复合函数知识总结及例题

合集下载

复合函数知识总结材料及例题

复合函数知识总结材料及例题

复合函数问题一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、复合函数定义域问题:(1)、已知f x ()的定义域,求[]f g x ()的定义域思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。

例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。

解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<<ln x 解得x e ∈()1,,故函数f x (ln )的定义域为(1,e )例2. 若函数f x x ()=+11,则函数[]f f x ()的定义域为______________。

解析:先求f 的作用范围,由f x x ()=+11,知x ≠-1即f 的作用范围为{}x R x ∈≠-|1,又f 对f(x)作用所以f x R f x ()()∈≠-且1,即[]f f x ()中x 应满足x f x ≠-≠-⎧⎨⎩11()即x x ≠-+≠-⎧⎨⎪⎩⎪1111,解得x x ≠-≠-12且故函数[]f f x ()的定义域为{}x R x x ∈≠-≠-|12且 (2)、已知[]f g x ()的定义域,求f x ()的定义域思路:设[]f g x ()的定义域为D ,即x D ∈,由此得g x E ()∈,所以f 的作用范围为E ,又f 对x 作用,作用范围不变,所以x E E ∈,为f x ()的定义域。

例3. 已知f x ()32-的定义域为[]x ∈-12,,则函数f x ()的定义域为_________。

复合函数(知识点总结、例题分类讲解)

复合函数(知识点总结、例题分类讲解)

复合函数的定义域和解析式以及单调性【复合函数相关知识】1、复合函数的定义如果y 是u 的函数,u 又是x 的函数,即()y f u =,()u g x =,那么y 关于x 的 函数(())y f g x =叫做函数()y f u =(外函数)和()u g x =(内函数)的复合函数,其中u 是中间变量,自变量为x 函数值为y 。

例如:函数212x y += 是由2u y =和21u x =+ 复合而成立。

说明:⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。

⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。

⑶))((x g f 与))((x f g 表示不同的复合函数。

2.求有关复合函数的定义域① 已知)(x f 的定义域为)(b a ,,求))((x g f 的定义域的方法:已知)(x f 的定义域为)(b a ,,求))((x g f 的定义域。

实际上是已知中间变量的u 的取值范围,即)(b a u ,∈,)()(b a x g ,∈。

通过解不等式b x g a <<)(求得x 的范围,即为))((x g f 的定义域。

② 已知))((x g f 的定义域为)(b a ,,求)(x f 的定义域的方法:若已知))((x g f 的定义域为)(b a ,,求)(x f 的定义域。

实际上是已知直接变量x 的取值范围,即)(b a x ,∈。

先利用b x a <<求得)(x g 的范围,则)(x g 的范围即是)(x f 的定义域。

3.求有关复合函数的解析式①已知)(x f 求复合函数)]([x g f 的解析式,直接把)(x f 中的x 换成)(x g 即可。

②已知)]([x g f 求)(x f 的常用方法有:配凑法和换元法。

配凑法:就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换 成x 而得)(x f 。

复合函数知识点总结题型

复合函数知识点总结题型

复合函数知识点总结题型一、复合函数的定义1.1 复合函数的概念复合函数是指一个函数作用于另一个函数的结果,即一个函数的输入值是另一个函数的输出值。

设有两个函数f(x)和g(x),那么复合函数可以表示为f(g(x))或g(f(x))。

例如,若f(x) = 2x,g(x) = x^2,则f(g(x)) = 2x^2,g(f(x)) = (2x)^2。

1.2 复合函数的符号表示复合函数一般用圆括号来表示,如f(g(x))或g(f(x)),表示函数g和f的复合函数。

若有多个函数进行复合,如f(g(h(x))),则可以用括号表示复合次序,从内到外进行计算。

1.3 复合函数的定义域和值域复合函数的定义域和值域需要满足前一个函数的值域和后一个函数的定义域的交集,即f(g(x))的定义域是g(x)的定义域,f(g(x))的值域是f的值域。

二、复合函数的性质2.1 复合函数的可交换性对于函数f(x)和g(x),一般情况下f(g(x)) ≠ g(f(x)),即复合函数的次序一般是不能交换的。

但对于一些特殊的函数,如幂函数、指数函数等,复合函数的次序可以交换。

2.2 复合函数的代数性质复合函数具有分配律、结合律等代数性质,如(f+g)(x) = f(x) + g(x)、(f·g)(x) = f(x)·g(x)等。

2.3 复合函数的可逆性如果两个函数f和g满足f(g(x)) = x和g(f(x)) = x,则称f和g是互逆的函数。

在这种情况下,f和g都是可逆的函数,且f(g(x))和g(f(x))互为逆函数。

三、复合函数的求导3.1 复合函数的导数法则复合函数的求导可以使用链式法则,即对于复合函数f(g(x)),其导数为f'(g(x))·g'(x)。

链式法则是求导复合函数的一般方法,可以推广到多重复合函数的情况。

3.2 复合函数的高阶导数对于复合函数的高阶导数,可以依次求导,或者使用高阶链式法则进行求导。

复合函数(知识点总结、例题分类讲解)

复合函数(知识点总结、例题分类讲解)
④函数 y ( x 1) 与 y 2
2
x 1
在区间 [0,) 上都是增函数。
其中正确命题的序号是:__________。 (把你认为正确的命题序号都填上)
7
2.函数 y e |ln x| | x 1 | 的图象大致是(

6
Go the distance
3. (2008 江苏南通模拟, 5 分) 设 f ( x) o g l
3 3
a
( a 0 且 a 1) , 若 f ( x1 ) f ( x2 ) f ( xn ) 1 ( xi R , x
a a a 函数.而实质上原函数的最大单调增区间是 , ,由 ,3 , 得 3 ,即 a 6 . 2 2 2
【过关检测】
1. (1) f ( x)
x 2 5x 4 ;
2) g ( x) ( ) 4( ) 5
4.求复合函数的单调性 若 u g ( x) 增函数 减函数 增函数 减函数 即“同增异减”法则 5.复合函数的奇偶性 一偶则偶,同奇则奇
【例题讲解】
y f ( x)
增函数 减函数 减函数 增函数
则 y f [ g ( x)] 增函数 增函数 减函数 减函数
一、复合函数定义域解析式 例1 设函数 f ( x) 2 x 3, g ( x) 3x 5 ,求 f ( g ( x)), g ( f ( x)) .
1 2
2
2.求函数 y 4
x
3 2 x 5 的单调区间和值域.
例2
求 f ( x) = 5 - 4 x - x 2 的单调区间及值域
变式练习 2 求函数 f(x)= 2

复合函数(知识点总结、例题分类讲解)

复合函数(知识点总结、例题分类讲解)

复合函数的定义域和解析式以及单调性【复合函数相关知识】1、复合函数的定义如果y 是u 的函数,u 又是x 的函数,即()y f u =,()u g x =,那么y 关于x 的 函数(())y f g x =叫做函数()y f u =(外函数)和()u g x =(内函数)的复合函数,其中u 是中间变量,自变量为x 函数值为y 。

例如:函数212x y += 是由2u y =和21u x =+ 复合而成立。

说明:⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。

⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。

⑶))((x g f 与))((x f g 表示不同的复合函数。

2.求有关复合函数的定义域① 已知)(x f 的定义域为)(b a ,,求))((x g f 的定义域的方法:已知)(x f 的定义域为)(b a ,,求))((x g f 的定义域。

实际上是已知中间变量的u 的取值范围,即)(b a u ,∈,)()(b a x g ,∈。

通过解不等式b x g a <<)(求得x 的范围,即为))((x g f 的定义域。

② 已知))((x g f 的定义域为)(b a ,,求)(x f 的定义域的方法:若已知))((x g f 的定义域为)(b a ,,求)(x f 的定义域。

实际上是已知直接变量x 的取值范围,即)(b a x ,∈。

先利用b x a <<求得)(x g 的范围,则)(x g 的范围即是)(x f 的定义域。

3.求有关复合函数的解析式①已知)(x f 求复合函数)]([x g f 的解析式,直接把)(x f 中的x 换成)(x g 即可。

②已知)]([x g f 求)(x f 的常用方法有:配凑法和换元法。

配凑法:就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换 成x 而得)(x f 。

复合函数习题大全

复合函数习题大全

复合函数习题大全
1.基本概念
复合函数是由两个或多个函数组合而成的函数。

设有函数f(x)
和g(x),则两个函数的复合函数可以表示为f(g(x))。

2.复合函数的求导
对于两个函数的复合函数,可以通过链式法则来求导。

设有函
数f(x)和g(x),则复合函数f(g(x))的导数可以表示为f'(g(x)) * g'(x)。

3.复合函数的求值
要求复合函数的值,需要先将内层函数的输出作为外层函数的
输入。

计算复合函数的值时,需要按照函数的定义顺序依次进行计算。

4.复合函数的题示例
题1:
已知函数f(x) = 2x^2 + 3x,g(x) = x + 1,求复合函数f(g(x))的
表达式。

题2:
已知函数f(x) = 3x - 1,g(x) = 2x^2,求复合函数f(g(x))的导数
f'(g(x)) * g'(x)。

题3:
给定函数f(x) = sin(x),g(x) = cos(x),求复合函数f(g(x))的值。

题4:
已知函数f(x) = x^2,g(x) = x + 1,求复合函数f(g(x))的值。

题5:
已知函数f(x) = 2x,g(x) = x^3,求复合函数f(g(x))的导数
f'(g(x)) * g'(x)。

以上是一些关于复合函数的题示例,通过解答这些题,可以帮
助理解和掌握复合函数的基本概念、求导方法和求值过程。

让我们通过练习习题,加深对复合函数的理解吧!。

复合函数知识总结与例题

复合函数知识总结与例题

复合函数知识总结与例题(总15页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一篇、复合函数问题一、复合函数定义:设y=f(u)的定义域为A,u=g(x)的值域为B,若A ⊇B,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量.二、复合函数定义域问题:(一)例题剖析:(1)DD,又fDxg∈)(E域。

例1.0,1_____________。

0,1(0,1)又f对lnx1,e)例2.______________。

解析:先求f即ff对f(x)作用x(2Df的作用围为E,又f对x例3._________。

所以f f对x例4.______________。

解析:先求ff f对x作用,作用围不变,(3D围为E,又f F为例5.____________。

又f评注:函数定义域是自变量x 的取值围(用集合或区间表示)f 对谁作用,则谁的围是f 的作用围,f 的作用对象可以变,但f 的作用围不会变。

利用这种理念求此类定义域问题会有“得来全不费功夫”的感觉,值得大家探讨。

(二)同步练习:1、 已知函数)x (f 的定义域为]1,0[,求函数)x (f 2的定义域。

答案:]1,1[-2、 已知函数)x 23(f -的定义域为]3,3[-,求)x (f 的定义域。

答案:]9,3[-3、 已知函数)2x (f y +=的定义域为)0,1(-,求|)1x 2(|f -的定义域。

答案:)23,1()0,21(⋃- 4、设()x x x f -+=22lg,则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为( ) A. ()()4,00,4 - B. ()()4,11,4 -- C. ()()2,11,2 -- D. ()()4,22,4 --解:选C.由202x x +>-得,()f x 的定义域为{}|22x x -<<。

(完整word版)复合函数相关性质和经典例题

(完整word版)复合函数相关性质和经典例题

定义 由函数)(u f y =和)(x g u =所构成的函数)]([x g f y =称为复合函数,其中)(u f y =通常称为外层函数,)(x g u =称为内层函数。

求上述复合函数)]([x g f y =的单调区间,我们一般可以按照下面这几个步骤来进行:(1) 写出构成原复合函数的外层函数)(u f y =和内层函数)(x g u =;(2) 求外层函数)(u f y =的单调区间(包括增区间和减区间)B A 、等;(3) 令内层函数A x g u ∈=)(,求出x 的取值范围M ;(4) 若集合M 是内层函数)(x g u =的一个单调区间,则M 便是原复合函数)]([x g f y =的一个单调区间;若M 不是内层函数)(x g u =的一个单调区间,则需把M 划分成内层函数)(x g u =的若干个单调子区间,这些单调子区间便分别是原复合函数)]([x g f y =的单调区间;(5) 根据复合函数“同增异减”的复合原则,分别指出原复合函数)]([x g f y =在集合M 或这些单调子区间的增减性;(6) 令内层函数B x g u ∈=)(,同理,重复上述(3)、(4)、(5)步骤。

若外层函数)(u f y =还有更多的单调区间C 、D ,则同步骤(6)类似,不断地重复上述步骤.(7) 设单调函数)(x f y =为外层函数,)(x g y =为内层函数(8) (1) 若)(x f y =增,)(x g y =增,则))((x g f y =增.(9) (2) 若)(x f y =增,)(x g y =减,则))((x g f y =减。

(10) (3) 若)(x f y =减,)(x g y =减,则))((x g f y =增.(11) (4) 若)(x f y =减,)(x g y =增,则))((x g f y =减.(12) 结论:同曾异减(13) 例1. 求函数222)(-+=x xx f 的单调区间.(14) 解题过程: (15) 外层函数:t y 2=(16) 内层函数:22-+=x x t (17) 内层函数的单调增区间:],21[+∞-∈x (18) 内层函数的单调减区间:]21,[--∞∈x (19) 由于外层函数为增函数(20) 所以,复合函数的增区间为:],21[+∞-∈x (21) 复合函数的减区间为: ]21,[--∞∈x (22) 求函数)23(log 221x x y --=的单调区间.(23) 解 原函数是由外层函数u y 21log =和内层函数223x x u --=复合而成的; (24) 易知),0(+∞是外层函数u y 21log =(25) 令0232>--=x x u ,解得x 的取值范)1,3(-; (26) 解题过程:(27) 外层函数:t y 2log =(28) 内层函数:22-+=x x t (29) 022>-+=x x t(30) 由图知:(31) 内层函数的单调增区间:],1[+∞∈x(32) 内层函数的单调减区间:]2,[--∞∈x(33) 由于外层函数为增函数(34) 所以,复合函数的增区间为:],1[+∞∈x(35) 复合函数的减区间为:]2,[--∞∈x结合二次函数的图象可知)1,3(-不是内层函数223x x u --=的一个单调区间,但可以把区间)1,3(-划分成内层函数的两个单调子区间]1,3(--和)1,1[-,其中]1,3(--是其单调增区间,)1,1[-是其单调减区间;于是由复合函数“同增异减”的复合原则可知,]1,3(--是原函数的单调减区间,)1,1[-是原函数的单调增区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复合函数问题一、复合函数定义:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、复合函数定义域问题: (1)、已知的定义域,求的定义域思路:设函数的定义域为D ,即,所以的作用范围为D ,又f 对作用,作用范围不变,所以D x g ∈)(,解得,E 为的定义域。

例1.设函数的定义域为(0,1),则函数的定义域为_____________。

解析:函数的定义域为(0,1)即,所以的作用范围为(0,1)又f 对lnx 作用,作用范围不变,所以解得,故函数的定义域为(1,e )例2.若函数,则函数的定义域为______________。

解析:先求f 的作用范围,由,知即f 的作用范围为,又f 对f(x)作用所以,即中x 应满足即,解得故函数的定义域为(2)、已知的定义域,求的定义域 思路:设的定义域为D ,即,由此得,所以f 的作用范围为E ,又f 对x 作用,作用范围不变,所以为的定义域。

例3.已知的定义域为,则函数的定义域为_________。

解析:的定义域为,即,由此得所以f 的作用范围为,又f 对x 作用,作用范围不变,所以即函数的定义域为例4.已知,则函数的定义域为-------解析:先求f 的作用范围,由f x x x ()lg 22248-=-,知解得,f 的作用范围为,又f 对x 作用,作用范围不变,所以,即的定义域为 (3)、已知的定义域,求的定义域 思路:设的定义域为D ,即,由此得,的作用范围为E ,又f 对作用,作用范围不变,所以,解得,F 为的定义域。

例5.若函数的定义域为,则的定义域为____________。

解析:的定义域为,即,由此得的作用范围为,又f 对作用,所以,解得即的定义域为评注:函数定义域是自变量x 的取值范围(用集合或区间表示)f 对谁作用,则谁的范围是f 的作用范围,f 的作用对象可以变,但f 的作用范围不会变。

利用这种理念求此类定义域问题会有“得来全不费功夫”的感觉,值得大家探讨。

三、复合函数单调性问题(1)引理证明已知函数))((x g f y =.若)(x g u =在区间b a ,()上是减函数,其值域为(c ,d),又函数)(u f y =在区间(c,d)上是减函数,那么,原复合函数))((x g f y =在区间b a ,()上是增函数.证明:在区间b a ,()内任取两个数21,x x ,使b x x a <<<21因为)(x g u =在区间b a ,()上是减函数,所以)()(21x g x g >,记)(11x g u =,)(22x g u =即),(,21,21d c u u u u ∈>且因为函数)(u f y =在区间(c,d)上是减函数,所以)()(21u f u f <,即))(())((21x g f x g f <, 故函数))((x g f y =在区间b a ,()上是增函数. (2).复合函数单调性的判断复合函数的单调性是由两个函数共同决定。

为了记忆方便,我们把它们总结成一个图表:以上规律还可总结为:“同向得增,异向得减”或“同增异减”. (3)、复合函数))((x g f y =的单调性判断步骤: ⅰ确定函数的定义域;ⅱ将复合函数分解成两个简单函数:)(u f y =与)(x g u =。

ⅲ分别确定分解成的两个函数的单调性;ⅳ若两个函数在对应的区间上的单调性相同(即都是增函数,或都是减函数),则复合后的函数))((x g f y =为增函数;若两个函数在对应的区间上的单调性相异(即一个是增函数,而另一个是减函数),则复合后的函数))((x g f y =为减函数。

(4)例题演练例1、求函数)32(log 221--=x x y 的单调区间,并用单调定义给予证明解:定义域130322-<>⇒>--x x x x 或 单调减区间是),3(+∞设2121),3(,x x x x <+∞∈且则)32(log 121211--=x x y )32(log 222212--=x x y---)32(121x x )32(222--x x =)2)((1212-+-x x x x∵312>>x x ∴012>-x x 0212>-+x x∴)32(121--x x >)32(222--x x 又底数1210<<∴012<-y y 即12y y < ∴y 在),3(+∞上是减函数同理可证:y 在)1,(--∞上是增函数[例]2、讨论函数)123(log )(2--=x x x f a 的单调性. [解]由01232>--x x 得函数的定义域为}.31,1|{-<>x x x 或则当1>a 时,若1>x ,∵1232--=x x u 为增函数,∴)123(log )(2--=x x x f a 为增函数. 若31-<x ,∵1232--=x x u 为减函数. ∴)123(log )(2--=x x x f a 为减函数。

当10<<a 时,若1>x ,则)123(log )(2--=x x x f a 为减函数,若31-<x ,则)123(log )(2--=x x x f a 为增函数.例3、.已知y=a log (2-xa )在[0,1]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1当a >1时,函数t=2-xa >0是减函数由y=a log (2-xa )在[0,1]上x 的减函数,知y=a log t 是增函数, ∴a >1由x ∈[0,1]时,2-xa ≥2-a >0,得a <2, ∴1<a <2当0<a<1时,函数t=2-xa >0是增函数由y=a log (2-xa )在[0,1]上x 的减函数,知y=a log t 是减函数, ∴0<a<1由x ∈[0,1]时,2-xa ≥2-1>0,∴0<a<1 综上述,0<a<1或1<a <2例4、已知函数2)3()2(2-+--=-a x a ax x f (a 为负整数)的图象经过点R m m ∈-),0,2(,设)()()()],([)(x f x pg x F x f f x g +==.问是否存在实数)0(<p p 使得)(x F 在区间)]2(,(f -∞上是减函数,且在区间)0),2((f 上是减函数?并证明你的结论。

[解析]由已知0)2(=-m f ,得02)3(2=-+--a m a am ,其中.0,≠∈a R m ∴0≥∆即09232≤--a a , 解得.37213721+≤≤-a ∵a 为负整数,∴.1-=a∴1)2(34)2(2+--=-+-=-2x x x x f ,即.1)(2+-=x x f 242221)1()]([)(x x x x f f x g +-=++--==, ∴.1)12()()()(24+-+-=+=x p px x f x pg x F假设存在实数)0(<p p ,使得)(x F 满足条件,设21x x <,∴].12)()[()()(2221222121-++--=-p x x p x x x F x F ∵3)2(-=f ,当)3,(,21--∞∈x x 时,)(x F 为减函数,∴0)()(21>-x F x F ,∴.012)(,022212221>-++->-p x x p x x ∵3,321-<-<x x ,∴182221>+x x , ∴11612)(2221-->-++-p p x x p , ∴.0116≥--p ①当)0,3(,21-∈x x 时,)(x F 增函数,∴.0)()(21<-x F x F∵02221>-x x ,∴11612)(2221--<-++-p p x x p , ∴0116≤--p . ②由①、②可知161-=p ,故存在.161-=p一.指函数与对数函数.同底的指数函数xy a =与对数函数log a y x =互为反函数;(二)主要方法:1.解决与对数函数有关的问题,要特别重视定义域;2.指数函数、对数函数的单调性决定于底数大于1还是小于1,要注意对底数的讨论; 3.比较几个数的大小的常用方法有:①以0和1为桥梁;②利用函数的单调性;③作差. (三)例题分析:例1.(1)若21a b a >>>,则log b ba,log b a ,log a b 从小到大依次为; (2)若235x y z==,且x ,y ,z 都是正数,则2x ,3y ,5z 从小到大依次为;(3)设0x >,且1x xa b <<(0a >,0b >),则a 与b 的大小关系是() (A )1b a <<(B )1a b <<(C )1b a <<(D )1a b <<解:(1)由21a b a >>>得b a a <,故log b b a<log b a 1<<log a b .(2)令235x y z t ===,则1t >,lg lg 2t x =,lg lg 3t y =,lg lg 5tz =, ∴2lg 3lg lg (lg9lg8)230lg 2lg3lg 2lg3t t t x y ⋅--=-=>⋅,∴23x y >; 同理可得:250x z -<,∴25x z <,∴325y x z <<.(3)取1x =,知选(B ).例2.已知函数2()1x x f x a x -=++(1)a >,求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根. 证明:(1)设121x x -<<,则1212121222()()11xx x x f x f x a a x x ---=+--++ 121212*********()11(1)(1)x x x x x x x x a a a a x x x x ---=-+-=-+++++,∵121x x -<<,∴110x +>,210x +>,120x x -<,∴12123()0(1)(1)x x x x -<++; ∵121x x -<<,且1a >,∴12x x a a <,∴120x xa a -<,∴12()()0f x f x -<,即12()()f x f x <,∴函数()f x 在(1,)-+∞上为增函数; (2)假设0x 是方程()0f x =的负数根,且01x ≠-,则000201xx a x -+=+, 即00000023(1)31111x x x ax x x --+===-+++,① 当010x -<<时,0011x <+<,∴0331x >+,∴03121x ->+,而由1a >知01x a <, ∴①式不成立;当01x <-时,010x +<,∴0301x <+,∴03111x -<-+,而00x a >, ∴①式不成立.综上所述,方程()0f x =没有负数根.例3.已知函数()log (1)xa f x a =-(0a >且1a ≠).求证:(1)函数()f x 的图象在y 轴的一侧;(2)函数()f x 图象上任意两点连线的斜率都大于0.证明:(1)由10x a ->得:1x a >,∴当1a >时,0x >,即函数()f x 的定义域为(0,)+∞,此时函数()f x 的图象在y 轴的右侧; 当01a <<时,0x <,即函数()f x 的定义域为(,0)-∞,此时函数()f x 的图象在y 轴的左侧. ∴函数()f x 的图象在y 轴的一侧;(2)设11(,)A x y 、22(,)B x y 是函数()f x 图象上任意两点,且12x x <,则直线AB 的斜率1212y y k x x -=-,1122121log (1)log (1)log 1x x x a a a x a y y a a a --=---=-,当1a >时,由(1)知120x x <<,∴121x x a a <<,∴12011x xa a <-<-,∴121011x xa a -<<-,∴120y y -<,又120x x -<,∴0k >; 当01a <<时,由(1)知120x x <<,∴121x x a a >>,∴12110x xa a ->->, ∴12111x xa a ->-,∴120y y -<,又120x x -<,∴0k >. ∴函数()f x 图象上任意两点连线的斜率都大于0.同步练习(二)同步练习:1、已知函数)x (f 的定义域为]1,0[,求函数)x (f 2的定义域。

相关文档
最新文档