海洋油气勘探新技术

合集下载

如何进行海底地质勘探和海洋油气资源开发的测绘方法

如何进行海底地质勘探和海洋油气资源开发的测绘方法

如何进行海底地质勘探和海洋油气资源开发的测绘方法概况:海洋油气资源是世界上极为重要的能源之一,而海底地质勘探是开发这些资源的关键。

海底地质勘探的测绘方法是海洋油气资源开发的基础,本文将探讨一些常用的测绘方法。

一、声波测深法声波测深法是海底地质勘探中常用的方法之一。

通过向海底发出声波信号,并测量其返回时间和强度,可以确定海底地形和水深,从而为油气开发提供重要数据。

声波测深法可以利用单波束或多波束声纳设备,具有测量速度快、精度高等特点,然而对于复杂地貌,其测量结果可能会受到干扰。

二、磁力测深法磁力测深法是基于地球磁场的方法,通过测量磁场的变化来确定海底地形和水深。

磁力测深法可以区分不同磁性海底物质,对于寻找潜在的油气资源具有重要意义。

然而,由于地球磁场的复杂性和测量设备的限制,磁力测深法在海底地质勘探中的应用受到一定的限制。

三、多波束测深法多波束测深法是近年来广泛应用于海洋油气资源开发的测绘方法之一。

通过使用多个声波束同时扫描海底,可以快速获取大范围的海底地形和水深数据。

多波束测深法具有高分辨率、高精度的优势,适用于复杂地貌的测量,对于海底地质勘探和油气开发具有重要意义。

四、地震勘探法地震勘探法是海底地质勘探中最常用,也是最重要的方法之一。

通过向海底发送声波信号,并测量其在不同介质中的传播速度和反射情况,可以揭示海底地质结构和潜在油气资源。

地震勘探法可以利用单元水柱音频测井(Single-Channel Seismic Reflection)、多线波束测深系统(Multi-line Seismic Profiling System)等设备。

然而,地震勘探法需要大量的设备和人力资源,成本较高。

五、潜水设备潜水设备在海底地质勘探和油气资源开发中起着至关重要的作用。

潜水设备可以使工作人员直接进入海底环境,进行实地测量和样本采集。

潜水设备包括遥控潜水器(Remotely Operated Vehicle, ROV)和自主潜水器(Autonomous Underwater Vehicle, AUV)等,它们能够搭载各种测量仪器和工具,具有较高的灵活性和适应性。

超深水油气田开发中的海上天然气开采技术探索

超深水油气田开发中的海上天然气开采技术探索

超深水油气田开发中的海上天然气开采技术探索在全球能源需求快速增长的背景下,海上石油与天然气资源的开采已成为当今能源行业的重要课题之一。

随着陆地油气资源的逐渐枯竭,人们开始转向海洋深处寻找新的能源来源。

超深水油气田开发中的海上天然气开采技术正是应对这一挑战的重要手段之一。

超深水油气田开发中的海上天然气开采技术探索旨在解决海底水深数千米甚至上万米的情况下,如何高效、安全地开采天然气的问题。

这对于海洋工程师和石油公司来说是一项巨大的挑战,需要他们借助先进的技术和设备来实现。

首先,海上天然气开采技术探索中,深水开发技术是关键。

深水开采是指在水深超过500米的海域进行油气开采。

为了实现深水开采,石油公司需要应用先进的技术来处理深水环境带来的各种问题,如海底流体温度和压力的改变,以及海洋环境对设备和管道的影响。

在深水开采过程中,需要使用钻井设备、生产平台、管道输送等技术,以确保油气能够从海底成功开采上来。

其次,探明天然气储量是超深水油气田开发中的一项重要任务。

海上天然气开采需要事先确定合适的开采区域,这需要进行大量的地质勘探和海洋地质调查。

石油公司通过使用船舶、潜水器等工具进行勘探,结合地质数据和测量结果,确定潜在的天然气矿藏。

在深水开采中,由于水深较大,地质勘探和采样变得更加困难,然而探明储量的准确性对于后续的开采工作至关重要。

此外,超深水油气田开发中的海上天然气开采技术探索还需要解决海底设备的可靠性和安全性问题。

由于离岸环境的恶劣性质,海底设备需要经受高压、低温、海洋腐蚀等多重挑战。

因此,研发和应用高强度、耐腐蚀的材料,设计可靠的设备结构和工艺,以及建立健全的安全管理体系,都是确保海上天然气开采的关键要素之一。

同时,加强风险评估和应急响应能力,以防范潜在的事故和灾害,也是十分重要的。

最后,超深水油气田开发中的海上天然气开采技术探索需要在环保和可持续发展的基础上进行。

石油公司和海洋工程师在开采过程中必须遵守环保法规,努力减少环境污染。

海洋油气开采原理与技术

海洋油气开采原理与技术

海洋油气开采原理与技术
海洋油气开采原理与技术是指利用各种技术手段和设备,在海洋中开采石油和天然气资源的过程。

其原理和技术主要包括以下几个方面:
1. 勘探与开发:海洋油气开采首先需要进行勘探工作,通过地质勘探、地球物理勘探和地球化学勘探等手段,确定油气资源的存在性和分布规律。

然后根据勘探结果,选择合适的开发方式,如常规油气田开发、深水油气田开发、深海油气田开发等。

2. 钻井:钻井是油气开采的关键技术之一,通过钻井设备将钻头钻入地下油气层,获取油气资源。

海洋油气钻井主要包括海上钻井平台、定向钻井、水平井等技术。

3. 采油与采气:采油和采气是指通过各种技术手段将地下油气资源提取到地面的过程。

海洋油气开采中常用的方法包括自然流动开采、人工提高注水开采、压裂等技术。

4. 输送与储存:海洋油气开采后,需要将油气输送到陆地加工厂进行处理。

海洋油气输送主要依靠海底管道、船舶运输等方式。

另外,还需要设计建设储存设施,如油气储罐、储存船等。

5. 安全与环保:海洋油气开采过程中,需严格控制安全风险,防止事故发生。

同时,还需重视环境保护,避免油气开采对海洋生态环境造成不可逆转的影响,采取相应的环境监测和治理措施。

海洋油气开采涉及多个学科领域,如地质学、地球物理学、石油工程学、海洋工程学等。

随着技术的不断发展和创新,海洋油气开采技术也在不断进步,为海洋石油和天然气资源的有效开发和利用提供了技术支持。

海底油气勘探技术研究及发展趋势

海底油气勘探技术研究及发展趋势

海底油气勘探技术研究及发展趋势海洋是全球最大的资源库,其中包含了丰富的油气资源。

海底油气勘探技术在过去几年中得到了长足的发展,为人类开发深海油气资源提供了新的机遇。

一、海底油气勘探技术现状海底油气勘探技术主要包括钻井、测量勘探、采油和水下生产等技术,其中测量勘探技术是海底油气勘探的重要环节。

测量勘探技术主要分为地震勘探、电磁勘探和重力勘探三种。

地震勘探是一种广泛应用的海底油气勘探技术,它通过在海面上放置震源和接收仪器来探测井下地层结构及油气分布等。

电磁勘探则是利用电磁场的特性来对井下地层结构和油气区域进行探测。

重力勘探则是通过对海洋重力场的测量来探测地下油气结构。

此外,为了克服勘探过程中的海洋环境带来的困难,如海浪、水流和水下高压等问题,还出现了许多新型海底油气勘探设备和技术,如超深水平台、水下机器人、智能化钻井设备等。

二、海底油气勘探技术的发展趋势1. 深海勘探技术将得到更大发展随着陆地和浅海区域油气资源的逐渐减少,人们的目光开始转向深水区域。

越来越多的石油公司开始将勘探业务扩展到深海领域,特别是水深超过一千米的深水区。

深海资源具有无限的潜力,海底油气勘探技术的发展将在未来几年得到更大的发展。

2. 海洋信息技术将得到广泛应用海洋信息技术在海底油气勘探中发挥着越来越重要的作用,它可以优化勘探的方案、减少成本和提高效率。

未来,海洋信息技术将得到更广泛的应用,例如数据采集和处理,海底设备控制,安全监控等。

3. 海洋环境保护将成为主要问题海洋资源的可持续开发需要保护和管理,海洋环境保护将成为海底油气勘探的主要问题之一。

为了保护海洋生态环境,需要制定科学的勘探方案和规划,以确保勘探活动对海洋生态系统的影响最小。

4. 多种勘探技术将综合应用不同的海底油气勘探技术各有优缺点,将多种技术综合应用可以有效克服不同技术的局限性,提高勘探成效。

例如,可以将地震勘探与电磁勘探结合使用,以提高勘探精度和可靠性。

5. 海工装备将得到提升和改进施工过程中使用的海工装备将得到不断的提升和改进,以适应更恶劣的海洋环境和更高的施工要求。

工程勘察船的深海油气资源调查技术

工程勘察船的深海油气资源调查技术

工程勘察船的深海油气资源调查技术深海油气资源是目前世界能源发展的重要方向之一,而工程勘察船作为海洋勘察的重要工具,在深海油气资源调查中扮演着重要角色。

本文将介绍工程勘察船在深海油气资源调查中所采用的技术。

一、声纳技术声纳技术是工程勘察船进行深海油气资源调查的关键技术之一。

通过发射声波,并根据回波信号的特征来获取海底地貌和沉积物的信息。

声纳技术可以分为单波束和多波束声纳技术。

单波束声纳技术适用于较浅的水域,能够获取较高分辨率的图像。

而多波束声纳技术适用于较深的水域,能够获取更广阔区域的数据。

声纳技术的应用可以帮助工程勘察船确定油气藏的位置、厚度和分布情况。

二、地球物理勘探技术地球物理勘探技术是工程勘察船进行深海油气资源调查的另一项重要技术。

它主要包括重力勘探、磁力勘探和电磁勘探等。

重力勘探通过测量地球引力场的变化来判断油气藏的分布情况。

磁力勘探则通过测量地球磁场的变化来判断油气藏的位置和规模。

电磁勘探则是通过电磁信号的传播和反射来判断油气藏的地下构造和储量。

地球物理勘探技术在工程勘察船的油气资源调查中起着关键作用。

三、井下遥感技术井下遥感技术是工程勘察船进行深海油气资源调查的新兴技术。

它通过采集井下传感器的数据,并将其传回到工程勘察船上进行处理和分析。

井下遥感技术可以实时监测油气井的产量和储量,以及井底温度、压力和流体性质等参数。

通过这些数据,工程勘察船可以更好地评估油气资源潜力,并优化钻井方案和生产工艺。

四、水下遥控技术水下遥控技术是工程勘察船进行深海油气资源调查的另一项重要技术。

通过远程控制水下设备,工程勘察船可以进行水下采样、观察和测量。

水下遥控技术主要包括遥控机器人和水下声纳。

遥控机器人可以在深海中进行复杂任务,如采集岩石样本、布设探测器和测量水下地质特征等。

水下声纳技术可以实时监测海底沉积物的分布和厚度,为深海油气资源调查提供更准确的数据支持。

综上所述,工程勘察船在深海油气资源调查中采用了声纳技术、地球物理勘探技术、井下遥感技术和水下遥控技术等多种技术手段。

海洋石油勘探技术的发展与应用前景

海洋石油勘探技术的发展与应用前景

海洋石油勘探技术的发展与应用前景海洋石油勘探技术是指通过科学手段对海底潜在的石油资源进行勘探和开发的技术。

随着全球能源需求的增长和陆地石油资源的逐渐枯竭,海洋石油勘探技术的发展与应用前景备受关注。

本文将从技术发展、应用前景和挑战三个方面进行探讨。

一、技术发展1. 海底地震勘探技术的突破海底地震勘探技术是海洋石油勘探的重要手段,随着地震勘探设备和技术的不断更新,海底地震勘探分辨率和探测深度得到显著提高,帮助勘探人员更准确地识别潜在的油气藏。

未来,随着声波成像技术和数据处理技术的不断改进,海底地震勘探技术将迎来新的发展机遇。

2. 无人潜水器在海洋石油勘探中的应用随着无人潜水器技术的进步,越来越多的海洋石油公司开始将无人潜水器应用于海底地形勘测、沉积物采集和沉积层分析等领域。

无人潜水器具有灵活、高效、安全的特点,可以在海底复杂环境中完成多项勘探任务,为海洋石油勘探提供了新的技术支持。

二、应用前景1. 越来越多的深海油气资源开发随着陆地石油资源逐渐枯竭,海洋石油资源成为全球能源供应的重要补充。

未来,随着深海油气资源勘探和开发技术的提升,越来越多的深海油气资源将得到有效利用,为全球能源安全作出贡献。

2. 海底石油生产系统的创新应用随着海底生产技术的不断发展,海底石油生产系统将成为未来海洋石油勘探的重要发展方向。

海底生产系统具有减少环境影响、提高生产效率和降低成本的优势,将在未来海洋石油勘探中发挥重要作用。

三、挑战与展望1. 环境保护问题海洋石油勘探对海洋生态环境具有一定影响,如何有效保护海洋环境,减少对海洋生物的影响成为亟待解决的问题。

未来海洋石油勘探技术的发展应与环境保护相结合,实现可持续发展为发展目标。

2. 技术安全挑战海洋石油勘探涉及到复杂的海底地质构造和高风险的工作环境,技术安全是海洋石油勘探面临的重要挑战之一。

未来,海洋石油公司需要不断提升技术安全水平,加强风险管控,确保勘探作业的顺利进行。

综上所述,海洋石油勘探技术的发展与应用前景广阔,但也面临着一系列挑战和困难。

世界海洋油气资源现状和勘探特点及方法

世界海洋油气资源现状和勘探特点及方法

世界海洋油气资源现状和勘探特点及方法
海洋油气资源是指在海洋领域中发现的石油和天然气资源。

由于海洋油气资源具有丰富、矿藏规模大、地理位置分布广、开发难度大等特点,所以被广泛地开发和利用。

目前,世界范围内已经发现了大量的海洋油气资源,其中以北美洲、拉丁美洲、西非、东南亚等地为主要区域。

其中北美洲是世界上最大的海洋油气资源区,石油储量占全球储
量的38%,天然气储量占全球储量的21%。

勘探特点和方法
由于海洋油气资源具有分布广、深度大、难以探测等特点,因此在勘探过程中需要采
用科学的勘探方法。

目前主要采用的勘探方法如下:
1.震源勘探法:通过设置震源,利用地震波的反射和折射特性,获取地下的地质信息。

这种方法主要用于获得海底地层结构和地质构造等信息。

2.电磁勘探法:利用地球自然磁场和人工磁场的交互作用,测量海洋底部不同位置的
电磁场。

这种方法主要用于寻找储层和确定流体性质。

3.地球物理勘探法:利用地球物理规律,通过测定海底重力场和磁场等参数,来探测
地下的地质特征和含油气的情况。

这种方法主要用于检测含油气地层的物性和结构。

4.钻井勘探法:通过在海洋底部进行钻井,获取地下的岩心、水文地质等信息。

这种
方法主要用于确定储层形成和特征,以及流体的性质。

综上所述,海洋油气资源的勘探与开发是一项高风险、高投入的工作,需要采用科学
的勘探方法,结合地质、地球物理等知识对勘探区域进行综合研究,最终确定可行性方案,推进资源的开发和利用。

如何进行海上油气资源勘探

如何进行海上油气资源勘探

如何进行海上油气资源勘探海上油气资源勘探是现代能源开发的重要领域之一。

随着全球对能源的需求不断增加,国家对探索和开发海上油气资源的重视程度也日益提高。

本文将论述如何进行高效、可持续的海上油气资源勘探,以满足未来的能源需求。

一. 先进的勘探技术在海上油气资源勘探中,先进的勘探技术是提高勘探效率和减少勘探成本的关键。

地震勘探是目前最常用的勘探方法之一。

通过投放地震信号并记录回波,可以确定海底地层的岩性和构造,从而找到潜在的油气资源区域。

然而,传统的地震勘探技术受限于分辨率和深部探测能力。

近年来,随着技术的不断进步,新兴的勘探技术逐渐应用于海上油气资源勘探中。

其中之一是三维地震勘探。

与传统的二维勘探相比,三维地震勘探可以提供更高的分辨率和更全面的地质信息。

通过采用多个地震探头,可以同时记录不同角度的地震波,从而更准确地确定地层结构。

此外,新兴的勘探技术如重力勘探、电磁勘探和磁力勘探也在海上油气资源勘探中发挥着越来越重要的作用。

二. 环保可持续的勘探策略在进行海上油气资源勘探时,环保可持续性是必须考虑的重要因素。

勘探活动可能对海洋生物和生态系统造成严重的影响,因此需要采取措施来最大程度地减少环境风险。

首先,合理规划勘探区域是确保环境可持续性的重要措施之一。

通过对海域的综合评估和环境影响评估,可以确定潜在的生态敏感区域,并避免勘探活动对这些区域造成不可逆转的损害。

此外,采用合适的勘探工艺和设备也能够减少环境影响。

其次,进行勘探活动时需要严格遵守环境法规和标准。

例如,在进行海底钻探时,需要采取措施来防止油气外泄,以避免对海洋生态系统的破坏。

勘探过程中产生的废水和废气也需要经过适当的处理和净化,以符合环境排放标准。

三. 国际合作与技术交流海上油气资源勘探是一个高度复杂且成本高昂的过程。

各国政府和能源公司应加强国际合作与技术交流,共同面对挑战并分享经验。

国际合作可以带来多方共赢的效果。

通过共同投资和资源共享,各国能够共同承担油气勘探的风险,减轻单个国家的负担。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海洋油气勘探新技术摘要:近些年来,陆地油气资源逐渐面临枯竭,大家都将目光转向海洋。

而海洋油气资源的开发的第一步就是海洋油气资源的勘探,本文通过对几种海洋油气资源勘探技术的描述,介绍一下海洋油气资源勘探技术的发展历程,以及目前的技术水平。

关键词:海洋油气勘探技术新发展1.引言我国是海洋大国,传统海域辖区总面积近3×106km2[3,4]。

以300 m水深为界,浅水区面积约1.46×106km2、深水区面积约1.54×106km2{2]。

南海我国传统疆界内石油地质储量为1.6439×1010t、天然气地质资源量为1.4029×1013 m3,油当量资源量约占我国总资源量的23 %,油气资源潜力巨大;其中300 m以下深水区盆地面积为5.818×105km2,石油地质储量为8.304×109t、天然气地质资源量为7.493×1012m3。

目前我国在南海的油气勘探主要集中在北部4个盆地,面积约3.64×105km2[3,4]。

陆地油田经过长期的勘探开发,大部分已进入勘探开发的后期,受勘探资源枯竭以及油田开发规律的影响,陆地油田产量增长难度较大,不仅如此,大庆油田、胜利油田等陆地典型老油田的产量已进入递减阶段。

图1给出了1971年到2013年全国石油产量构成柱状图,全国石油产量整体上呈稳步增长的趋势,但中国石油天然气股份有限公司、中国石油化工集团公司等以陆地油田为主的公司年产油增长缓慢,自1990年以来,全国石油增长总量的60 %来自中国海洋石油总公司。

我国近海油气资源丰富,勘探开发的程度远低于陆地,尚处于蓬勃发展期,近海油气田将是我国油气产量主要的增长点。

当前中国海洋石油总公司年产油气当量规模在5×107t,根据中国海洋石油总公司的发展规划,到2030年国内海上将建成1×108t油气当量年产规模,未来17年将增加一倍的产能,届时近海油气产量在我国石油产量构成中的比重将更加突出,近海油气对我国国民经济的支撑作用将更加凸显[1]。

图1 全国石油产量构成柱状图[1]中国共产党第十八次全国代表大会也作出的“海洋大开发”的重大决策,我国必须拓展经济发展的战略空间,“大力发展深海技术,努力提高深海资源勘探和开发技术的能力,维护我国在国际海底的权益”[1]。

因此,加大对海洋油气资源的开发是我国石油与天然气资源开发的主要方向。

通过对海洋油气资源的开发,弥补我国陆地油气资源储备不足,地层条件恶劣,开采困难的短板;降低我国石油对外依存程度;缓解我国石油天然气过度依赖进口的尴尬局面;保证我国能源安全。

然而,海洋油气勘探是保证我国海洋石油开发的前提,是进行海洋油气开采的第一步。

因此,我们需要通过对海洋油气勘探新技术的研究,提升我国海洋油气资源勘探水平,为下一步开发奠定结实的基础。

2.海洋油气资源勘探技术发展历程2.1国外海洋油气资源勘探技术发展历程[5,6]1887年,在美国加利福尼亚海岸数米深的海域钻探了世界上第一口海上探井,拉开了海洋石油工业序幕。

20世纪30~40年代的海洋油气勘探首先集中在墨西哥湾、马拉开波湖等地区;20世纪50~60年代油气勘探则在波斯湾、里海等海区初具规模;20世纪70年代是海洋油气勘探最为活跃的时期,成果最显著的地区是北海含油气区,陆续发现了一系列油气田,其中有许多都属于大型油气田,如格罗宁根气田。

目前在海洋进行油气勘探的国家越来越多,海洋钻井遍布世界各个海区。

2.2国内海洋油气资源勘探技术发展历程[7]2.2.1引进国外先进技术装备消化吸收阶段(20 世纪70 年代初—80 年代初)1973 年4月,原国务院燃料化学工业部海洋石油勘探指挥部经中央政府的批准,从日本引进自升式钻进平台“渤海 2 号”(富士丸),从而打开了我国海洋石油技术引进的大门。

从20 世纪70 年代初到80 年代初,我国先后共花费了14亿美元引进一批海上石油装备,包括9座海上钻进平台、21艘三用工作船、10艘工程船、10台数字地震仪、6套地震数据处理计算机、10套可控震源成套和数字测井仪等。

这些先进技术装备的引进奠定了我国海洋石油工业的技术基础。

在这一时期,中国海洋石油工业主要通过引进国外先进技术装备,在应用中消化吸收并逐步掌握操作工艺。

2.2.2合资合作,集成创新(20世纪80年代初—20世纪末)早在20世纪80年代中期,时任国务院副总理的康世恩就先后4次到中国海油湛江的南海西部公司进行调研并明确指出:“你们不仅要对外合作,也要考虑自己干。

只搞对外合作是单线吊葫芦——不保险。

必须是对外合作与自营勘探同时并举,两腿齐步走。

”中国海油的历届决策者们始终不移地贯彻了这一战略思想。

1984年,中国海油的渤海石油公司开始进行自营勘探。

为此成立了战略组,对海上非合作区的石油地质进行系统研究,对一批有利构造展开钻探,发现了一批油气田,并由自己担当作业者组织开发,从而拉开了自营与合作并举的帷幕。

在一些自营勘探、开发项目陆续取得成功的基础上,中国海油于1997年明确提出要实现海洋石油的跨越式发展科技工作必须先行的战略指导思想。

在引进、消化、吸收国外适用的先进技术的同时更要依靠自身的技术力量,进行勘探、开发下游技术和管理技术等方面的研究和创新。

中国海油提出,要努力实现“三新(新思想、新技术、新方法) 三化(标准化、简易化、国产化)”技术创新发展战略。

这一战略的提出和实施极大地调动了广大科技人员的积极性,有力地推进了生产建设中的技术创新。

在自营油气田开发过程中进行的技术攻关和创新有效地锻炼了中国海油的科技队伍,极大地提高了公司的技术研发水平,实现了装备的现代化,积累了油气田开发和执行作业者的宝贵经验,形成了一支能自主完成研究、设计、开发、建造和生产的专业配套队伍和一套常规油气田开发的配套技术。

2.2.3自主高速高效发展,形成自主创新技术体系(21世纪初至今)2004年,中国海油提出“建设国际一流的综合型能源公司”的发展目标,并将科技领先作为发展战略之一。

中国海油深深地意识到,科技是第一生产力,是对公司长远发展起长效作用的基础性因素。

因此在抓生产建设的同时更要抓科技进步,要保证有足够的科技投入,不断夯实公司的科技基础,提高科研水平,要使科技成为公司发展的核心竞争力。

在这一阶段,总公司及所属单位通过建立健全科技管理机构,完善了科技管理体系,强化了科技管理职能。

通过修订完善一系列的规章制度,加强了制度化建设,保证了科技工作的规范运行。

建立新的科技创新平台,建设了中国海洋石油天然气勘探开发科技创新体系。

3.海洋油气资源勘探技术的新发展3.1海上地震勘探3.1.1海上地震勘探的特点[8]海上地震工作是把地震仪器安装在船上,使用海上专用的电缆和检波器,在观测船航行中连续进行地震波的激发和接收。

海上地震工作方法发展到现阶段,具有几方面的特点:一是成本低,海上三维地震每平方千米约5000~8000美元;二是速度快,一天可采集80km的地震记录;广泛使用非炸药震源,炸药震源已很少用;使用等浮组合电缆;三是单船作业,记录仪器和震源在同一条船上,不需要采用松放电缆的措施就能保证连续工作;四是全部采用多次覆盖技术,并且覆盖次数较高,为了适应高覆盖次数的需要,等浮电缆的道数不断增加;五是由于采集量大,而且速度快,所以许多船上都配备了功能很强的处理设备和人员,还有的是通过卫星及时向陆地传输数据。

这些措施保证了大量数据的及时处理,并及时提交用户进行解释。

由于海上地震具有这些特点,所以一般情况下海上地震勘探一次施工的面积都比较大,而且主要以三维资料采集为主,一次施工面积大部分都在1000km2以上。

二维资料采集量比较少。

3.1.2海上地震勘探的新技术(1)四维地震(4D 地震)技术它已经成为海上油气田开发的一种成熟方法。

四维地震勘探技术的成功应用,对优化开发方案,提高采收率和油气产量,获得更好的经济效益具有重要价值,因而已经在生产中广泛应用[8,9]。

(2)海上多分量勘探(4C)技术海上多分量(又称海上多波)地震勘探(multicomponent sea-bottom seismics)早期称为海底地震记录法(SUMIC——SUbsea seis MICs)。

最初是挪威国家石油公司于20世纪80年代开发的技术专利,它利用置于海底的4分量检波器(压力检波器及3分量速度检波器),通过数传电缆,将由海水中激发、海底接收的纵波和转换波等传输到海面接收船的记录仪上。

目前,正使用的一些方法包括使用一种电缆和把检波器放置在海底的拖运器。

另一种方法是使用机器人以一种特定的方式来安装的海底检波器。

对海上数据来说,除了用检波器记录三个方向的波动外,再加上传统的压力检波器所记录的波动,就得到了第四个分量[8,9]。

(3)等离子体震源技术[10,11]等离子体震源是一种水下短脉冲声源,其基本过程是电容储能通过水中高压脉冲放电的机械效应产生强脉冲声波。

其系统一般由3部分组成:脉冲电源、传输线、发射电极(阵)。

脉冲电源是其中最为关键的部分,其工作原理是采用电容储能,通过触发放电开关瞬间释放能量,输出高功率电脉冲从而实现在水体中进行等离子体放电。

(4)立体与多层气枪阵震源技术立体震源是将不同的枪阵组合或每一个子阵列沉放到不同的深度,使之所有的气枪不在同一水平面内,使得立体阵列的排列形式变化多样。

李绪宣等[12],通过对不同组合方式的立体震源模型子波数值模拟效果对比分析,证明了立体震源可行性和优越性2000年,Moldovneau[12]提出了垂直震源的概念,将两个枪阵分别沉放在同一垂直平面内的和的深度上,两个枪阵以炮间距的距离沿测线水平布置,采集中两个枪阵交互激发这样就会在同一激发位置上产生两个不同激发深度的单炮记录处理中采用波场分离方法,剔除两个连续炮点记录的上行震源波场,这样就减弱了地震震源附近产生的虚反射和混波,提高地震分辨率(5)海底双检电缆、双检波器拖缆采集技术[14,15]双检电缆除常规的压力检波器之外,还配置了速度检波器,得到的数据包括压力分量和垂直分量的信息、垂直分量是由速度检波器接收到铅垂方向上的质点振动速度息,压力分量是由压力检波器接收到由质点振动引起的水压变化由于全方位的压力检波器和垂直方向的速度检波器产生相同极性的上行波(有效反射信号)和相反极性的下行波(海水鸣震信号),因此可以综合利用垂直分量与压力分量数据特征差异来消除水层鸣震和多次波反射,避免了海面虚反射等因素引起的陷波作用,提高了信号的信噪比。

特别指出的是,由于海底双检电缆(OBC)是放置在海底接收地震反射数据,与常规拖缆地震相比,减少了海底与海水界面对地震波的反射作用,可以有效地提高深层弱反射地震信号能量,是改善原始数据品质的有效手段。

相关文档
最新文档