信号配时计算过程
信号配时计算

信号配时计算方法
1、计算信号配时常用公式
(1)信号周期:各相位信号灯轮流显示一次所需时间的总和,可用式(4-1)表示: Y
L C -+=
155.10 式(4-1) 其中:C 0 ——信号最佳周期(秒); L ——周期总损失时间(秒),其计算如式(4-2):
∑=-+=n
i i i i A I l L 1)( 式(4-2)
其中:l ——车辆启动损失时间,一般为3秒;
I ——绿灯间隔时间,即黄灯时间加全红灯清路口时间,一般黄灯为3秒,全
红灯为2-4秒;
A ——黄灯时间,一般为3秒;
n ——所设相位数;
Y ——组成周期全部相位的最大流量比之和,即
∑==n
i i i Y Y Y 1),max ( 式(4-3)
Y i ——第i 个相位的最大流量比,即
i i i s q Y /= 式(4-4) q i ——第i 相位实际到达流量(调查得到);
s i ——第i 相位流向的饱和流量(调查得到)。
(2)绿信比:各相位所占绿灯时间与周期时间之比。
Y
Y Y MAX G g i i e el ),(1
= 式(4-5) 式中:g el ——有效绿灯时间(秒);
G e ——C 0 –L ; G e1 ——第一相位有效绿灯时长,用上式也可求得其他相位有效绿灯时长。
各相位实际显示绿灯时间:
L A g g e +-= 式(4-6) 每一相位换相时四面清路口全红时间:
i i i A I r -= 式(4-7)
r i ——第i 相全红时间(秒); I i ——第i 相绿灯间隔时间(秒); A i ——第i 相黄灯时间(秒)。
交通行业交通信号配时规范

交通行业交通信号配时规范随着城市交通的不断发展和交通运输的快速增长,交通信号控制系统在交通管理中的作用日益重要。
合理、科学的信号配时是交通信号控制的核心内容之一,其质量直接影响到交通系统的安全性、流畅性和效率。
一、前言在现代城市交通中,“绿波系”是交通信号配时的一种较为经典的控制理念。
基于流行绿波的城市道路,其交通信号配时的目标是实现相邻交叉口信号相位统筹协调,使行驶车辆能够按照一定速度通过一系列接连的交叉口,减少停车等待时间,优化交通运行效果。
二、信号配时的原则1. 视情况确定绿信比根据不同道路的交通需求以及交叉口的行人流量,合理确定信号配时中的绿信比。
一般情况下,车辆流量大且行人流量少的主干道应适当增加绿灯时间,以提高交通效率。
2. 考虑不同车辆的需求考虑到不同车辆的速度特点和行驶路线,合理设置信号配时的周期长短,使得车辆能够根据速度恰好通过路口,并尽量减少车辆的停车等待时间。
3. 充分考虑交通流向根据交通流向的特点,合理配置信号配时的相位时长,确保交通流向的绿灯时间合理设置。
根据交通流量的分布和交叉口的车流组成,合理调整不同道路的绿灯时间,以保证交通流动的顺畅性。
4. 结合信号优化技术在信号配时过程中,可以结合现代交通信号控制技术,如智能交通系统和实时交通控制,通过实时监测交通流量和路况信息,调整信号配时策略,实现灵活的信号控制,提高交通运行效率。
三、信号配时的步骤1. 交通数据采集在信号配时之前,需要对交通流量和路口行人流量进行详细的调查和数据采集。
通过交通观测器、摄像头等设备收集数据,并进行统计分析。
2. 交通信号设计根据采集到的交通数据,结合交通需求、行人需求和道路环境特点,进行交通信号设计。
根据交叉口的几何形状、道路宽度等因素,确定信号灯的位置和数量。
3. 时间分配计算根据信号灯的数量和位置,结合交通流量、行人流量和车辆速度等数据,进行时间分配的计算。
通过计算得出每个相位的绿灯时间和黄灯时间,以及信号周期的长度。
信号配时计算

信号配时计算方法
1、计算信号配时常用公式
(1)信号周期:各相位信号灯轮流显示一次所需时间的总和,可用式(4-1)表示: Y
L C -+=
155.10 式(4-1) 其中:C 0 ——信号最佳周期(秒); L ——周期总损失时间(秒),其计算如式(4-2):
∑=-+=n
i i i i A I l L 1)( 式(4-2)
其中:l ——车辆启动损失时间,一般为3秒;
I ——绿灯间隔时间,即黄灯时间加全红灯清路口时间,一般黄灯为3秒,全
红灯为2-4秒;
A ——黄灯时间,一般为3秒;
n ——所设相位数;
Y ——组成周期全部相位的最大流量比之和,即
∑==n
i i i Y Y Y 1),max ( 式(4-3)
Y i ——第i 个相位的最大流量比,即
i i i s q Y /= 式(4-4) q i ——第i 相位实际到达流量(调查得到);
s i ——第i 相位流向的饱和流量(调查得到)。
(2)绿信比:各相位所占绿灯时间与周期时间之比。
Y
Y Y MAX G g i i e el ),(1
= 式(4-5) 式中:g el ——有效绿灯时间(秒);
G e ——C 0 –L ; G e1 ——第一相位有效绿灯时长,用上式也可求得其他相位有效绿灯时长。
各相位实际显示绿灯时间:
L A g g e +-= 式(4-6) 每一相位换相时四面清路口全红时间:
i i i A I r -= 式(4-7)
r i ——第i 相全红时间(秒); I i ——第i 相绿灯间隔时间(秒); A i ——第i 相黄灯时间(秒)。
信号配时计算过程

本次设计选择的路段上有四个交叉口,其中两个T字交叉口、两个十字交叉口。
四个交叉口均属于定时信号配时。
国际上对定时信号配时的方法较多,目前在我国常用的有美国的HCM法、英国的TRRL法(也称Webster法)、澳大利亚的ARRB法(也称阿克赛利克方法)、中国《城市道路设计规》推荐方法、停车线法、冲突点法共六种方法。
本次设计运用的是比较经典的英国的TRRL 法,即将F·韦伯斯特—B·柯布理论在信号配时方面的使用。
对单个交叉口的交通控制也称为“点控制”。
本节中使用TRRL法对各个交叉口的信号灯配时进行优化即是点控制中的主要容。
在对一个交叉口的信号灯配时进行优化时,主要的是根据调查所得的交通流量先确定该点的相位数和周期时长,然后确定各个相位的绿灯时间即绿信比。
柯布(B.M.Cobbe)和韦伯斯特(F.V.Webester)在1950年提出TRRL法。
该配时方法的核心思想是以车辆通过交叉口的延误时间最短作为优化目标,根据现实条件下的各种限制条件进行修正,从而确定最佳的信号配时方案。
其公式计算过程如下:1.最短信号周期C m交叉口的信号配时,应选用同一相位流量比中最大的进行计算,采用最短信号周期C m时,要求在一个周期到达交叉口的车辆恰好全部放完,即无停滞车辆,信号周期时间也无富余。
因此,C m恰好等于一个周期损失时间之和加上全部到达车辆以饱和流量通过交叉口所需的时间,即:1212nm m m m nV V VC L C C C S S S =++++(4-8)式中:L ——周期损失时间(s );——第i 个相位的最大流量比。
由(4-8)计算可得:111m niL L C Yy ==--∑ (4-9)式中:Y ——全部相位的最大流量比之和。
2.最佳信号周期C 0最佳周期时长C 0是信号控制交叉口上,能使通车效益指标最佳的交通信号周期时长。
若以延误作为交通效益指标,使用如下的Webster 定时信号交叉口延误公式:122(25)32(1)0.65()2(1)2(1)C x C d x x q x q λλλ+-=+--- (4-10)式中:d ——每辆车的平均延误; C ——周期长(s );λ——绿信比。
信号配时计算

信号配时计算一、友谊东路进口道流量比计算各进口道大车率(HV)友谊东路东进口HV=202/1738=0.116文艺北路南进口HV=58/902=0.064友谊东路西进口HV=163/2328=0.070HV=154/1346=0.114文艺北路北进口(一)友谊东路东进口①计算饱和流量车道宽度校正系数:f w =1坡度及大车校正系数: f g =1- (G +HV)=1-(0+0.116)=0.884 直行车道饱和流量:S T =S b T×f w× f g=1130×1×0.884=999 饱和流量: S d=S T=999②计算流量比: y直=q直/S d=464/999=0.464(二)友谊东路西进口①计算饱和流量车道宽度校正系数:f W=1坡度及大车校正系数: f g =1- (G +HV) =1-(0+0.07)=0.93直行车道饱和流量:S T =S b T×f w× f g=1130×1×0.93=1008 直右车道饱和流量:S T R=S b TR×f w× f g=1000×1×0.93=930 饱和流量: S d= S T+S TR=1008+837=1845②计算流量比: y直=q直/S d=738/1845=0.400Y直右=q直右/S d=647/1845=0.351(三)文艺北路南进口①计算饱和流量车道宽度校正系数:f W=1坡度及大车校正系数: f g =1- (G +HV) =1-(0+0.064)=0.936直行车道饱和流量:S T =S b T×f w× f g=1130×1×0.936=1058直右车道饱和流量:S T R=S b TR×f w× f g=1000×1×0.936=936左转车道饱和流量:S L=S b L×f w× f g=900×1×0.93=837饱和流量: S d= S T+S T R+S L=1058+936+837=2831②计算流量比: y直= q直/S d=435/2831=0.154Y直右=q直右/S d=150/2831=0.053Y左=q左/S d=253/2831=0.089(四)文艺北路北进口①计算饱和流量车道宽度校正系数:f W=1坡度及大车校正系数: f g =1- (G +HV) =1-(0+0.114)=0.886直行车道饱和流量:S T =S b T×f w× f g=1130×1×0.886=1001直右车道饱和流量:S T R=S b TR×f w× f g=1000×1×0.886=886左转专用车道饱和流量:S L=S b L×f w× f g=900×1×0.886=798饱和流量: S d= S T+S T R+S L=1001+886+798=2685②计算流量比: y直=q直/S d=558/2685=0.208Y直右=q直右/S d=359/2685=0.134Y左=q左/S d=394/2685=0.147信号配时计算③计算流量比的总和,公式如下式:Y=∑3max[y j,y j……]= ∑2max[(q d/s d)j, (q d/s d)j……] =0.464+0.147+0.208=0.819<0.9 满足要求④信号总损失时间L=Σ(l+I-A) =3×﹙3+3-3﹚=9⑤信号周期时长的计算,公式如下所示:C0=(1.5l+5)/(1-y) =(1.5×9+5)÷(1-0.819)=103C0—周期时长,Y—流量比总和,L—信号总损失时间⑥各个相位的有效绿灯时间和显示绿灯时间:第一相位:Ge1=Ge×max[y i,y i……] /Y=53绿信比:λ1= Ge1 /C0=0.524第二相位:Ge2=Ge×max[y i,y i……] /Y=17第三相位:Ge3=Ge×max[y i,y i……] /Y=24绿信比:λ2= Ge2/ C0=0.165Ge—总有效绿灯时间,就是C0减去L。
交叉口信号配时.

信号配时课程设计题目:院(系):专业班级:学号:学生姓名:指导教师:教师职称:起止时间:课程设计任务及评语院(系):教研室:目录1 课程设计的目的和要求 01.1课程设计的目的 01.2课程设计的基本要求 02 中央大街与南宁路交叉口交通设计 02.1中央大街与南宁路交叉口简介 02.2中央大街与南宁路交叉口数据调查 (1)2.2.1 中央大街与南宁路交叉口几何数据 (1)2.2.2 中央大街与南宁路交叉口交通数据 (2)2.3中央大街与南宁路交叉口目前交通设计情况分析 (5)2.3.1 中央大街与南宁路交叉口交通现状 (5)2.3.2 中央大街与南宁路交叉口设置交通控制信号依据 (5)2.4 重新设计 (6)2.4.1 交叉口渠化 (6)2.4.2 平峰信号配时方案设计 (6)2.4.3 平峰配时参数计算 (7)2.4.4 平峰配时方案验证 (9)2.4.5 新旧交叉口渠化比较分析 (11)参考文献 (12)附表 (13)课程设计总结 (15)1 课程设计的目的和要求1.1课程设计的目的城市交通管理与控制课程设计,是交通工程专业课程设计的一部分,是交通工程专业高年级学生进行的专业实践课程。
课程设计目的在于让学生比较全面的掌握交叉口信号灯配时的设计和优化方法,巩固课堂上所学过的交通管理与控制知识,对城市道路平面交叉口进行交通设计,锻炼我们综合运用所学专业知识解决实际问题的能力,进而使我们具备简单的工程设计及实践动手能力。
1.2课程设计的基本要求本课程设计对象为锦州市某一实际道路交叉口进行交通设计,要求我们进行实际交通数据调查,独立完成设计的各部分内容。
并进行相关资料查阅,有自己的见解,在课程设计结束时交一份详细的课程设计说明书。
2 中央大街与南宁路交叉口交通设计2.1中央大街与南宁路交叉口简介本小组进行的是锦州市中央大街与南宁路交叉口的交通设计,中央大街地处锦州市商业繁华地带。
中央大街与南宁路交叉口四周分布着交通银行、中大购物广场和中国银行以及锦州华联家具广场的,交叉口交通较为复杂,是一个比较旧的交叉口。
交叉口信号灯配时案例计算模板

高峰信号配时计算一、信号配时计算书交叉口几何现状为:北进口道五个车道,一个右转车道,三个直行车道,一个专用左转车道;南进口道五个车道,一个右转车道,三个直行车道,一个专用左转车道;西进口道两个车道,一个直右转车道,一个专用左转车道;东进口道三个车道,一个直右转车道,一个专用左转车道。
1、计算四个进口道各流向车道饱和流量S1)饱和流量用实测平均基本饱和流量乘以各影响因素校正系数的方法得到估算值。
即进口到的饱和流量:S=S bi·f式中:S——进口道的估算饱和流量(pcu/h);S bi——第i条进口道基本把饱和流量(pcu/h),i取T、L或R,分别表示相应的直行、左转或右转;各类进口道各有其专用相位时的基本饱和流量S bi,可采用下表数值:2、高峰各交叉口进口道交通量如下表本图需要替换掉表如下所示:3、采用四相位的信号控制方案,右转车道不受信号控制;结合上述问题分析,相位相序设置如图。
相位一:Y 1=max (0.195,0.261)=0.261 相位二:Y 2=max (0.143,0.165)=0.165 相位三:Y 3=max (0.254,0.200)=0.2 相位四:Y 4=max (0.121,0.200)=0.2流量比总和:Y=0.261+0.165+0.2+0.2=0.826由于交叉口总的饱和流量比小于0.9,可采用Webster 方法进行信号配时 5、信号总损失时间L启动损失时间s L =3s ,黄灯时长A=3s ,绿灯间隔时间I=3s ,一个周期内的绿灯间隔数为k=4。
则信号总损失时间 :()s L I A K L =+−=∑12s6、信号最佳周期时长0C已知流量比总和 Y=0.826,则0 1.551L YC +=−=133s ,取0C =135s 。
(周期取5的整数倍,不小于60s )7、计算绿灯时间总有效绿灯时间:0L G C e =−=123s相位1:11ee ygG Y ==123*0.261/0.826=39s 相位2:22ee yg G Y ==123*0.165/0.826=24s 相位3:33ee yg G Y ==123*0.2/0.826=30s 相位4:44=ee y gG Y=123*0.2/0.826=30s 8、初始各相位显示绿灯时间各相位实际显示绿灯时间:s 各相位显示绿灯时间: G1 = Ge1 – A + Ls = 39S G2 = Ge2 – A + Ls =24S G3 = Ge3 – A + Ls =30S G4 = Ge4 – A + Ls =30S 各相位绿信比:λ1 = Ge1 / C=39/135=0.29 λ2 = Ge2 / C=24/135=0.18 λ3 = Ge3 / C =30/135=0.22 λ4 = Ge4 / C =30/135=0.22于是,得信号配时如下表所示:e g g A L =−+。
信号配时过程

莲塘北路-莲塘东路路口配时20m斑马线5m宽莲塘北路莲塘东路图1 莲塘北路-莲塘东路道路线型表1莲塘北路/莲塘东路相位图通过计算,莲塘北路-莲塘东路路口配时过程如下表2莲塘北路-莲塘东路各进口车道设计交通量表3莲塘北路-莲塘东路各进口车道设计饱和流量根据配时参数计算公式计算配时表4莲塘北路-莲塘东路各进口道流量比统计表1. 流量比总和两相位时(南北、东西)2. 信号总损失时间两相位时(南北、东西)10)353(2∑=+-+=L3. 信号周期时长最小周期 Y LC m -=1 最佳周期 YL C o -+=155.1两相位时(南北、东西) 最小周期 1009.0110=-=m C 4. 总有效绿灯时间L C G e -=两相位时(南北、东西)9010100=-=-=L C G e5. 各相位有效绿灯时间两相位时(南北、东西)6090.060.0901=⨯=e g 3090.030.0902=⨯=e g6. 各相位的绿信比Cg ej j =λ两相位时(南北、东西)60.010060011===C g e λ 30.010030022===C g e λ 各相位的显示绿灯时间两相位时(南北、东西)60336011=+-=+-=j j e l A g g 30333022=+-=+-=j j e l A g g通过计算,莲塘北路-莲塘东路路口配时过程如下表5莲塘北路-莲塘东路各进口车道设计交通量表6 三相位莲塘北路-莲塘东路各进口车道设计饱和流量表7莲塘北路-莲塘东路各进口道流量比统计表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号配时计算过程本次设计选择的路段上有四个交叉口,其中两个T字交叉口、两个十字交叉口。
四个交叉口均属于定时信号配时。
国际上对定时信号配时的方法较多,目前在我国常用的有美国的HCM法、英国的TRRL法(也称Webster法)、澳大利亚的ARRB法(也称阿克赛利克方法)、中国《城市道路设计规范》推荐方法、停车线法、冲突点法共六种方法。
本次设计运用的是比较经典的英国的TRRL法,即将F·韦伯斯特—B·柯布理论在信号配时方面的使用。
对单个交叉口的交通控制也称为“点控制”。
本节中使用TRRL法对各个交叉口的信号灯配时进行优化即是点控制中的主要内容。
在对一个交叉口的信号灯配时进行优化时,主要的是根据调查所得的交通流量先确定该点的相位数和周期时长,然后确定各个相位的绿灯时间即绿信比。
柯布(B.M.Cobbe)和韦伯斯特(F.V.Webester)在1950年提出TRRL法。
该配时方法的核心思想是以车辆通过交叉口的延误时间最短作为优化目标,根据现实条件下的各种限制条件进行修正,从而确定最佳的信号配时方案。
其公式计算过程如下:1.最短信号周期C m交叉口的信号配时,应选用同一相位流量比中最大的进行计算,采用最短信号周期C m时,要求在一个周期内到达交叉口的车辆恰好全部放完,即无停滞车辆,信号周期时间也无富余。
因此,C m恰好等于一个周期内损失时间之和加上全部到达车辆以饱和流量通过交叉口所需的时间,即:1212n m m m m nV V VC L C C C S S S =++++L(4-8)式中:L ——周期损失时间(s );——第i 个相位的最大流量比。
由(4-8)计算可得:111m niL L C Yy ==--∑ (4-9)式中:Y ——全部相位的最大流量比之和。
2.最佳信号周期C 0最佳周期时长C 0是信号控制交叉口上,能使通车效益指标最佳的交通信号周期时长。
若以延误作为交通效益指标,使用如下的Webster 定时信号交叉口延误公式:122(25)32(1)0.65()2(1)2(1)C x C d x x q x q λλλ+-=+---(4-10)式中:d ——每辆车的平均延误; C ——周期长(s );λ——绿信比。
则总延误时间为:D=qd (4-11) 若使总延误最小,则:()0dD dC =(4-12)i iV S用近似解法,可得定时信号(近似)最佳周期时长:YL C -155.10+=(4-13)()iL l I A =+-∑ (4-14)式中:L ——每个周期的总损失时间(s ); l ——起动损失时间(s ); A ——黄灯时间(s ); I ——绿灯间隔时间(s ); i ——一个周期内的相位数;Y ——组成周期的全部信号相位的各个最大y 值之和,Y=Σmax[yi ,i y ',…]。
周期时间的取值应当在一个合适的范围内。
在周期时长数值较小时增大周期时长,可明显地提高通行能力,使更多的车辆通过。
但当周期时长继续增长,超过120s 后,通行能力的提高速度变得缓慢,相反交叉口通行延误急速增长,所以单点信号灯的最大周期时长一般不超过120s 。
同时,周期时长也不宜过短,最短周期时长应考虑车辆能安全通过交叉口所需的最短时间和行人过街所需最短时间两个因素来确定。
如果周期时长过短,行人和车辆的安全性能就无法得到保证,反而降低通行性能。
故在计算时通常采用最佳周期时长而不是最短周期时长。
3.有效绿灯时间与最佳绿信比与信号周期的确定一样,在各相位之间,绿灯时间的分配也是以车辆延误最少为原则的。
按照这个原则,绿信比应该与相位的交通流比率成正比,即:1122g y g y ≈ (4-15) 式中:g 1、g 2——分别为第一和第二相位的有效绿灯时间; y 1、y 2——分别为第一和第二相位的流量比率。
式(4-15)可进一步引申,用于多相位的交叉口,即:0iii in n iiiig y g y C L Yg y==-∑∑或(4-16)由式(4-16)可以求出每一相位的绿灯时间:0()ii y g C L Y =- (4-17)定时信号控制配时的基本内容包括两部分:确定信号相位方案和信号基本控制参数。
确定信号相位方案是对信号轮流给某些方向的车辆或行人分配通行权顺序的确定,即相位方案是在一个信号周期内,安排了若干种控制状态,并合理地安排了这些控制状态的显示次序。
两相位定时信号配时图是最常见的十字交叉口的相位安排方式,这种方案适用于左转车流量较小的情况。
然而,在信号交叉口的配时设计中,由于左转流量对交叉口运行的影响最大,所以在许多情况下,相位数、相位类型、相位次序等常常要依据左转流量的要求来确定。
合理选用和组合相位,是决定点控制定时信号交叉口交通效益的主要因数之一。
TRRL法的信号基本控制参数优化步凑如下:1、计算各交叉口每个进口车道的车流量和饱和流量2、求出每个进口车道的车流量系数,并为每个相位选择流量比3、将各相位的流量比相加得出整个交叉路口的Y值(Y小于等于0.9)4、确定路口绿灯间隔时间I和损失时间L5、利用最佳周期计算公式计算周期时间6、用周期时间减去损失时间可得出可利用的有效绿灯时间7、将路口有效绿灯时间按各个相位的流量比分配给各个相位8、根据各相位的黄灯时间和启动损失时间,计算各相位的实际绿灯时间。
四个交叉口信号优化计算过程如下:金周路:1、金周路处的T字交叉口信号现状设置为保护转弯相位,同时设立有后延左转相。
现状相位如图1。
北进口南进口东进口西进口交叉口方向左直右左直右左直右左直右金周路- - -303.5- 51 951559.5- -202364合计- 354.5 1654.5 2087 根据调查数据可得在该处左转的车辆较少,可以将后延左转相合并到直行相位中。
故将金周路相位定为两相位,相位如图2(右转无专用相位)。
2、各进口饱和流量计算如下:金周路各进口道路纵坡为0,故G=0。
进口方向S T S L参数SbTfwHVfgfbn S TSbLfwHVf g f l n S L南进口- - - - - - -15510.03.97- 11503东进口16510.06.91 462301551 0 10.70113180 4 0西进口1650 10.06 0.94 1 46384- - - - - - -求得:y 南左=0.2,y 东直=0.25,y 东左=0.07,y 西直=0.32。
3、每个相位y 的最佳计算:y 第一相位=max{y 东直,y 东左,y 西直}=max{0.32,0.25,0.07}=0.32, y 第二相位=y 南左=0.24、Y=y 第一相位+y 第二相位=0.32+0.2=0.525、黄灯时间A=3s ,全红时间为2s ,故绿灯间隔时间I=3+2=5s ,启动损失时间l s =3s 。
每周期总损失时间L=∑(l s +I-A)=2⨯5=10s 6、最佳周期长52.015105.1155.10-+⨯=-+=YL C =42s7、有效绿灯时间G e =C 0-L=42-10=32s G e 第一相位==⨯=⨯62.03252.032.0e G 20sG e 第二相位=38.03252.02.0e ⨯=⨯G =12s8、显示绿灯时间长g 第一相位=G e 第一相位-A+L S =20-3+3=20s , g 第二相位=G e 第二相位-A+L S =12-3+3=12s 金科北路1、金科北路处的十字交叉口目前采用的相位方案是在主干道上有保护左转弯相位的典型三相位。
其相位图如下:进口道的车流量如下表:北进口南进口东进口西进口交叉口方向左直右左直右左直右左直右金科北路100.5436.574 39 63 282681541.5383.522165128合计611 130 **** **** 根据调查数据,东西方向左转车辆占有量不大,故将该交叉口的相位方案改为两相位,其相位图如下:2、各进口饱和流量计算如下:金科北路路各进口道路纵坡为0,故G=0。
进口方向S T S L参数SbTfwHVfgfbnSTSbLfwHVf g f l n S L北进口16510.09.9111.44225615510.42.580.94.4337南进口16510.42.51.911421551010.92.811410 8 7 0 东进口 1650 10.06 0.94 1 3 4669 1550 1 0 1 - 11550西进口1650 1 0.06 0.941 3.24957 155010.04 0.96- 11487求得:y 北直=0.19,y 北左=0.30,y 南直=0.06,y 南左=0.03,y 东直=0.33,y 东左=0.17,y 西直=0.33,y 西左=0.14。
3、每个相位y 的最佳计算: y第一相位=max{y东直,y西直,y西左,y东左}=max{0.33,0.33,0.14,0.17}=0.33,y 第二相位=max{y 北直,y 北左,y 南直,y 南左}=max{0.19,0.30,0.06,0.03}=0.30 4、Y=y 第一相位+y 第二相位=0.33+0.30=0.635、黄灯时间A=3s ,全红时间为2s ,故绿灯间隔时间I=3+2=5s ,启动损失时间l s =3s 。
每周期总损失时间L=∑(l s +I-A)=2⨯5=10s 6、最佳周期长63.015105.1155.10-+⨯=-+=YL C =54s7、有效绿灯时间G e =C 0-L=54-10=44s G e 第一相位==⨯=⨯52.04463.033.0e G 23sG e 第二相位=48.04463.030.0e ⨯=⨯G =21s8、显示绿灯时间长g 第一相位=G e 第一相位-A+L S =31-3+3=23s , g 第二相位=G e 第二相位-A+L S =28-3+3=21s 金青路1、金青路信号相位现为两相位控制。
其相位图如下:其中主干道的左转并没有设立专用的左转相位。
调查所得的数据也显示出,从主干道左转向支路的车辆相对很小,故现有的相位方案是合理的。
北进口 南进口 东进口 西进口 交叉口 方向 左 直 右 左 直 右 左 直 右 左 直 右 金青路 198- 52 - - - - 2141 46 45 1734.5- 合计250-21871779.53、各进口饱和流量计算如下:进口方向S T S L参数SbTfwHVfgfbn S TSbLfwHVf g f l n S L北进口- - - - - - -1551 0 1 1.7921228东进口16510.07.9313.75698- - - - - - -西进口16510.08.9214.2636015510.08.920.92.81047求得:y北左=0.16,y东直=0.38,y西直=0.,27,y西左=0.04。