(完整版)初数学平行线分线段成比例定理
平行线分线段成比例定理

5
17
2 1
)
)
(3) S△AGE=( 2
4
课堂小结
作业 4
已知AD // ED // BC,AD=15,BC=21,2AE = EB,求EF的长
A D E
H
F
解法(一)
作AG // CD交EF于H AD // EF // BC AD=15, BC=21
B
G
C
AD = HF = GC =15 ,BG = 6 EH AE = BG AB 2AE = EB
A
3k 3m 2m
E
D
2k
G
4m 2a
F
a
B
C
应用1—求线段长度(比值)
如图,△ABC中,D是AB上的点,E是AC上的点,延长ED与射线 CB交于点F.若AE∶EC=1∶2,AD∶BD=3∶2. 求:FB∶FC的值.
A
3k 3m
E
6m
H
2m
D
2k
F
a
B
3a
C
应用1—求线段长度(比值)
如图,△ABC中,D是AB上的点,E是AC上的点,延长ED与射线 CB交于点F.若AE∶EC=1∶2,AD∶BD=3∶2. 求:FB∶FC的值.
A
y
D
x
x
E C
B
5
应用4 — 建立函数关系式
2. 已知:如图,BC = 4, AC = 2 3 ∠C=60°,P为BC上 一点,DP//AB,设BP = x,S△APD= y.
(1)求y关于x的函数关系式; (2)若S△APD =
2 S△APB,求:BP的长. 3
A
D
H
B
(完整版)平行线分线段成比例经典例题与变式练习(含标准答案..

1 / 14平行线分线段成比例知识梳理1. 1. 平行线分线段成比例定理平行线分线段成比例定理如下图,如果1l ∥2l ∥3l ,则BC EF AC DF =,AB DE AC DF =,AB ACDE DF=. l 3l 2l 1FE D CB A2.平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC ∥,则AD AE DEAB AC BC==ABCD E EDC B A3. 平行的判定定理:如上图,如果有BCDEAC AE AB AD ==,那么DE ∥BC 。
专题讲解专题一、平行线分线段成比例定理及其推论基本应用【例1】 如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长。
EDCBA【例2】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111cab=+.FEDCBA【巩固】如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明:111ABCDEF+=.FEDCBA【巩固】如图,找出ABD S ∆、BED S ∆、BCD S ∆之间的关系,并证明你的结论F EDCBA【例3】 如图,在梯形ABCD 中,AB CD ∥, 129AB CD ==,,过对角线交点O 作 EF CD ∥交AD BC ,于E F ,,求EF 的长。
OFED CBA【巩固】(上海市数学竞赛题)如图,在梯形ABCD 中,AD BC ∥,AD a BC b E F ==,,,分别是AD BC ,的中点,AF 交BE 于P ,CE 交DF 于Q ,求PQ 的长。
QPFED CBA专题二、定理及推论与中点有关的问题【例4】 (2007年北师大附中期末试卷)(1)如图(1),在ABC ∆中,M 是AC 的中点,E 是AB 上一点,且14AE AB =,连接EM 并延长,交BC 的延长线于D ,则BCCD=_______. (2)如图(2),已知ABC ∆中,:1:3AE EB =,:2:1BD DC =,AD 与CE 相交于F ,则EFAFFC FD + 的值为( )A.52 B.1 C.32D.2(1)MEDCBA(2)F ED CBA【例5】 (2001年河北省中考试卷)如图,在ABC ∆中,D 为BC 边的中点,E 为 AC 边上的任意一点,BE 交AD 于点O .(1)当1A 2AE C =时,求AOAD 的值; E AO(2)当11A 34AE C=、时,求AO AD 的值; (3)试猜想1A 1AE C n =+时AO AD 的值,并证明你的猜想.【例6】 (2003年湖北恩施中考题)如图,AD 是ABC ∆的中线,点E 在AD 上,F 是BE 延长线与AC 的交点.(1)如果E 是AD 的中点,求证:12AF FC =;(2)由(1)知,当E 是AD 中点时,12AF AEFC ED=⋅成立,若E 是AD 上任意一点(E 与A 、D 不重合),上述结论是否仍然成立,若成立请写出证明,若不成立,请说明理由.F E DCBA【巩固】(天津市竞赛题)如图,已知ABC ∆中,AD 是BC 边上的中线,E 是AD 上的一点,且BE AC =,延长BE 交AC 于F 。
平行线分线段成比例定理,掌握下面的内容,让问题变的简单化

平行线分线段成比例定理,掌握下面的内容,让问题变的简单化初中数学教程中,平行线分线段成比例定理也是一个很重要的知识点,同时也是应用比较广泛的一个知识点,那么下面就让我为大家介绍一下:首先我们先了解什么是平行线分线段成比例定理:三条平行线截两条直线,所得对应线段成比例。
推广:过一点的一线束被平行线截得的对应线段成比例。
平行线段成比例定理推论:①平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例。
②平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。
下面,就为讲解一下定理的证明思路:该定理是用举例的方法引入的,没有给出证明,严格的证明要用到我们还未学到的知识,通过举例证明,让同学们承认这个定理就可以了,重要的是要求同学们正确地使用它(用相似三角形可以证明它,在这里要用到平移和设三条平行线与直线1交于A、B、C三点,与直线2交于D、E、F三点法1:过A作平行线的垂线交另两条平行线于M、N,过D作平行线的垂线交另两条平行线于P、Q,则四边形AMPD、ANQD均为矩形。
AM=DP,AN=DQAB=AM/cosA,AC=AN/cosA,∴AB/AC=AM/ANDE=DP/cosD,DF=DQ/cosD,∴DE/DF=DP/DQ又∵AM=DP,AN=DQ,∴AB/AC=DE/DF根据比例的性质:AB/(AC-AB)=DE/(DF-DE)∴AB/BC=DE/EF法2:过A点作AN∥DF交BE于M点,交CF于N点,则AM=DE,MN=EF.∵ BE∥CF∴△ABM∽△ACN.∴AB/AC=AM/AN∴AB/(AC-AB)=AM/(AN-AM)∴AB/BC=DE/EF法3:连结AE、BD、BF、CE根据平行线的性质可得S△ABE=S△DBE,S△BCE=S△BEF∴S△ABE/S△CBE=S△DBE/S△BFE根据不同底等高三角形面积比等于底的比可得:AB/BC=DE/EF由更比性质、等比性质得:AB/DE=BC/EF=(AB+BC)/(DE+EF)=AC/DF以上就是平行线分线段成比例定理这一知识点的归纳,希望大家能够掌握,学习本身就是一种积累,只有大家不对的积累,才能进步,让我们一起学习,一起努力吧。
平行线分线段成比例定理

平行线分线段成比例定理平行线分线段成比例定理:两条直线被一组平行线所截,截得的对应线段的长度成比例。
推论:平行于三角形一边的直线,截其他两边(或两边延长线)所得的对应线段成比例。
定理定义三条平行线截两条直线,所得对应线段成比例。
这一定理被称为"平行线分线段成比例定理"。
如图,因为AD∥BE∥CF,所以AB:BC=DE:EF;AB:AC=DE:DF;BC:AC=EF:DF。
也可以说AB:DE=BC:EF;AB:DE=AC:DF;BC:EF=AC:DF。
上述图样只是平行线分线段的一种特殊情况。
事实上,直线AC和直线DF可以在平行线之间相交,同样有定理成立。
定理证明设三条平行线与直线1交于A、B、C三点,与直线2交于D、E、F三点。
连结AE、BD、BF、CE根据平行线的性质可得S△ABE=S△DBE,S△BCE=S△BEF∴S△ABE/S△CBE=S△DBE/S△BFE根据不同底等高三角形面积比等于底的比可得:AB/BC=DE/EF由更比性质、等比性质得:AB/DE=BC/EF=(AB+BC)/(DE+EF)=AC/DF定理推论过一点的一线束被平行线截得的对应线段成比例。
平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例。
平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。
•平行线分线段成比例定理:三条平行线截两条直线,所得对应线段成比例。
推广:过一点的一线束被平行线截得的对应线段成比例。
定理推论:①平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例。
②平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。
•证明思路:该定理是用举例的方法引入的,没有给出证明,严格的证明要用到我们还未学到的知识,通过举例证明,让同学们承认这个定理就可以了,重要的是要求同学们正确地使用它(用相似三角形可以证明它,在这里要用到平移和设三条平行线与直线1交于A、B、C三点,与直线2交于D、E、F三点法1:过A作平行线的垂线交另两条平行线于M、N,过D作平行线的垂线交另两条平行线于P、Q,则四边形AMPD、ANQD均为矩形。
平行线分线段成比例定理证明过程

平行线分线段成比例定理是初中数学中的重要概念之一,也是几何学中的基础知识。
在我们探讨这个定理的证明过程之前,首先让我们了解一下平行线分线段成比例定理的概念。
一、平行线分线段成比例定理的概念平行线分线段成比例定理是指:如果一条直线被两条平行线截断,那么它们所截取的线段成比例。
形式化表示就是:设直线l被两条平行线m和n截断,截线段分别为AB和CD,那么有AD/DB=AC/CB。
二、证明过程接下来,我们来探讨平行线分线段成比例定理的证明过程。
1. 利用证明过程所需的前提条件我们需要利用欧几里得几何学的基本公设和定理来证明这个定理。
其中,我们需要用到的包括平行线的性质、相似三角形的性质等。
2. 构造辅助线在证明过程中,我们通常会构造一些辅助线来帮助我们证明定理。
我们可以根据已知条件,构造出一些三角形或平行四边形来辅助证明。
3. 利用相似三角形性质在证明中,我们需要利用到相似三角形的性质。
我们可以利用相似三角形的对应边成比例的性质来帮助我们证明线段的成比例关系。
4. 利用平行线的性质平行线具有许多特殊的性质,其中之一就是平行线与被它们截取的直线所成的各对应角相等。
我们可以利用这一性质来帮助我们证明定理。
5. 运用数学归纳法在证明过程中,我们可能需要通过数学归纳法来确保定理对于所有情况都成立。
6. 总结通过以上的证明过程,我们可以得出平行线分线段成比例定理的证明结果。
三、个人观点和理解从证明过程中,我们可以看到,数学证明不仅需要逻辑思维,还需要创造性地构造辅助线、利用相似三角形等方法来解决问题。
平行线分线段成比例定理的证明过程,让我深刻体会到数学的美妙之处,也让我更加深入地理解了相关概念和定理。
总结通过本文对平行线分线段成比例定理的证明过程的探讨,我们不仅了解了这一定理的基本概念,还深入探讨了其证明的具体步骤和相关思想。
通过这样的学习和探讨,我们不仅可以掌握知识,还能够培养良好的逻辑思维能力和解决问题的能力。
平行线分线段成比例定理 课件

求证:AF=CF.
分析:关键是条件
其中x 是某条线段.
1
2
= 的应用,通过作平行线,证明
= ,
证明:过点 D 作 DH∥AC,交 BF 于点 H,如图.
∵D 是 BC 的中点,
1
∴
=
= .
2
1
∵
= ,∴
=
.
2
1
又 ∵DH∥AF,∴
+
+
=
.
= (其中b+d+…+n≠0),那么
②合比性质:如果 = , 那么
③等比性质:如果 = = ⋯
++…+
= .
++…+
(5)线段的比与比例线段是既有区别又有联系的两个概念.线段的
比是对两条线段而言的,而比例线段是对四条线段而言的.线段的
虑把比例转移,过点C作CM∥EF,交AB于点M,交AD于点N,且BC的
中点为D,可以考虑补出一个平行四边形来证明.
证明:如图,过点C作CM∥EF,交AB于点M,交AD于点N.
∵AE=AF,∴AM=AC.
∵AD为△ABC的中线,∴BD=CD.
延长AD到点G,使得DG=AD,连接BG,CG,
则四边形ABGC为平行四边形.∴AB=GC.
要a,b,c互相平行,构成一组平行线,m与n可以平行,也可以相交,但它
们必须与已知的平行线a,b,c相交,即被平行线a,b,c所截.平行线的条
数还可以更多.
平行线分线段成比例定理

如图,有一块形状为直角梯形的草地,周围均为水泥 如图,有一块形状为直角梯形的草地, 直道,两个拐角A 处均为直角, 直道,两个拐角A、B处均为直角,草地中间另有一条水泥 直道EF垂直于AB 垂足为E.已知AE EF垂直于AB, E.已知AE长 EB长 DF长 直道EF垂直于AB,垂足为E.已知AE长a米,EB长b米,DF长 c米.求CF.
要熟悉该定理的几种基本图形
A B C D B C A E F E D D E F C A B B C C E D B A E F A B E D
F D
C A
16 16 8 CF = DE = , BF = 8= . 3 3 3
B
F
C
例2:三角形内角平分线分对边成两线 三角形内角平分线分对边成两线 这两线段和相邻的两边成比例. 段,这两线段和相邻的两边成比例 这两线段和相邻的两边成比例
A
4 3
E
已知: 是 已知:AD是△ABC中∠A的平 中 的平 分线, 分线, BD AB 求证: 求证:DC
课 堂 小 结
平行线分线段成比例定理与平行线等分线段 定理有何联系? 定理有何联系?
A B D E
AB 当 =1 BC AB 当 ≠1 BC
A B
D E
C
F
C
F
结论:后者是前者的一种特殊情况! 结论:后者是前者的一种特殊情况! 平行线分线段成比例定理: 平行线分线段成比例定理:
三条平行线截两条直线,所得的对应线段成比例. 对应线段成比例 三条平行线截两条直线,所得的对应线段成比例.
l4
l5
问题二 如何不通过测量,运用所学知识,快速将一根绳 如何不通过测量,运用所学知识, 子分成两部分,使这两部分之比是2:3? 子分成两部分,使这两部分之比是2:3?
(完整版)平行线分线段成比例

1.在VABC中,AD是ABC的平分线,35AB=5cm, AC=4cm,BC=7cm,则BD=___9____
2.在VABC中,AD是ABC的平分线, 55 AB-AC=5, BD-CD=3, DC=8,则AB=____3___
3.RtVABC中,B 90, AB 12, BC 5, DE AC于E,
A
D
C
证明: 过C作AD的平行线交AB于点E。 ∴BD︰CD=AB︰AE,∠1=∠AEC ∠CAD=∠ACE ∵∠1=∠CAD ∴∠AEC=∠ACE
∴AE=AC ∴BD︰CD=AB︰AC
直角三角形中的比例(射影定理):
C
A
DB
在直角三角形ABC中,CD为斜边AB边上的高, 则:
CD2 ADgDB; AC2 ADgAB; BC2 BDgAB
1gABgADgsin BAD 2
SVDAC
1 gCDgh 2
1gDAgACgsin DAC 2
SVABD BDgh ABgADgsin BAD SVDAC DCgh ACgADgsin DAC
Q AD为BAC的平分线 BAC DAC
AB BD
B
AC DC
本节内容是关于几何中的一些比例关系,这几 节内容现在在初中课本中已“淡化”,但是这几个 结论在高中的“立体几何”和“平面解析几何”中 有时会用到.因此,在本节中首先把这几个定理内容介 绍给同学们,然后利用这三个定理来解决一些题目.其 中对于“平行线分线段成比例”介绍几条稍有难度 的题目,而“三角形内外角平分线性质定理”和 “直角三角形中的比例”的题目直接围绕定理展开, 难度不大.
平行线分线段成比例定理
三条平行线截两条直线,截得的对应线段成比例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学
【教学进度】
几何第二册第五章 §5.2 [教学内容]
平行线分线段成比例定理 [重点难点剖析]
一、主要知识点
1.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。
2.三角形一边平行线的性质定理(即平行线分线段成比例定理的推论):平行于 三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
3.三角形一边的平行线的判定定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
4.三角形一边的平行线的性质定理2(即课本例6):平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形三边对应成比例。
二、重点剖析
1.平行线分线段成比例定理,是研究相似的最重和最基本的理论,同时,它也是直接证明线段成比
EF BC = , 可以说成“上比下等于上比下” DF DE
AC AB
= , 可以说成“上比全等于上比全” DF
EF
AC BC
= , 可以说成“下比全等于下比全”等 2.三角形一边平行线的性质定理1(即平行线分线段比例定理的推论) 基本图形
又∵
43=EC AE ∴ 73=AC AE ∴7
3
=DC EG 极 EG=3X , DC=7X (X>0),则
∵
32=DC BD ∴ DB=x x DC 3
14
73232=⨯= ∴9
14
3314==x x
EG BD
例3
分析 BC//FE 证明:∵则例4 分别连结E ,DB 首先观察证明:∵点评 (1(3)最后只须证明这两条边上对应线段成比例即可
例5 如图9,,,,C B A '''分别在△ABC 的三边BC 、AC 、AB 或其延长线上,且C C B B A A '''////
求证:C
C B B A A '='+'111 分析 所证结论中出现的三条线段的倒数,解决此类问题, 一般情况下,要将其转化为线段比的形式。
证明:∵A A C C ''// ∴
BA C B A A C C '='' ∵B B C C ''// ∴B B C C ='' ∴1='+'='+'=''+''AB C A C B AB C A BA C B B B C C A A C C ∴B B A A '+'11
点评 例6 EF//CD 分析 在△例7 BF ⊥交BC 求证:分析 可延长证明:∴△
① 求证ME=NF
② 当EF 向上平移 图(2)各个位置其他条件不变时, ①的结论是否成立,请证明你的判断。
[练习与测试参考解答或提示]
1.215;2.18cm ; 3.5
2
,35; 4.9:4; 5.9; 6.10,18; 7.9:1; 8.2; 9.6
10.提示,过D 作DH//AC 交BG 于H 点,则
DH AE GD AG =,DH
EC
BD BC =,又AE=EC ,BD=AB ,即可
得结论。
11.略证,由∠DCA=∠EBA=600,有CD//BE ,则
CG
EG
CD BE =
,同理AD CE AF EF =,而EB=CE ,CD=AD , 则
AF
EF
CG EG =
,所以FG//AB 12.略证,由DE//BC ,有∠EDB=∠DBC ,AB
AE
BC DE =
,又∠ABC=∠DBC ,所以∠EDB=∠ABD ,则BE=DE , 所以1==+=+AB
AB AB AE AB BE BC DE AB DE
13.①由AD//EF//BC ,有AD
NF
CD CF AB BE AD EM =
==,EM=NF ②仍成立,证明同①。