汉诺塔问题动态演示

合集下载

《Hanoi塔问题》课件

《Hanoi塔问题》课件
游戏设计与人工智能
在游戏设计和人工智能领域,Hanoi塔问题可以作为解决游戏策略和决策问题的 模型。例如在围棋、象棋等游戏中,可以利用Hanoi塔问题的解法来设计更强大 的游戏AI。
PART 04
Hanoi塔问题的扩展和变 种
REPORTING
带限制的Hanoi塔问题
总结词
带限制的Hanoi塔问题是指在移动盘 子时,需要满足一些特定的限制条件 。
分治策略解法的优点是能够将问题分 解为更小的子问题,降低问题的复杂 度。但缺点是需要仔细设计子问题的 分解方式和合并方式,以确保能够正 确地解决问题。
PART 03
Hanoi塔问题的应用
REPORTING
在计算机科学中的应用
算法设计
Hanoi塔问题可以作为解决复杂算法问题的模型,例如在解决图论、动态规划 等算法问题时,可以利用Hanoi塔问题的特性来设计更高效的算法。
决。
在Hanoi塔问题中,递归解法的基本思 路是将问题分解为三个子问题:将n个 盘,最后将第n个盘子从
A柱移动到B柱。
递归解法的优点是思路简单明了,易于 理解。但缺点是对于大规模问题,递归 解法的时间复杂度较高,容易造成栈溢
出。
动态规划解法
动态规划解法是一种通过将问题分解为子问题并存储子问题的解来避免重复计算的方法。
数学模型的应用
汉诺塔问题可以通过数学模型进行描述和解决,如使用递归公式或动态规划方法。理解如何将实际问题转化为数 学模型,并运用数学工具进行分析和解决,是数学应用的重要能力。
对解决问题的方法论的启示
解决问题的思维方式
汉诺塔问题提供了一种独特的思维方式,即通过不断将问题分解为更小的子问题来解决。这种思维方 式有助于我们在面对复杂问题时,能够更加清晰地理解和分析问题,从而找到有效的解决方案。

汉诺塔

汉诺塔

4
演示:移动3个盘子的分解
move (2, A, C, B)
move (3, A, B, C)
move (1, A, B, C) move (2, B, A, C)A1 2 3BC5
move (1, A, B, C)
move (2, A, C, B) move (3, A, B, C) move (1, A, C, B)
9
move(3,A,B,C)
move(2,A,C,B) 输出 3:A to C
move(2,B,A,C)
move(1,A,B,C) move(1,C,A,B) move(1,B,C,A)
move(1,A,B,C)
输出 1:A to C
输出 输出 1:C to B 2:A to B
输出 1:B to A
当n > 1
参考代码
#include <stdio.h> void Move(int n, char a, char b) {//a移到b printf("Move disk %d from %c to %c\n", n, a, b); } void Hanoi(int n,char a, char b, char c){ if(n==0)return; Hanoi(n-1, a, c, b);//a借助c移到b Move(n, a, c); A Hanoi(n-1,b, a, c); } int main(){ B int n; while(scanf("%d", &n)!=EOF) Hanoi(n, 'A', 'B', 'C'); C }
汉诺塔(Haono)故事:

C语言程序设计课程设计报告---汉诺塔问题

C语言程序设计课程设计报告---汉诺塔问题

XXXX大学计算机科学与技术学院课程设计报告2012 — 2013学年第一学期课程名称C/C++高级语言程序设计课程设计设计题目小游戏和图形处理汉诺塔问题学生姓名XXX学号XXXXXXX专业班级XXXXXXXXXXX指导教师XX2012 年X 月XX 日目录一、课程设计问题描述 (1)1、课程设计题目 (1)2、设计任务要求 (1)二、总体设计 (1)1、设计思路 (1)2、汉诺塔求解流程图 (2)三、详细设计 (2)1、汉诺塔问题描述 (2)2、算法分析 (3)3、实现递归的条件 (4)4、用C语言实现 (4)四、程序运行结果测试与分析 (4)1、打开Microsoft Visual C++ 6.0操作平台输入以下的源代码 (4)2、编译源代码 (5)3、组建 (5)4、执行 (5)5、运行结果 (6)6、按任意键结束程序 (7)五、结论与心得 (7)六、参考文献 (8)七、附录:程序源代码 (8)一、课程设计问题描述1、课程设计题目汉诺塔问题2、设计任务要求输入盘子数(2个以上有效),移动速度,开始演示汉诺塔移动的步骤,要求:盘子A,B,C柱需要自己绘制,初始时盘子在A柱上通过B柱最终移动到C 柱上,显示出盘子在几个柱之间的移动过程。

二、总体设计1、设计思路对于一个类似的这样的问题,任何一个人都不可能直接写出移动盘子的每一个具体步骤。

可以利用这样的统筹管理的办法求解:我们假设把该任务交给一个僧人,为了方便叙述,将他编号为64。

僧人自然会这样想:假如有另外一个僧人能有办法将63个盘子从一个座移到另一个座,那么问题就解决了,此时僧人A B C64只需这样做:(1).命令僧人63将63个盘子从A座移到C座(2).自己将最底下的最大的一个盘子从A座移到C座(3).再命令僧人63将63个盘子从B座移到C座为了解决将63个盘子从A座移到B座的问题,僧人63又想:如果能再有一个僧人62能将62个盘子移动到另一座,我就能将63个盘子从A座移动到B座。

汉诺塔游戏ppt课件

汉诺塔游戏ppt课件
8
64层汉诺塔经过计算机计算需要移动: 18446744073709551615次,换算成年,大 约是五千多亿年。据现在的科学研究,地 球从诞生到现在,也才只有大约46亿年的 时间,太阳系的预期寿命据说也就是数百 亿年。而要完成64个圆盘的汉诺塔操作却 要5千多亿年,当这个操作完成时,可能我 们人类的世界真的都不存在了!
9
移1.圆动盘技个巧我数(是来步单说数数最两时少句,)…最:…上面的盘直接移
动到目标塔。 2.圆盘个数是双数时,最上面的盘直接移 动到辅助塔。
你有什么收获呢?
10
11
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
2
汉诺塔游戏
3
汉诺塔游戏规则: (1)每次只能移动一个圆盘; (2)大圆盘不能放到小圆盘上面。
4



1个圆盘,只要移动1次。
5



2个圆盘,最少移动3次。
6
讨论:大、中、小三个圆盘 如何移?最少移动多少次?



3个圆盘,最少移动7次 7
移动技巧(步数最少): 1.圆盘个数是单数时,最上面的盘 直接移动到目标塔。 2.圆盘个数是双数时,最上面的盘 直接移动到辅助塔。
数学游戏1?传说开天辟地的神在印度的一个教塔里留下了三根金刚石的柱子第一根上面从上到下套着64个按从小到大排列的金盘神命令庙里的众僧不停地把它们一个个地从这根柱子搬到另一根柱子上规定可利用中间的一根柱子作为帮助但每次只能搬一个而且大的不能放在小的上面
数学游戏
1
Hale Waihona Puke • 传说开天辟地的神在印度的一个教 塔里留下了三根金刚石的柱子,第一根 上面从上到下套着64个按从小到大排列 的金盘,神命令庙里的众僧不停地把它 们一个个地从这根柱子搬到另一根柱子 上,规定可利用中间的一根柱子作为帮 助,但每次只能搬一个,而且大的不能 放在小的上面。相传神同时发了咒语, 当所有的金盘全部移完时,就是世界末 日到来的时候。

汉诺塔问题的详解课件

汉诺塔问题的详解课件
计算,提高算法的效率。但是,对于较大 的n值,动态规划解法的空间复杂度较高,需要较大的存储空间。
03 汉诺塔问题的变 种和扩展
多层汉诺塔问题
01
02
03
定义
多层汉诺塔问题是指将多 层的盘子从一个柱子移动 到另一个柱子,同时满足 汉诺塔问题的规则。
难度
随着盘子层数的增加,解 决问题的难度呈指数级增 长。
子从中间柱子移动到目标柱子。
递归解法的优点是思路简单明了,易于 理解。但是,对于较大的n值,递归解 法的时间复杂度较高,容易造成栈溢出

分治策略
分治策略是解决汉诺塔问题的另一种方法。它将问题分解为若干个子问题,分别求解这些子 问题,然后将子问题的解合并起来得到原问题的解。
分治策略的基本思路是将汉诺塔问题分解为三个阶段:预处理阶段、递归转移阶段和合并阶 段。预处理阶段将n-1个盘子从起始柱子移动到中间柱子,递归转移阶段将第n个盘子从起 始柱子移动到目标柱子,合并阶段将n-1个盘子从中间柱子移动到目标柱子。
制作汉诺塔问题的动画演示
除了使用Python或数学软件进行可视化演示外,还可以使 用动画制作软件来制作汉诺塔问题的动画演示。这些软件 提供了丰富的动画效果和编辑工具,可以创建生动有趣的 演示。
在动画演示中,可以使用不同的颜色和形状来表示不同的 柱子和盘子。通过添加音效和文字说明,可以增强演示的 视觉效果和互动性。最终的动画演示可以保存为视频文件 ,并在任何支持视频播放的设备上播放。
使用Python的图形库,如matplotlib或tkinter,可以创建汉诺塔的动态演示。 通过在屏幕上绘制柱子和盘子,并模拟移动过程,可以直观地展示汉诺塔问题的 解决方案。
Python代码可以编写一个函数来模拟移动盘子的过程,并在屏幕上实时更新盘 子的位置。通过递归调用该函数,可以逐步展示移动盘子的步骤,直到所有盘子 被成功移动到目标柱子上。

汉诺塔问题的详解课件

汉诺塔问题的详解课件

04
数据结构与排序
汉诺塔问题也可以用来解释和演示不同的 数据结构和排序算法。
05
06
通过汉诺塔问题,人们可以更好地理解如 堆、栈等数据结构的应用和优劣。
在物理学中的应用
复杂系统与自组织
汉诺塔问题在物理学中常被用来研究复杂系统和自组织现 象。
通过对汉诺塔问题的深入研究,人们可以发现其在物理学 中的一些应用,如量子计算、自旋玻璃等。
人工智能与机器学习
在人工智能和机器学习中,汉诺塔问题可以被用来演示 如何使用不同的算法来解决问题。
06
总结与展望
对汉诺塔问题的总结
汉诺塔问题是一个经典的递归问题,其核心在于将一个复杂的问题分解为若干个简单的子问题来解决 。
通过解决汉诺塔问题,我们可以了解到递归算法在解决复杂问题中的重要性,以及将大问题分解为小问 题的方法。
此外,汉诺塔问题还被广泛应用于数学教育和计算机 科学教育中,成为许多课程和教材中的经典案例之一

02
汉诺塔问题的数学模型
建立数学模型
定义问题的基本参数
盘子的数量、柱子的数量和塔的直径 。
建立数学方程
根据问题的特点,我们可以建立如下 的数学方程。
递归算法原理
递归的基本思想
将一个复杂的问题分解成更小的子问题来解决。
通过深入研究汉诺塔问题的本质和解决方法,我们可以 为解决其他领域的问题提供有益的启示和方法。
THANKS
感谢观看
其他移动规则
除了传统的规则(盘子只能放在更大的盘子下面)之外,还 可以有其他移动规则,这会改变问题的性质和解决方案。
05
汉诺塔问题的应用场景
在计算机科学中的应用
算法设计与优化
01

【算法】汉诺塔问题

【算法】汉诺塔问题

【算法】汉诺塔问题汉诺塔问题是⼀个经典的问题。

汉诺塔(Hanoi Tower),⼜称河内塔,源于印度⼀个古⽼传说。

⼤梵天创造世界的时候做了三根⾦刚⽯柱⼦,在⼀根柱⼦上从下往上按照⼤⼩顺序摞着64⽚黄⾦圆盘。

⼤梵天命令婆罗门把圆盘从下⾯开始按⼤⼩顺序重新摆放在另⼀根柱⼦上。

并且规定,任何时候,在⼩圆盘上都不能放⼤圆盘,且在三根柱⼦之间⼀次只能移动⼀个圆盘。

问应该如何操作?当只有⼀个盘⼦时这是最简单的情况:只需将1号盘⼦从X塔移动到Z塔就OK于是我们可以写出如下的函数,来模拟完成这个过程。

假设盘⼦是⽤1,2,3...按照⼤⼩编码代表的,⽽塔则是⽤⼀个字符char表⽰的。

//将编号为 number 的盘⼦从 from 塔座移到 to 塔座void move(int number , char from , char to){std::cout<<"move dish "<<number<<": "<<from<<"--->"<<to<<std::endl;}有两个盘⼦时有2个盘⼦,⽬标是:将X塔上的盘⼦借助Y移动到Z盘⼦上。

特别的,为了好描述,我把X塔叫做源塔,因为盘⼦起初在这个塔上,把Y塔叫做辅助塔,因为Y塔只是起个过渡作⽤。

把Z盘叫做⽬标塔,最后所以的盘⼦都在这个塔上。

我们可以写出伪代码move(1,X,Y);move(2,X,Z);move(1,Y,Z);有三个盘⼦时在盘⼦数⼤于2的时候,⽆论有多少个盘⼦,我们眼⾥只有2个盘⼦:即最底层的最⼤的盘⼦,和它上⾯的所有盘⼦组和形成的⼀个盘,我们可以把它看做是2.5号盘。

这样考虑的好处是:⽆论有多少盘⼦,都可以⽤2个盘⼦的思路去做。

简化了思路。

因此,步骤是:1、将2.5号盘借助Z塔移动到Y塔上。

注意,处理这步操作时,X是源塔,Z是辅助塔,Y是⽬标塔2、将3盘移动到Z塔上,3、将2.5盘借助X塔移动到Z塔上。

C语言程序设计课程大型作业答辩

C语言程序设计课程大型作业答辩
• {4,0} /*hot spot*/
设置鼠标的移动范围
SetMouseArea(int x0,int y0,int x1,int y1) { union REGS regs;
regs.x.ax=7;regs.x.cx=x0;regs.x.dx=x1; int86(0x33,&regs;&regs); regs.x.ax=8;regs.x.cx=y0;regs.x.dx=y1; int86(0x33,&regs,&regs); }
鼠标简介
鼠标系统实际上由两个主要元素组成: 鼠标机制和称作鼠标驱动程序的内存驻 留程序。鼠标驱动程序提供与鼠标通信 所需的全部低级支持。此外,它自动维 持鼠标光标位置和发现是否按下了某个 键。一旦装入驱动程序,鼠标就可以被 随后执行的任意程序使用。
鼠标简介续
可以通过PC中断33H访问鼠标和鼠标驱 动程序的各种功能。所选择的特定函数 依赖于中断时AX寄存器的值。三个其它 寄存器(BX、CX和DX)用于把各种参数 传送给鼠标例程。同样,鼠标函数使用 这四个寄存器把鼠标的位置和按钮的状 态返回给调用函数。
取得字节某一位的值
int getbit(unsigned char byte,int bit) { if(bit<0||bit>7)
return 0; return (byte>>bit)&0x1; } 函 数 getbit 用 于 得 出 一 个 字 节 中 每 个 位 (bit)是0还是1。
显示24点阵的汉字
• 提交开发文档,说明程序的主要模块及功能、 主要数据结构及意义、程序采用的核心算法及 实现方式、小组成员的分工及完成情况
C语言高级实验班小组登记表格 小组名称
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H(n,A,B,C)
H ( 3, A, B, C )
Stack
Output A A 1 C A B 2 A C B 3 A B C C B
H(n-1,a,c,b)
H ( 2, A, C, B )
H(n-1,b,a,c) H ( 1, C, A, B )
n a b c
void hanoi ( int n, char a, char b, char c ) { if ( n >= 1 ) { hanoi ( n-1, a, c, b) ; printf(“%c -->%c\n“,a,c); hanoi (n-1, b, a, c) ; } }
H ( 3, A, B, C )
Stack
Output 0 A C B 1 C A B 2 A C B 3 A B C A A C C B B
H(n-1,a,c,b)
H ( 2, A, C, B )
H(n-1,b,a,c)
H ( 1, C, A, B )
H(n-1,b,a,c) H ( 0, A, C , B )
H(n,A,B,C)
H ( 3, A, B, C )
Stack
Output 0 A C B 1 A B C 2 A C B 3 A B C
H(n-1,a,c,b) H ( 2, A, C, B )
H(n-1,a,c,b) H ( 1, A, B, C )
H(n-1,a,c,b) H ( 0, A, C, B )
H ( 3, A, B, C )
Stack
Output 0 A C B 1 A B C 2 A C B 3 A B C
H(n-1,a,c,b) H ( 2, A, C, B )
H(n-1,a,c,b) H ( 1, A, B, C )
H(n-1,a,c,b) H ( 0, A, C, B )
n a b c
void hanoi ( int n, char a, char b, char c ) { if ( n >= 1 ) { hanoi ( n-1, a, c, b) ; printf(“%c -->%c\n“,a,c); hanoi (n-1, b, a, c) ; } }
H(n,A,B,C)
H ( 3, A, B, C )
n a b c
void hanoi ( int n, char a, char b, char c ) { if ( n >= 1 ) { hanoi ( n-1, a, c, b) ; printf(“%c -->%c\n“,a,c); hanoi (n-1, b, a, c) ; } }
H(n,A,B,C)
H ( 3, A, B, C )
Stack
Output A A 1 C A B 2 A C B 3 A B C C C B B
H(n-1,a,c,b)
H ( 2, A, C, B )
H(n-1,b,a,c)
H ( 1, C, A, B ) cout
n a b c
void hanoi ( int n, char a, char b, char c ) { if ( n >= 1 ) { hanoi ( n-1, a, c, b) ; printf(“%c -->%c\n“,a,c); hanoi (n-1, b, a, c) ; } }
n a b c
void hanoi ( int n, char a, char b, char c ) { if ( n >= 1 ) { hanoi ( n-1, a, c, b) ; printf(“%c -->%c\n“,a,c); hanoi (n-1, b, a, c) ; } }
H(n,A,B,C)
H ( 3, A, B, C )
Stack
Output A A 1 C A B 2 A C B 3 A B C C C B B
H(n-1,a,c,b)
H ( 2, A, C, B )
H(n-1,b,a,c)
H ( 1, C, A, B )
n a b c
n a b c
void hanoi ( int n, char a, char b, char c ) { if ( n >= 1 ) { hanoi ( n-1, a, c, b) ; printf(“%c -->%c\n“,a,c); hanoi (n-1, b, a, c) ; } }
H(n,A,B,C)
printf( " Input the number of diskes:\n “) ; scanf(“%d”,&n) ;
hanoi ( n, 'A' , 'B' , 'C' ) ; }
H(n,A,B,C)
H ( 3, A, B, C )
Stack
Output
3 A B C
n a b c
// 汉诺塔
H(n,A,B,C)
H ( 3, A, B, C )
Stack
Output A C 0 B A C 1 A B C 2 A C B 3 A B C
H(n-1,a,c,b) H ( 2, A, C, B )
H(n-1,a,c,b)
H ( 1, A, B, C )
H(n-1,b,a,c) H ( 0, B , A, C )
H(n,A,B,C)
H ( 3, A, B, C )
Stack
Output 0 A C B 1 C A B 2 A C B 3 A B C A A C C B B
H(n-1,a,c,b)
H ( 2, A, C, B )
H(n-1,b,a,c)
H ( 1, C, A, B )
H(n-1,b,a,c) H ( 0, A, C , B )
n a b c
void hanoi ( int n, char a, char b, char c ) { if ( n >= 1 ) { hanoi ( n-1, a, c, b) ; printf(“%c -->%c\n“,a,c); hanoi (n-1, b, a, c) ; } }
H(n,A,B,C)
H ( 3, A, B, C )
Stack
Output A C
H(n-1,a,c,b) H ( 2, A, C, B )
H(n-1,a,c,b)
H ( 1, A, B, C )
1 A B C 2 A C B 3 A B C
n a b c
void hanoi ( int n, char a, char b, char c ) { if ( n >= 1 ) { hanoi ( n-1, a, c, b) ; printf(“%c -->%c\n“,a,c); hanoi (n-1, b, a, c) ; } }
n a b c
void hanoi ( int n, char a, char b, char c ) { if ( n >= 1 ) { hanoi ( n-1, a, c, b) ; printf(“%c -->%c\n“,a,c); hanoi (n-1, b, a, c) ; } }
H(n,A,B,C)
void hanoi ( int n, char a, char b, char c ) { if ( n >= 1 ) { hanoi ( n-1, a, c, b) ; printf(“%c -->%c\n“,a,c); hanoi (n-1, b, a, c) ; } }
H(n,A,B,C)
H ( 3, A, B, C )
Stack
Output 0 C B A 1 C Байду номын сангаас B 2 A C B 3 A B C A A C B
H(n-1,a,c,b)
H ( 2, A, C, B )
H(n-1,b,a,c) H ( 1, C, A, B )
H(n-1,a,c,b) H ( 0, C, B , A)
H ( 3, A, B, C )
Stack
Output A C 0 B A C 1 A B C 2 A C B 3 A B C
H(n-1,a,c,b) H ( 2, A, C, B )
H(n-1,a,c,b)
H ( 1, A, B, C )
H(n-1,b,a,c) H ( 0, B , A, C )
H(n,A,B,C)
H ( 3, A, B, C )
Stack
Output 0 C B A 1 C A B 2 A C B 3 A B C A A C B
H(n-1,a,c,b)
H ( 2, A, C, B )
H(n-1,b,a,c) H ( 1, C, A, B )
H(n-1,a,c,b) H ( 0, C, B , A)
n a b c
void hanoi ( int n, char a, char b, char c ) { if ( n >= 1 ) { hanoi ( n-1, a, c, b) ; printf(“%c -->%c\n“,a,c); hanoi (n-1, b, a, c) ; } }
H(n,A,B,C)
H ( 3, A, B, C )
Stack
Output A C
H(n-1,a,c,b) H ( 2, A, C, B )
H(n-1,a,c,b)
H ( 1, A, B, C ) cout
1 A B C 2 A C B 3 A B C
n a b c
void hanoi ( int n, char a, char b, char c ) { if ( n >= 1 ) { hanoi ( n-1, a, c, b) ; printf(“%c -->%c\n“,a,c); hanoi (n-1, b, a, c) ; } }
相关文档
最新文档