简谐振动的运动学
简谐振动最基本最重要的运动

当θ角很小时,有: M mgh —— 谐振
单摆:I mL2 h = L I
I
g
L
2 g
L
T 2 L
g
复摆:
2 mgh
I
T 2 I
mgh
振动周期均取决于系统本身。
七.谐振的能量
Ek
1 mv2 2
1 m 2 A2 sin 2 (
2
t
)
1 kA2 sin 2 (
2
t
)
Ep
1k 2
02 2 A、φ由初始条件决定。
若:
2>
2 0
则为过阻尼振动,物体将缓慢逼近平衡位置。
2 02
称为临界阻尼,物体回到平衡位置,并静止。
应用:电表中的电磁阻尼。临界阻尼。 二. 受迫振动
1.受迫振动 : 振动系统在周期性外力的持续作用 下发生的振动。此外力称驱动力。若强迫力按简谐 振动规律变化,则受迫振动也是谐振,周期为外力 的周期,振幅保持不变。
阻尼越小,振幅越大。
定量分析:
dA d (
f
)0
d p
d p
(
2 0
2 p
)2
4
2
2 p
得: 02 2
A Amax
f
Amax
2
02 2
阻力越小,ωp越接近ω0。同时 Aτ也越大。
β
0
ωτ
ω0
Amax
∞
§6. 谐振的合成
一.两个同方向 同频率的合成
x1 A1 cos( t 1) x2 A2 cos( t 2 )
A = A1- A2 为最小 二.同方向不同频率的合成 拍
合振动的振幅、频率均随时间变化,不是简谐振动。
简谐运动的动力学和运动学

2 简谐振动
简谐运动 最简单、最基本的振动
简谐运动
合成 分解
复杂振动
谐振子 作简谐运动的物体
第九章 振 动
5
物理学
第五版
9-1 简谐振动的动力学和运动学
二 简谐振动动力学特征
弹簧振子的振动
l0 k
m
A
o
x0 F 0
第九章 振 动
x
A
6
物理学
第五版
9-1 简谐振动的动力学和运动学
振动的成因
a 回复力 b 惯性
(2)简谐运动的动力学方程 d2 x 2 x
(3)简谐运动的运动学描述 dt 2
x A cos(t ) v A sin(t )
(4)加速度与位移成正比而方向相反
a 2 x
第九章 振 动
25
物理学
第五版
9-1 简谐振动的动力学和运动学
弹簧振子 k m
单摆 g l
复摆 mgl
16
物理学
第五版
9-1 简谐振动的动力学和运动学
2 周期、频率
x Acos(t ) Acos[(t T ) ]
周期 T 2π
x
注意
A
弹簧振子周期 o
A
T 2π m k
xt图
Tt
T 2
第九章 振 动
17
物理学
第五版
9-1 简谐振动的动力学和运动学
x Acos(t ) Acos[(t T ) ]
x Acos(t )
x x t图
A
T 2π 取 0
o
t
T
A
v A sin(t )
v
A
A cos(t π)
机械简谐振动的运动学与能量

机械简谐振动的运动学与能量引言机械简谐振动是物理学中重要的概念之一,它在很多领域都有广泛的应用。
本文将介绍机械简谐振动的运动学和能量方面的内容。
首先,我们将对机械简谐振动的定义进行说明,接着讨论它的运动学表达式,最后深入探讨与机械简谐振动相关的能量变化。
机械简谐振动的定义机械简谐振动是指在无外力作用的情况下,质点围绕平衡位置做线性回复的振动。
简谐振动的运动规律可以用如下的数学表达式表示:$$x(t) = A \\cdot \\sin(\\omega t +\\varphi)$$其中,x(t)表示质点在时间t时的位移,A是振幅,$\\omega$是角频率,$\\varphi$是相位常数。
机械简谐振动的运动学机械简谐振动的运动学研究主要关注质点的位移、速度和加速度随时间的变化规律。
1.位移:如前文所述,机械简谐振动的位移可以用上述的数学表达式表示。
位移随时间的变化是一个正弦曲线,振幅A决定了曲线的最大值,相位常数$\\varphi$则决定了曲线在时间轴上的平移。
2.速度:速度是位移对时间的导数,可以通过对位移函数求一阶导数得到:$$v(t) = A\\omega \\cdot \\cos(\\omega t + \\varphi)$$速度也是一个正弦曲线,它的幅值$A\\omega$是振幅和角频率的乘积,相位常数$\\varphi$则决定了曲线在时间轴上的平移。
3.加速度:加速度是速度对时间的导数,可以通过对速度函数求一阶导数得到:$$a(t) = -A\\omega^2 \\cdot \\sin(\\omega t + \\varphi)$$加速度也是一个正弦曲线,它的幅值$-A\\omega^2$是振幅和角频率的平方的乘积,相位常数$\\varphi$则决定了曲线在时间轴上的平移。
机械简谐振动的运动学分析可以帮助我们了解振动物体在不同时刻的位移、速度和加速度情况,从而更好地描述和预测振动过程。
机械简谐振动的能量在机械简谐振动中,质点的能量会随着时间的变化而发生变化。
简谐振动

1 1 2 2 2 2 m A sin (t 0 ) kA cos 2 (t 0 ) 2 2
简谐振动的能量
1 2 考虑到 k m ,系统总能量为 E kA ,表明 2 简谐振动的机械能守恒。
2
能量平均值
1 T1 1 2 2 2 2 EK m A sin (t 0 ) d t kA T 0 2 4
§15-1 简谐振动
简谐振动:物体运动时,离开平衡位置的位移(或 角位移)按余弦(或正弦)规律随时间变化。
1.简谐振动的特征及其表达式
O
X
F
X
O
F
O
X
简谐振动的特征及其表达式
位移 x 之解可写为: 或
x A cos(t 0 )
i(t 0 )
x Ae
简谐振动的运动学特征:物体的加速度与位移成正 比而方向相反,物体的位移按余弦规律变化。
1 T1 2 1 2 2 EP kA cos (t 0 ) d t kA T 0 2 4
EK EP E 2
上述结果对任一谐振系统均成立。
简谐振动的能量
谐振子的动能、势能和总能量随时间的变化曲线:
E
EP
1 2 E kA 2
O
Ek
t
x
O
x A cos t
t
简谐振动的振幅、周期、频率和相位
(3)相位和初相
相位 (t 0 ) :决定简谐运动状态的物理量。
初相位 0 :t=0 时的相位。 相位概念可用于比较两个谐振动之间在振动 步调上的差异。 设有两个同频率的谐振动,表达式分别为: x1 A1 cos(t 10 )
x2 A2 cos(t 20 )
简谐振动的方程

x Acos(t )
(4)
约定(4)式简谐振动的运动学方程
1 简谐振动速度 加速度
v dx A sin(t )
dt
a
d2x dt 2
A 2
cos(t
)
x
x t 图
A
t
x Acost
Hale Waihona Puke vt 图A vv A sint
t
A cos(t )
2
a t 图
a
A 2
t
a A2 cost
A2 cos(t )
2 描述简谐振动的特征量
(1)振幅 A
x Acos(t )
(2)周期、频率、圆频率
弹簧振子 k
m
单 摆 g
l
T 2 m
k
T 2 l
g
1 k 2 m
1 g 2 l
复 摆 mgh T 2 I 1 mgh
I
mgh
2 I
(3) 位相和初位相
x Acos(t 0 )
t 0 — 位相,决定谐振动物体的运动状态 0 是t =0时刻的位相—初位相
1 7
66
3.14s1
A vm 31.4 10cm
3.14
故振动方程为 x 10 cos( t )cm
6
方法2:用旋转矢量法辅助求解。
x Acos(t )
v
A
sin(t
)
vm
cos(t
2
)
vm A 31.4cms1
v的旋转矢量与v轴夹角表示t 时刻相位
t
(4)简谐振动的旋转矢量表示法
t t A
t
t 0
x
o
x
02简谐振动的运动学精品PPT课件

19
t t
o
A
t
x
x Acos(t )
点旋以转o矢为量原A
的端点在 x 轴
上的投影点的
运动为简谐运
动.
第4章 机械振动
4–2 简谐振动的运动学
20
y
vm t π
2
t an
A
0
a
v
x
x Acos(t )
vm A v A sin(t )
an A 2
a A 2 cos(t )
雌性蚊子 雄性蚊子 苍蝇 黄蜂
355~415 455~600 330 220
第4章 机械振动
4–2 简谐振动的运动学
例 如图所示系统(细线的质 量和伸长可忽略不计),细线 静止地处于铅直位置,重物位 于O 点时为平衡位置.
若把重物从平衡位置O 略 微移开后放手, 重物就在平衡 位置附近往复的运动.这一振 动系统叫做单摆. 求单摆小角 度振动时的周期.
12
x 简谐运动中, x和 v
间不存在一一对应的关系. A
x A cos(t 0 ) o
v A sin(t 0 ) A
v v
T 2
xt 图
v T t
3、位相和初位相 t 0
1) t 0 (x, v) 存在一一对应的关系;
2)相位在 0 ~ 2π 内变化,质点无相同的运动状态;
相差 2nπ (n为整数 )质点运动状态全同.(周期性)
4–2 简谐振动的运动学
1
一 简谐振动的运动学方程
d2x 2x 0
dt 2
x Acos(t 0 )
cos(t
0
)
sin(t
0
2
)
大学物理第七章习题及答案

第七章 振动学基础一、填空1.简谐振动的运动学方程是 。
简谐振动系统的机械能是 。
2.简谐振动的角频率由 决定,而振幅和初相位由 决定。
3.达到稳定时,受迫振动的频率等于 ,发生共振的条件 。
4.质量为10-2㎏的小球与轻质弹簧组成的系统,按20.1cos(8)3x t ππ=-+的规律做运动,式中t 以s 为单位,x 以m 为单位,则振动周期为 初相位 速度最大值 。
5.物体的简谐运动的方程为s ()x A in t ωα=-+,则其周期为 ,初相位6.一质点同时参与同方向的简谐振动,它们的振动方程分别为10.1cos()4x t πω=+,20.1cos()4x t πω=-,其合振动的振幅为 ,初相位为 。
7.一质点同时参与两个同方向的简谐振动,它们的振动方程分别为)4cos(06.01πω+=t x ,250.05cos()4x t πω=+,其合振动的振幅为 ,初相位为 。
8.相互垂直的同频率简谐振动,当两分振动相位差为0或π时,质点的轨迹是 当相位差为2π或32π时,质点轨迹是 。
二、简答1.简述弹簧振子模型的理想化条件。
2.简述什么是简谐振动,阻尼振动和受迫振动。
3.用矢量图示法表示振动0.02cos(10)6x t π=+,(各量均采用国际单位).三、计算题7.1 质量为10×10-3㎏的小球与轻质弹簧组成的系统,按X=0.1cos (8πt+2π/3)的规律做运动,式中t 以s 为单位,x 以m 为单位,试求:(1)振动的圆频率,周期,初相位及速度与加速度的最大值;(2)最大恢复力,振动能量;(3)t=1s ,2s ,5s ,10s 等时刻的相位是多少?(4)画出振动的旋转矢量图,并在图中指明t=1s ,2s ,5s ,10s 等时刻矢量的位置。
7.2 一个沿着X 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示,如果在t=0时刻,质点的状态分别为:(1)X 0=-A ;(2)过平衡位置向正向运动;(3)过X=A/2处向负向运动;(4)过X=2A处向正向运动。
简谐振动的运动学特征

简谐振动的运动学特征
嘿,朋友们!今天咱来聊聊简谐振动这玩意儿。
你说啥是简谐振动呢?咱可以想象一下哈,就好像一个小球在那来回晃悠,晃过去再晃回来,有规律得很呢!它可不像有些东西乱动一气,那叫一个没头绪。
简谐振动啊,它有几个特别有意思的特点。
首先呢,它的位移随时间的变化就像是一条优美的曲线,起起伏伏的,多有节奏感呀!这就好比音乐里的旋律,高低起伏,让人听着就觉得特别带劲。
然后呢,它的加速度和位移之间还有着一种特别的关系。
就好像是一对好朋友,一个变了,另一个也跟着有反应。
你说神奇不神奇?
还有啊,它的周期和频率也是很重要的呢!周期就是它晃悠一圈所用的时间,频率呢就是单位时间里晃悠的次数。
这就跟咱跑步似的,有的人跑得快,频率高,有的人跑得慢,周期长。
你想想看,生活中其实也有很多类似简谐振动的东西呢!比如说钟摆,滴答滴答地晃悠,多有规律呀!还有琴弦的振动,弹出美妙的音乐。
简谐振动这东西,看似简单,实则蕴含着无穷的奥秘。
它让我们看到了自然界中那些有规律的美,让我们感受到了万物运行的奇妙。
咱再深入想想,这世界不也像是一个巨大的简谐振动吗?有起有落,有高有低。
我们在这其中经历着各种变化,就如同那小球一样来回晃悠。
但正是这种有规律的变化,才让生活变得丰富多彩呀!
所以啊,可别小瞧了这简谐振动,它可是自然界的一大奇妙之处呢!它让我们对世界有了更深的理解,也让我们更加敬畏大自然的神奇。
这不就是科学的魅力所在吗?让我们从这些看似普通的现象中发现无尽的宝藏!
原创不易,请尊重原创,谢谢!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简谐振动的运动学
本节主要讲解:根据简谐振动的动力学方程求其运动学方程,并讨论简谐运动的运动学特征。
一 . 简谐振动的运动学方程
方程的解为:⑴
⑴式就是简谐振动的运动学方程,该式又是周期函数,故简谐振动是围绕平衡位置的周期运动。
二 . 描述简谐振动的物理量
1 . 周期(T )
完成一次全振动所用的时间:
对弹簧振子:
2. 频率()
单位时间内完成的全振动的次数:
的含义:个单位时间内完成的全振动的次数,即圆频率。
3. 振幅
物体离开平衡位置的最大位移。
振幅可以由初始条件决定。
如:t=0 时刻,,
由⑴式可得:,
∴⑵
4. 位相和初位相
振动系统的状态指:任意瞬时的位移和速度。
但仅知振幅频率还不够,还须知道
才能完全决定系统的运动状态。
叫简谐振动的相位。
当时,叫初相位。
由:⑶
若:已知初始条件:,则⑶式有:
⑷
⑸
⑷,⑸式中的任意二个即可确定初位相。
相位差:两振动相位之差。
讨论:
⑴若 是 的整数倍,则振动同相位;
⑵若 是 奇数倍,则振动相位相反;
⑶若 ,则称 超前 ;
⑷若 ,则称 落后 。
相位差的不同,表明二振动有不同程度的参差错落,振动步调不同。
例 1 :一弹簧振子, 时, 求振动的初位相 。
解 :
∴ 在第一象限,
例 2 :讨论振动的位移,速度和加速度之间的关系。
解 :
设: ,
则:
所以:速度的位相比位移的位相超前
加速度的位相比速度的位相超前;
加速度的位相比位移的位相超前。
理解:加速度对时间的积累才获得速度,速度对时间的积累获得位移。
总结:
⑴简谐振动是周期性运动;
⑵简谐振动各瞬时的运动状态由振幅 A 频率及初相位决定,或者说,由振幅和相位决定。
⑶简谐振动的频率是由振动系统本身固有性质决定的,而振幅和初相位不仅决定于系统本身性质,而且取决于初始条件。
三 . 简谐振动的图象:图线
描述:质点在各个时刻的偏离平衡位置的位移。
中学里经常做正弦、余弦函数的图象,故不再多讲,请看书。
四 . 简谐振动的矢量表示法:
用旋转矢量的投影表示简谐振动。
如图示:
为一长度不变的矢量,的始点在坐标轴的原点处,记时起点t=0 时,矢量
与坐标轴的夹角为,矢量以角速度逆时针匀速转动。
由此可见:⑴匀速旋转矢量在坐标轴上的投影即表示一特定的简谐振动的运动学方程。
⑵矢端的速度大小为,在x 轴上的投影为:
⑶矢端沿圆周运动的加速度即向心加速度的大小为:,在x 轴上的投影:
总结:旋转矢量、旋转矢量端点沿圆周运动的速度和加速度在坐标轴上的投影等于特定的简谐振动的位移、速度和加速度。
因此,用旋转矢量在坐标轴上的投影描述简谐振动的方法叫简谐振动的矢量表示法。
练习题
1. (1 )一简谐振动的运动规律为,若计时起点提前0.5s ,其运动学方程如何表示?欲使其初相为零,计时起点应提前或推迟若干?
(2) 一简谐振动的运动学方程为若计时起点推迟1s ,它的初相是多少?欲使其初相为零,应怎样调整计时起点?
(3) 画出上面两中简谐震动在计时起点改变前后t=0 时的旋转矢量的位置。
2. 半径为R 的薄圆环静止于刀口O 上,令其在自身内作微小的摆动。
(1 )求其震动的周期;( 2 )求起振动周期相等的单摆的长度;( 3 )将圆环去
掉而刀口支于剩余圆弧的中央,求其周期与整圆环摆动周期之比。
∙9.1简谐振动的动力学特征〈〈〈上一节
∙top↑
∙下一节〉〉〉9.3简谐振动的能量转换
© 2008 韩山师院物电系力学精品课程All Rights Reserved.
20041212 庄跃南毕业设计。