a b -. 47.分解因式:x(x-1)-3x+4=____.解:x (x-1)-3x+4,=x 2-x-3x+4,=x 2-4x+4,=(x-2)2.48.分解因式:x 2-4(x-1)= ______.x 2-4(x-1)=x 2-4x+4=(x-2)2.类型五 其中三项整体用完全平方公式然后再用公式49.因式分解:22421x y y ---=__________.22421x y y ---224(21)x y y =-++22(2)(1)x y =-+(21)(21)x y x y =++--. 50.因式分解2221b bc c -+-=______.解:原式=2()1b c --=[][]()1()1b c b c ---+=()()11b c b c ---+, 51.分解因式:2221y x x ---=_____.解:2221y x x ---=()22+2+1y x x -()22+1y x =-()()=11y x y x ++-- 52.分解因式:2242x y xy --+=__________________.原式=()()()()22242422x y xy x y x y x y -=--=+--++-.。
2019-2020北师大版七年级数学下册完全平方公式及应用培优训练(35道题 含答案)

2019-2020北师大版七年级数学下册完全平方公式及应用培优版一、单选题1.下列计算或运算中,正确的是( ) A .623a a a ÷=B .238(2)8a a -=-C .2(3)(3)9a a a -+=-D .222()a b a b -=-2.若229x kxy y -+是一个完全平方式,则常数k 的值为( ) A .6B .6-C .6±D .无法确定3.若(x +y )2=9,(x -y )2=5,则xy 的值为( ) A .-1 B .1 C .-4 D .4 4.已知x+1x=6,则x 2+21x =( )A .38B .36C .34D .325.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( ) A .4B .8C .12D .166.计算:(a-b +3)(a +b-3)=( )A .a 2+b 2-9B .a 2-b 2-6b-9C .a 2-b 2+6b -9D .a 2+b 2-2ab +6a +6b +97.三种不同类型的长方形地砖长宽如图所示,现有A 类1块,B 类4块,C 类5块.小明在用这些地砖拼成一个正方形时,多出其中1块地砖,那么小明拼成正方形的边长是( )A .m+nB .2m+2nC .2m+nD .m+2n8.设22(45)(45)a b a b m -=++ ,则m =( ) A .40abB .40ab -C .80abD .80ab -9.若等式x 2+ax +19=(x ﹣5)2﹣b 成立,则 a +b 的值为( ) A .16 B .﹣16 C .4 D .﹣410.已知(m -n)2=36,(m +n)2=4 000,则m 2+n 2的值为( ) A .2 016B .2 017C .2 018D .4 03611.若有理数a ,b 满足a 2+b 2=5,(a+b )2=9,则-4ab 的值为( ) A .2 B .-2 C .8 D .-8 12.若a +b =3,ab =-7,则a bb a+的值为( ) A .-145B .-25C .-237D .-25713.若22(x 2y)(x 2y)m -=++,则m 等于( )A .4xyB .4xy -C .8xyD .8xy -14.如图,将完全相同的四个长方形纸片拼成一个大的正方形,用两种不同的方法表示这个大正方形的面积,则可以得出一个等式为( )A .(a+b )2=a 2+2ab+b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .a 2﹣b 2=(a+b )(a ﹣b )D .(a+b )2=(a ﹣b )2+4ab15.图(1)是一个长为2a ,宽为2b (a b >)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)拼成一个正方形,则中间空白部分的面积是( )A .abB .2()a b -C .2()a b +D .22a b -二、填空题16.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.17.若x ﹣1x=2,则x 2+21x 的值是______.18.已知3a b +=,2ab =-, (1)则22a b +=____;(2)则a b -=___. 19.已知a 2+2a +b 2-6b +10=0,那么a =_______,b =______.20.已知ABC V 的三边长分别为a 、b 、c ,且a 、b 、c 满足269450a a b c -++-+-=,则ABC V 的形状是________三角形.21.已知x 2+2x =3,则代数式(x +1)2﹣(x +2)(x ﹣2)+x 2的值为_____.22.如图,在边长为 2a 的正方形中央剪去一边长为 ()a 2+ 的小正方形 ()a 2>,将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为__________________.三、解答题23.已知7a b -=,12ab =-. (1)求22a b ab -的值;(2)求22a b +的值; (3)求+a b 的值;24.先化简,再求值:(a+b )2+b (a ﹣b )﹣4ab ,其中a=2,b=﹣12.25.已知a ,b ,c 是△ABC 的三边长,且满足a 2+b 2﹣4a ﹣8b+20=0,c=3cm ,求△ABC 的周长.26.先化简再求值:22(3)(3)(3)6(2)a b b a a b b b ⎡⎤+-+--÷-⎣⎦ 其中13a =-,2b =-.27.(1)已知(a +b )2=6,(a ﹣b )2=2,求a 2+b 2与ab 的值; (2)已知x +,求x 2+的值28.若x +y =3,且(x +2)(y +2)=12. (1)求xy 的值; (2)求x 2+3xy +y 2的值.29.已知x y 1-+与2x 8x 16++互为相反数,求22x 2xy y ++的值.30.己知5,6x y xy +==,求下列代数式的值:(1) 22x y + (2) ()2x y -31.当a、b为何值时,多项式a2+b2-4a+6b+18有最小值?并求出这个最小值.32.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:33.阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∴()()2222440m mn nnn -++-+=,∴()()2220m n n -+-=,∴()20m n -=,()220n -=,∴2n =,2m =. 根据你的观察,探究下面的问题:(1)2262100a b a b ++-+=,则a =__________,b =__________. (2)已知22228160x y xy y +-++=,求xy 的值.(3)已知ABC △的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC △的周长.34.探索题图a 是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b 的形状拼成一个正方形.(1)你认为图b 中的影部分的正方形的边长等于 . (2)请用两种不同的方法求图b 中阴影部分的面积. 方法1: (只列式,不化简) 方法2: (只列式,不化简)(3)观察图b 你能写出下列三个代数式之间的等量关系吗? 代数式:(m+n)2,(m-n)2,mn .(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=5,则 (a-b)2= . 35.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A 可以用来解释2222()a ab b a b ++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)图B 可以解释的代数恒等式是 ; (2)现有足够多的正方形和矩形卡片(如图C ),试画出..一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形(每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使该矩形的面积为2223a ab b ++,并利用你所画的图形面积对2223a ab b ++进行因式分解.参考答案1.C 2.C 3.B 4.C 5.D 6.C 7.D 8.D 9.D 10.C 11.D 12.C 13.D 14.D 15.B 16.7或-1 17.6 18.13; 17± 19.-13 20.直角 21.8 22.3a 2 -4a-423.解:因为a -b =7,所以b -a =-7.则: (1)22a b ab -=ab (b -a )=-12×7=-84;(2)22a b +=(a -b )2+2ab =(-7)2+2×(-12)=25;(3)a b +=±()2a b +=±()24a b ab -+=±()()27412-⨯-+=±1. 24.解:原式=a 2+2ab+b 2+ab-b 2-4ab=a 2-ab , 当a=2,b=-12时,原式=4+1=5. 25.解:∵a 2+b 2﹣4a ﹣8b+20=0, ∴a 2﹣4a+4+b 2﹣8b+16=0, ∴(a ﹣2)2+(b ﹣4)2=0, 又∵(a ﹣2)2≥0,(b ﹣4)2≥0, ∴a ﹣2=0,b ﹣4=0, ∴a=2,b=4,∴△ABC 的周长为a+b+c=2+4+3=9, 答:△ABC 的周长为9.26.解:原式=(9a 2+6ab+b 2-9a 2+b 2-6b 2)÷(-2b ) =(-4b 2+6ab )÷(-2b )=2b-3a,当a=-13,b=-2时,原式=-4+1=-3.27.解:(1)∵,∴a2+2ab+b2=6 ①,a2﹣2ab+b2=2 ②,①+②,得:2(a2+b2)=8,则a2+b2=4;①﹣②,得:4ab=4,则ab=1;(2)∵,∴.28.解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.29.解:x y 1-+Q 与2x 8x 16++互为相反数,x y 1∴-+与2(x 4)+互为相反数, 即2x y 1(x 4)0-+++=, x y 10∴-+=,x 40+=,解得x 4=-,y 3=-.当x 4=-,y 3=-时,原式2(43)49=--=.30.解:(1) 2222()252613.x y x y xy +=+-=-⨯=(2) ()222()45461x y x y xy -=+-=-⨯=31.解:a 2+b 2-4a +6b +18=a 2-4a +b 2+6b +18=a 2-4a +4+b 2+6b +9+5=(a -2)2+(b +3)2+5,∵(a -2)2≥0,(b +3)2≥0,∴当a -2=0,b +3=0,即a =2,b =-3时,原式有最小值,最小值为5.32.解:由题意可得:方案二:a 2+ab+(a+b )b=a 2+ab+ab+b 2=a 2+2ab+b 2=(a+b )2,方案三:a 2+[()]2a a b b +++[()]2a ab b ++=2221122a ab b ab b ++++=a 2+2ab+b 2=(a+b )2. 点睛:本题考查了完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.33.(1)∵2262100a b a b ++-+=,∴()()2269210a a b b ++-+=+,∴()()22310a b ++-=,∵()230a +≥,()210b -≥,∴30a +=,3a =-,10b -=,1b =;(2)∵22228160x y xy y +-++=,∴()()22228160x xy y yy -++++=, ∴()()2240x y y -++=,∵()20x y -≥,()240y +≥,∴0x y -=,x y =,40y +=,4y =-,∴4x =-,∴16xy =; (3)∵22248180a b a b +--+=,∴222428160a a b b -++-+=,∴()()222140a b -+-=,∵()210a -≥,()240b -≥,∴10a -=,1a =,40b -=,4b =,∵a b c +>,∴5c <,∵b a c -<,∴3c >,∵a 、b 、c 为正整数,∴4c =,∴ABC △周长=1449++=.34.解:(1)阴影部分的正方形边长是:m ﹣n .故答案为:m ﹣n ;(2)阴影部分的面积就等于边长为m ﹣n 的小正方形的面积,方法1:边长为m +n 的大正方形的面积减去长为2m ,宽为2n 的长方形面积,即(m +n )2﹣4mn ;方法2:边长为m ﹣n 的正方形的面积,即(m ﹣n )2;(3)由题意可得:(m -n )2=(m +n )2-4mn .故答案为:(m -n )2=(m +n )2-4mn .(4)∵a +b =8,ab =5,∴(a +b )2=64,∴(a ﹣b )2+4ab =64,∴(a ﹣b )2=64﹣4×5=44. 35.解:(1)()2222a ab a a b +=+ (2)①根据题意,可以画出相应的图形,如图所示②因式分解为:()()22232a ab b a b a b ++=++。
初一-第04讲-完全平方公式与整式的除法(培优)-学案

学科教师辅导讲义学员编号:年级:七年级课时数:3学员姓名:辅导科目:数学学科教师:授课主题第04讲---完全平方公式与整式的除法授课类型T同步课堂P实战演练S归纳总结教学目标①理解完全平方公式,了解完全平方公式的几何背景,会灵活运用完全平方公式进行计算。
②掌握整式的除法法则,能够准确计算整式乘法的计算题;授课日期及时段T(Textbook-Based)——同步课堂一、知识框架二、知识概念(一)完全平方公式1、完全平方公式:222()2a b a ab b+=++222()2a b a ab b-=-+即两个数的和(或差)的平方,等于两个数的平方和加上(或减去)这两个数的积的2倍,这两个公式称为完全平方公式。
完全平方公式的特点:(1)两个公式的左边都是一个二项式的完全平方的形式,二者仅有一个“符号”不同;(2)两个公式的右边都是二次三项式,其中有两项是公式左边两项式中每一项的平方,中间一项是左边二体系搭建项式中两项乘积的2倍,二者也仅有一个“符号”不同; (3)公式中的a,b 可以是数,也可以是单项式或多项式。
(4)完全平方公式的变形公式:①()2222a b a b ab +=+- ②()2222a b a b ab +=-+ ③()2222()ab a b a b =+-+ ④22()()4a b a b ab +=-+ ⑤22()()4a b a b ab -=+- 2、完全平方公式的几何意义①如右图2中,一方面大正方形面积为 2()a b +,另一方面大正方形面积可看做四个部分的面积之和,则有22222()2a b a ab ab b a ab b +=+++=++ ②如右图1中,左下角正方形面积为 2()a b -,另一方面它的面积可看做大正方形减去其余三块部分的面积,则有222()()()a b a a b b a b b b -=--•--•-=222a ab b -+3、完全平方公式的应用。
七年级完全平方公式培优讲义讲课讲稿

七年级完全平方公式培优讲义平方差和完全平方公式培优讲义教师寄语:. 服装是裁缝制作的,仅仅是货币的标志。
而人的知识,品德和气质,却是一个人真正的人生价值,对于庸俗的人,你可以反【知识精要】:1.乘法公式:平方差公式(a+b)(a-b)=a2+b2,完全平方公式:(a±b)2=a2±2ab+b22.运用平方差公式应注意的问题:(1)公式中的a和b可以表示单项式,也可以是多项式;(2)有些多项式相乘,表面上不能用公式,但通过适当变形后可以用公式.如(a+b-c)(b-a+c)=[(b+a)-c)][b-(a-c)]=b2-(a-c)3.运用完全平方公式应注意的问题:(1)公式中的字母具有一般性,它可以表示单项式、多项式,只要符合公式的结构特征,就可以用公式计算;(2)在利用此公式进行计算时,不要丢掉中间项“2ab”或漏了乘积项中的系数积的“2”倍;(3)计算时,应先观察所给题目的特点是否符合公式的条件,如符合,则可以直接用公式进行计算;如不符合,应先变形为公式的结构特点,再利用公式进行计算,如变形后仍不具备公式的结构特点,则应运用乘法法则进行计算.【典例评析】:例1、计算:(1)(-3mn-1)(1-3mn)-8m 2n 2; (2)(a+b-c)(a-b+c)例2、计算:(a-2) (a+2) (a 2+4)(a 4+16)例3、计算: (1)2091×1998 ; (2)1101991002+⨯例4、逆用平方差公式巧算:(1)(2a+3)2-(2a-3)2; (2)(1-221)(1-231)(1-241)(1-251)(1-261)例5..已知zx yz xy z y x y z a y x ---++=-=-222,10,则代数式的最小值等于多少?【课堂精练(一)】:1、计算:(1)(a 2b+5)( a 2b-5) (2)(5x-2y 2)( -5x-2y 2)(3)(x+1)(x-1)-(3x-2)(-3x-2) (4)(m-n-p)(-m-n-p)(5)(x 4+y 4)(x 2+y 2)(x+y)(x-y)2、平方差公式的逆用与巧用(1)20102-2009×2011 (2)20122010201120112⨯-(4)若(a+2b)2=(a-2b)2+A ,则A= ;(5) 计算:12-22+32-42+…+992-1002;【培优拓展】:1、如果x-y=6,x 2-y 2=24,那么x+y= ;2、分析这组等式:1×3=22-1;3×5=42-1,5×7=62-1,…11×13=122-1…请用N 的式子表示规律:-----------------。
湘教版数学七年级下2.2.2完全平方公式培优练习(含答案)

湘教版七年级下册 2.2.2完全平方公式培优练习一、选择题1. 如图是一个正方形,分成四部分,其面积分别是a 2,ab,ab,b 2,则原正方形的边长是( ) A. a 2+b2B.a+bC.a-bD.a 2-b 22.下面各运算中,结果正确的是( ) A.2a 3+3a 3=5a6B.-a 2•a 3=a 5C.(a +b )(-a -b )=a 2-b 2D.(-a -b )2=a 2+2ab +b 23.若(2x -5y )2=(2x +5y )2+m ,则代数式m 为( ) A.-20xy B.20xy C.40xy D.-40xy 4. 若a+=7,则a 2+的值为( ) A.47B.9C.5D.515. 不论x ,y 为何有理数,x 2+y 2-10x +8y +45的值均为( )A.正数B.零C.负数D.非负数 6.已知(a+b)2-2ab=5,则a 2+b 2的值为( ) A.10 B.5 C.1 D.不能确定 7. 如图,将完全相同的四个长方形纸片拼成一个正方形,则可得出一个等式为( ) A .(a +b)2=a 2+2ab +b 2B .(a -b)2=a 2-2ab +b 2C .a 2-b 2=(a +b)(a -b) D .(a +b)2=(a -b)2+4ab 8.下列运算中,正确的运算有( )①(x +2y)2=x 2+4y 2;②(a-2b)2=a 2-4ab +4b 2;③(x+y)2=x 2-2xy +y 2;④(x-14)2=x 2-12x +116.A .1个B .2个C .3个D .4个二、填空题9.已知:a -b =3,ab =1,则a 2-3ab +b 2=_____. 10. 填上适当的整式,使等式成立:(x -y )2+_____=(x +y )2.11.若a +b =4,则a 2+2ab +b 2的值为_____. 12.已知x 2-4=0,则代数式x (x +1)2- x (x 2+ x )-x -7的值是 .13.若a 2b 2+a 2+b 2+1-2ab =2ab ,则a +b 的值为_____. 14.请看杨辉三角(1),并观察下列等式(2):(1) (a +b)1=a +b ; (a +b)2=a 2+2ab +b 2; (a +b)3=a 3+3a 2b +3ab 2+b 3; (a +b)4=a 4+4a 3b +6a 2b 2+4ab 2+b 4;…(2)根据前面各式的规律,则(a +b)6=__________. 三、计算题15.计算:(a -2b +3c )(a +2b -3c ).16.已知(a +b )2=24,(a -b )2=20,求: (1)ab 的值是多少? (2)a 2+b 2的值是多少?17. (1)已知a -b =3,求a(a -2b)+b 2的值; (2)已知ab =2,a +b =5,求a 3b +2a 2b 2+ab 3的值.18.在三个整式x 2+2xy ,y 2+2xy ,x 2中,请你任意选出两个进行加(或减)法运算,使所得整式可以因式分解,并进行因式分解.参考答案:一、选择题1.D2.D3.D4.A5. A6.B7. D8.B二、填空题9.分析:应把所给式子整理为含(a-b)2和ab的式子,然后把值代入即可.解:∵(a-b)2=32=9,∴a2-3ab+b2=(a-b)2-ab=9-1=810.分析:所填的式子是:(x+y)2-(x-y)2,化简即可求解.解:(x+y)2-(x-y)2=(x2+2xy+y2)-(x2-2xy+y2)=4xy.11.分析:原式利用完全平方公式化简,将a+b的值代入计算即可求出值.解:∵a+b=4,∴a2+2ab+b2=(a+b)2=16.12.分析:分析:因为x2-4=0,∴x2=4,根据完全平方公式和单项式乘多项式的法则化简原式后,再代入求值.解:x(x+1)2-x(x2+x)–x-7=x3+2x2+x-x3-x2-x-7=x2-7.当x2-4=0时,x2=4,原式=-3.13.分析:首先把2ab移到等式的左边,然后变为a2b2+a2+b2+1-2ab-2ab=0,接着利用完全平方公式分解因式,最后利用非负数的性质即可求解.解:∵a2b2+a2+b2+1-2ab=2ab,∴a2b2+a2+b2+1-2ab-2ab=0,∴a2b2-2ab+1+a2+b2-2ab=0,∴(ab-1)2+(a-b)2=0,∴ab=1,a-b=0,∴a=b=1或-1,∴a+b=2或-2.14.解:a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6三、计算题(本大题共4小题)15.分析:首先将原式变为:[a-(2b-3c)][a+(2b-3c)],然后利用平方差公式,即可得到a2-(2b-3c)2,求出结果.解:(a-2b+3c)(a+2b-3c)=[a-(2b-3c)][a+(2b-3c)]=a2-(2b-3c)2=a2-(4b2-12bc+9c2)=a2-4b2+12bc-9c2.16.分析:由(a+b)2=24,(a-b)2=20,可以得到:a2+b2+2ab=24…①,a2+b2-2ab=20…②,通过两式的加减即可求解.解:∵(a+b)2=24,(a-b)2=20,∴a2+b2+2ab=24…①,a2+b2-2ab=20…②,(1)①-②得:4ab=4,则ab=1;(2)①+②得:2(a2+b2)=44,则a2+b2=22.17.分析:(1)首先对a(a-2b)+b2进行转化成(a -b)的形式,再利用已知条件就可以了;(2)同理可解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
32 5 2 乘法公式
1.乘法公式:
平方差公式(a+b )(a -b )=a 2+b 2, 完全平方公式:(a±b )2=a 2±2ab+b 2
2.运用平方差公式应注意的问题:
(1)公式中的 a 和 b 可以表示单项式,也可以是多项式;
(2)有些多项式相乘,表面上不能用公式,但通过适当变形后可以用公式. 如
(a +b -c )(b -a+c )=[(b +a )-c )][b -(a -c )] =b 2 -(a -c )
3.运用完全平方公式应注意的问题:
(1)公式中的字母具有一般性,它可以表示单项式、多项式,只要符合公式的
结构特征,就可以用公式计算;
(2)在利用此公式进行计算时,不要丢掉中间项“2ab ”或漏了乘积项中的系数
积的“ 2”倍;
(3)计算时,应先观察所给题目的特点是否符合公式的条件,如符合,则可以
直接用公式进行计算;如不符合,应先变形为公式的结构特点,再利用公式 进行计算,如变形后仍不具备公式的结构特点,则应运用乘法法则进行计算.
【典例评析】:
例 1、计算:(1)(-3mn-1)(1-3mn)-8m 2n 2;
(2)(a+b-c)(a-b+c)
例 2、计算:(a-2) (a+2) (a 2+4)(a 4+16)
例 3、计算: (1)20 1 ×19 8 ;
(2)
9 9
100 2
99 ⨯ 101 + 1
例 4、逆用平方差公式巧算: (1)(2a+3)2-(2a-3)2;
(2)(1- 1 )(1- 1 )(1- 1 )(1- 1 )(1- 1 )
22 42 62
例 5..已知 x - y = a, z - y = 10, 则代数式 x 2 + y 2 + z 2 - xy - yz - zx 的最小值等于多
少?
【课堂精练(一)】:
1、计算:
(1)(a2b+5)(a2b-5)(2)(5x-2y2)(-5x-2y2)
(3)(x+1)(x-1)-(3x-2)(-3x-2)(4)(m-n-p)(-m-n-p)
(5)(x4+y4)(x2+y2)(x+y)(x-y)
2、平方差公式的逆用与巧用
(1)20102-2009×2011(2)2011
20112-2010⨯2012
(4)若(a+2b)2=(a-2b)2+A,则A=;
(5)计算:12-22+32-42+…+992-1002;
【培优拓展】:
1、如果x-y=6,x2-y2=24,那么x+y=;
2、分析这组等式:1×3=22-1;3×5=42-1,5×7=62-1,…11×13=122-1…请用N的式子表示规律:-----------------。
3、试确定3(22+1)(24+1)(28+1)(216+1)(232+1)+1的末位数字。
4.x为何值时,|x-3|+|x+2|有最小值,并求出这个最小值.
5、已知 a(a-1)+(b-a 2)=8,求 - ab 的值。
【课堂精练(二)】:
1、计算:
(1)(x+2y)(x-2y)(x 2-4y 2);
(2)( 1 a-3b)2( 1 a+3b)2;
(3)(2x-3y+4)( 2x+3y-4)
2
2
2、(1)已知 x-y=9,xy=5,求 x+y 的值。
(2)已知 x 2+2(m-1)xy+16y 2 是完全平方式,求 m 的值。
3、计算:
(1)(a+3b)2-2(a+3b)(a-3b)+(a-3b)2;
(2) 1 (x+y+z)2+ 1 (x-y-z)(x-y+z)-z(x+y)
2
2
4、已知 a 2+b 2+c 2-2(a+b+c)+3=0,求 a 3+b 3+c 3-3abc 的值.
a 2 +
b 2 2
【培优拓展】:
1、不论 a 、b 为任何有理数,a 2+b 2-4a+2b+7 的值总是( )
A 、负数;
B 、零;
C 、整数;
D 、不大于 2
2、已知 x 2+y 2-2xy-6x+6y+9=0,求 x-y 的值。
【课堂小测验】:
1.设a﹣b=﹣2,求的值.
2.已知(x+y)2=49,(x﹣y)2=1,求下列各式的值:
(1)x2+y2;(2)xy.
3.已知x+=4,求x﹣的值.
4.已知:x+y=3,xy=2,求x2+y2的值.
5.已知a+b=3,ab=2,求a2+b2,(a﹣b)2的值.
6.若x+y=2,且(x+2)(y+2)=5,求x2+xy+y2的值.
7.x2﹣11x+1=0,求x2+的值.
8.若a2﹣2a+1=0.求代数式的值.
9.已知实数a、b满足(a+b)2=1,(a﹣b)2=25,求a2+b2+ab的值.
10.已,求下列各式的值:
(1)(2).。