七年级数学上册第一章有理数1.2有理数1.2.2数轴学案【人教版】
1.2.2数轴(教案,新教材)-七年级数学上册(人教版2024)

1.2.2数轴(教案,新教材)【教学目标】1.借助生活中的实例理解数轴的概念;2.会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3.感受数与形是可以相互转化的,渗透数形结合的数学思想.【教学重点】理解数轴的概念,数与形的相互转化.【教学难点】会用数轴上的点表示给定的有理数.【教学过程】一、情境导入情境:医生在给病人测量体温时常使用温度计.这是小学里我们学习了在有刻度的直线上表示出0和正数,借助这个图形直观和分析问题。
我们起来看一个实例:活动一:教师创设问题情况,引入课题问题:在一条东西的马路旁,有一个汽车站牌,汽车站牌东侧3 m和7.5 m处分别有一颗柳树和一根交通标志,汽车站牌西侧3m和4.8 m处分别有一颗槐树和一根电线杆,试画图表示这一情境。
学生活动:小组合作,动手操作画出示意图.教师活动:启发学生“画一直线表示马路,从左向右表示从西向东,直线上取一点O表示汽车站牌”,怎样用数简明表示各处的位置?师生活动:师生共同探究,情境中东、西,左、右都具有相反意义,在画的直线中,O点表示基点,取1个单位长度代表1m长,再用0表示点O,用负数表示点O左边的点,用正数表示点O右边的点。
二、合作探究活动二:认识理解数轴前面讲到的温度计可以看作表示正数、0和负数的直线,它和上面同学们所画的图有什么共同点?学生活动:和其他同学交流,注意交流时要发表自己的见解.师生活动:师生共同总结,具有三个条件:原点,正方向,单位长度.抽象出数轴定义,规定是正半轴,负半轴,原点的直线.活动三:强化对数轴的认识例1.下列图形中是数轴的是()A. B.C. D.学生活动:根据自己的认识判断.师生活动:教师给学生的判断进行评价,并总结要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.活动四:读出数轴上的点所表示的数例2.如图中所示,指出数轴上的A、B、C、D、E、F各点所表示的数.师生活动:师生共同探讨要确定数轴上的点所表示的数的步骤:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.活动五:有理数在数轴上表示问题:基于以上数据,讨论有理数a如何在数轴上表示?学生活动:当a是正数,负数时,讨论如何在数轴找到相应的点表示数a.教师活动:对学生讨论结果进行评价,并强调如何确定数轴上与原点距离是a的点.例3.画出数轴,并用数轴上的点表示下列各数5---3,4,4,0.5,0,,12学生活动:学生画出数轴,并在数轴上表示以上各数.师生活动:教师评价学生的操作,并关注所画数轴是否具备“三要素”.师生共同总结方法:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.活动六:拓展提升,数轴上两点间的距离问题例4.数轴上的点A表示的数是3,那么与点A相距5个单位长度的点表示的数是() A.2 B.±2 C.8D.8或-2学生活动:讨论与点A相距5个单位长度的点表示的数有2个,分别是8或-2.师生活动:评价学生讨论结果,总结如何求两点间的距离问题,解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧.三、强化巩固1.学生练习:课本练习题1、3.学生解答,教师评价并给予规范.2. 快递小哥骑车从快递投放点出发,先向东骑行2.5km到达A村,继续向东骑行2km到达B村,然后向西骑行7km到C村,最后回到快递投放点.(1)以快递投放点为原点,以向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)快递小哥一共骑了多少千米?学生讨论解答,教师规范写出解答过程.四、总结拓展学生小组合作对知识总结:1.什么是数轴,数轴三要素:(1)原点,(2)正方向,(3)单位长度.2.数轴上的点与有理数间的关系:原点表示零;原点右边的点表示正数;原点左边的点表示负数.3.数轴上点数a到原点的距离,两点间的距离的求法.学生小组合作对数学思想方法总结:数形结合,分类等数学思想。
涪陵区四中七年级数学上册 第一章 有理数 1.2 有理数1.2.2 数轴导学案新人教版

一、新课导入1.课题导入:观察下面的温度计,读出温度,分别是5℃、-10℃、0℃,如果我们把温度计形象地看作一条直线,这条直线上有我们学过的有理数,那么像这样特征的直线,我们可以把它叫做什么呢?板书课题——数轴.2.三维目标:(1)知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.(2)过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.(3)情感态度使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.3.学习重、难点:重点:会正确画出数轴, 并会用数轴上的点表示有理数, 反过来, 看数轴上的点说出点表示的数.难点:用数轴上的点表示有理数.二、分层学习1.自学指导:(1)自学内容:教材第7页到第8页第4行的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读课本,体会课本提出的问题有哪些基本要求.(4)自学参考提纲:请同学们结合教材上的问题分组讨论,思考以下问题:①课本怎样形象直观地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?用数轴表示.②教材是怎样用数表示直线(图1.2-1)上的点的?规定一个单位长度,然后用对应长度的线段表示.③直线(图1.2-2)有何特点?-3表示的实际意义是什么?特点:有基准点、方向、长度.-3表示的实际意义是汽车站牌西3 m处.2.自学:同学们可结合自学指导进行自学和交流探讨.3.助学:(1)师助生:①明了学情:深入学生当中,了解学生对自学参考提纲问题的理解、认识和思考过程及结论.②差异指导:对在自学中对数轴的要素不清的学生进行引导,像基准点O,“东”与“西”,“左”与“右”等表示方向的字词及距离又如何确定等.(2)生助生:学生交流解决自学中的疑难问题.4.强化:(1)举例说明生活中类似的事例;画图表示物体的相对位置.(2)用有基准点、方向、长度的直线表示相对位置关系.1.自学指导:(1)自学内容:教材第8页“思考”到第9页“练习”前的内容.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,并动手画一画,并检查画出的数轴是否具备数轴的三要素.(4)自学参考提纲:①画数轴需要的三个条件是什么?原点,方向,单位长度.②请每位同学画一条数轴,与其他同学交流,看是否符合要求.③0是正数和负数的分界点;数0表示的是数轴的“基准点”.④观察数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?负数在原点左边,正数在原点右边.⑤完成归纳中的填空.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:深入学生中,看学生画图,听学生的讨论交流,反馈信息,了解探讨结果.②差异指导:指导学生按画图要求对照检查.(2)生助生:学生互相解决疑难问题.4.强化:(1)画数轴需要的三个条件,即数轴的三要素.(2)练习:①写出数轴上点A,B,C,D,E所表示的数:解:A:0 B:-2 C:1 D:2.5 E:-3②在数轴上表示下列有理数:1.5,-2,2,-2.5,92,-34,0.③数轴上,如果表示数a的点在原点的左边,那么a是一个负数;如果表示数b的点在原点的右边,那么b是一个正数.三、评价1.学生的自我评价(围绕三维目标):交流各自的收获和存在的不足.2.教师对学生的评价:(1)表现性评价:点评学生的动手情况和交流探讨中取得的成绩和问题.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):数轴是数形结合的基本知识,是学生难以理解的难点,教学过程应从贴近实际出发,学生才易于接受和体验,让学生通过观察、思考和动手操作,经历数轴的形成过程,加深对数轴概念的理解,同时可培养抽象概括能力.教学过程可突出“情境——抽象——概括”的主线,体现从特殊到一般的研究问题的方法,注意从学生已有经验出发,发挥学生主体作用,会达到事半功倍的效果.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)一、基础巩固(70分)1.(10分)规定了原点,方向和单位长度的直线叫数轴.2.(10分)a、b两数在数轴上的位置如图,则a是正数,b是负数.3.(10分)在数轴上点A表示的数是-3,与点A相距两个单位的点表示的数是-1或-5.4.(10分)在数轴上,点A、B分别表示-5和2,则线段AB的长度是7.5.(10分)从数轴上表示-1的点出发,向左移动两个单位长度到点B,则点B表示的数是-3,再向右移动两个单位长度到达点C,则点C表示的数是-1.6.(10分)下列数轴的画法正确的是(C)A B C D7.(10分)画出数轴并表示出下列有理数:-5,+3,-3.5,0,23,-32,0.75.解:二、综合应用(20分)8.(10分)在数轴上P点表示2,现在将P点向右移动两个单位长度后再向左移动5个单位长度,这时P点表示的数是-1.9.(10分)在数轴上表示出下列各点:A.-12B.23C.-114D.0解:如图三、拓展延伸(10分)10.(10分)如下图所示,数轴被墨水污染了,则被污染的整数共有(D)个.A.2016B.2015C.4031D.40305.3.1 平行线的性质(2)能够综合运用平行线的性质和判定方法解题.重点平行线的性质和判定方法的综合应用.难点平行线的性质和判定方法的灵活运用.一、创设情境,引入新课已知:如图,BE是AB的延长线,AD∥BC,AB∥CD,若∠D=100°,则∠C=________,∠A=________,∠CBE=________.二、尝试活动,探索新知1.已知:如图,a∥c,a⊥b,那么直线b与c垂直吗?为什么?学生容易判断出直线b与c垂直.教师应引导学生正确规范的书写证明过程.2.实践与探究下列各图中,已知AB∥EF,点C任意选取(在AB、EF之间,又在BF的左侧).请测量各图中∠B、∠C、∠F的度数并填入表格.∠B ∠C ∠F ∠B与∠F度数之和图(1)图(2)通过上述实践,试猜想∠B、∠F、∠C之间的关系.写出这种关系,试加以说明.教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.教师分析后,学生先推理说明,师生交流,教师给出说理过程.作CD∥AB,因为AB∥EF,CD∥AB,所以CD∥EF(两条直线都与第三条直线平行,这两条直线也互相平行),所以∠F=∠FCD(两直线平行,内错角相等).因为CD∥AB,所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF.三、例题讲解【例】右图是一块梯形铁片的剩余部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?解:因为梯形上、下底互相平行,所以∠A与∠D互补,∠B与∠C互补.于是∠D=180°-∠A=80°,∠C=180°-∠B=180°-115°=65°,所以梯形的另外两个角的度数分别是80°、65°.四、提升练习请结合图形,根据所给定的平行线填入所需的角,并说明理由.(能否找出所有的情况)1.∵AB∥CD,∴∠________=∠________( ).2.∵AD∥BC,∴∠________=∠________( ).3.∵ AE∥CF,∴∠________=∠________( ).【答案】1.BAC DCA 两直线平行,内错角相等2.DAC ACB 两直线平行,内错角相等3.EAC ACF 两直线平行,内错角相等五、课堂小结归纳本节课的知识点:平行线的性质与判定方法在实际问题中的应用.通过本节课的教学,学生能理解并能够综合运用平行线的性质和判定方法解答实际问题,学生学习的积极性较高,能及时地提出问题并能主动地在小组内解决问题,但个别学生的学习态度要加强教育与引导.第2课时点、线、面的认识1.能从图形的基本构成元素的角度认识常见的几何体.2.能举例说明点、线、面、体之间的关系.重点初步了解点、线、面.难点掌握点、线、面、体之间的关系.一、情境导入课件出示教材第5页图1-4,提出问题:(1)找出图中的点、线、面.(2)图中哪些线是直的,哪些线是曲的?哪些面是平的,哪些面是曲的?学生思考后举手回答,教师点评,并进一步讲解:图形是由点、线、面构成的.教师:这节课,我们来认识点、线、面.二、探究新知1.认识点、线、面(1)课件出示六棱柱和圆柱图,提出问题:①六棱柱是由几个面围成的?圆柱是由几个面围成的?它们都是平的吗?②圆柱的侧面和底面相交成几条线?它们是直的还是曲的?③六棱柱有几个顶点?经过每个顶点有几条棱?学生讨论交流后举手回答,教师点评,并进一步讲解:六棱柱是由8个面围成的,它们都是平的;圆柱是由3个面围成的,其中2个面是平的,一个面是曲的.圆柱的侧面和底面相交成2条线,它们是曲的.六棱柱有12个顶点,经过每个顶点有3条棱.(2)教师:根据上面的学习,你能得到什么结论呢?学生讨论交流后举手回答,教师点评,并进一步讲解:面有平面与曲面之分;线也有直线与曲线之分.面与面相交得到线,线与线相交得到点.2.点、线、面、体之间的关系(1)课件出示教材第6页“想一想”情境图,提出问题:观察这几个图,发挥你的想象,你能从中发现什么规律?学生举手回答,教师点评,并进一步讲解:点动成线,线动成面,面动成体.(2)教师:你能举出生活中点动成线、线动成面、面动成体的例子吗?学生举手回答,教师点评.(3)课件出示下图:教师:上面的平面图形绕着虚线轴旋转一周,能得到什么立体图形呢?你能用线把立体图形与平面图形连接起来吗?学生思考后举手回答,教师点评.三、练习巩固1.教材第7页“随堂练习”.2.现有一个长为4 cm,宽为3 cm的长方形,绕它的一边所在直线旋转一周,得到圆柱的体积是多少?四、小结图形由哪些基本的元素构成?它们之间有什么联系?五、课外作业教材第7页习题1.2第1,3题.立体图形是更好地认识、描述并交流生活空间的工具.上节课是初步地认识简单的立体图形,本节课则深入地学习图形的构成,培养学生深入探讨的精神.在教学过程中,教师以提问的方式,引导学生自主学习,培养学生的自主学习能力.立体图形在生活中随处可见,教师在教学中要融入生活,让学生体会到生活中处处有数学,数学与生活密不可分,提高学生学习数学的兴趣.。
邵阳县九中七年级数学上册第一章有理数1.2有理数1.2.2数轴教案新人教版

【知识与技能】1.掌握数轴三要素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.【过程与方法】1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.2.结合本节内容,对学生渗透数形结合的重要思想方法.【情感态度】使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.【教学重点】数轴的概念与应用.【教学难点】从直观认识到理性认识,从而建立数轴概念.一、情境导入,初步认识问题在一条东西向的马路上,有一个汽车站牌,汽车站牌东3m和西7.5m处分别有一棵柳树和一棵杨树,汽车站牌西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(学生画图)师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用负数和正数来表示,即用一直线上的点把正数、负数、0都表示出来.也就是本节内容——数轴.【教学说明】(1)引导学生学会画数轴.第一步:画直线定原点;第二步:规定从原点向右的方向为正(左边为负方向);第三步:选择适当的长度为单位长度(据情况而定);第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处,并让学生对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.二、思考探究,获取新知思考1你能利用你自己画的数轴上的点来表示数1,-0.5,-2,-7/2,0吗?思考2若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距了多少个单位长度?小结:整数在数轴上都能找到点吗?分数呢?教师总结.试一试教材第9页练习.三、典例精析,掌握新知例1下列所画数轴对不对?如果不对,指出错在哪里.【答案】①错,没有原点②错,没有正方向③正确④错,没有单位长度⑤错,单位长度不统一⑥正确⑦错,正方向标错例2用你画的数轴上的点表示4,1.5,-3,-7/3,0.【答案】图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0.【教学说明】教师应向学生强调,所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.数与数轴上的点结合,这是一种数形结合的重要数学思想.例3(1)与原点的距离为2.5个单位的点有个,它们分别表示有理数和 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7个单位到达终点,那么终点表示的数是 .【答案】(1)两2.5-2.5(2)+3【教学说明】这类题的解答可借助数轴上点的移动来找到结果.例4在数轴上表示-212和213,并根据数轴指出所有大于-212而小于213的整数.【答案】-2,-1,0,1【教学说明】教师要向学生评讲并指出本题反映了数形结合的思想方法.例5数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点个数是()A.1998或1999B.1999或2000C.2000或2001D.2001或2002【分析】分两种情况分析:(1)当线段AB的起点是整点时,终点也落在整点上,那就盖住2001个整点;(2)当线段AB的起点不是整点时,终点也不落在整点上,那么线段AB盖住了2000个整点,所以选C.【教学说明】本题解答时要特别注意对题意的理解,不能忽略了分类讨论.四、运用新知,深化理解1.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是()A.7B.-3C.7或-3D.不能确定2.数轴上表示5和-5的点离开原点的距离是,但它们分别 .3. 是最小的正整数,是最小的非负数,是最大的非正数.个,它们分别是和 .5.在数轴上,离原点距离等于3的数是 .6.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.7.一条直线的流水线上,依次有5个卡通人,它们站立的位置在数轴上依次用点M1、M2、M3、M4、M5表示,如图:(1)点M4和M2所表示的有理数是什么?(2)点M3和M5两点间的距离为多少?(3)怎样将点M3移动,使它先达到M2,再达到M5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到休息游乐所的总路程为多少?【教学说明】本栏目1~6题较为简单,可让学生独立完成,教师再让学生回答,第7题较为新颖,教师可适当引导后仍由学生自主完成.【答案】1.C2.5在原点的两边3.1 0 04.2 3.5 -3.55.3或-36.2 -4或2 47.(1)M4表示2,M2表示-3;(2)相距7个单位长度;(3)先向左移动1个单位长度,再向右移动8个单位长度;(4)17个单位长度.五、师生互动,课堂小结数轴是非常重要的工具,它使数和直线上的点建立了对应关系.它揭示了数和形的内在联系,为今后进一步研究问题提供了新方法和新思想.应让学生掌握数轴的三要素,正确画出数轴.提醒学生,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.1.布置作业::从教材习题1.2中选取.2.完成练习册中本课时的练习.数轴是数形结合的基本知识,是学生难以理解的难点,教学过程应从贴近学生的实际出发,学生才易于接受和体验,让学生通过观察、思考和动手操作、经历数轴的形成过程,加深对数轴概念的理解,同时可培养抽象概括能力.教学过程可突出“情境——抽象——概括”的主线,体现从特殊到一般研究问题的方法,注意从学生已有经验出发,发挥学生主体作用,会达到事半功倍的效果.9.1 不等式第2课时 不等式性质的应用一、导学1.导入课题:星期天,小明步行到6km 远的学校去参加活动,从早晨7时出发,要在9时前到达,如果他每小时走xkm ,那么如何求x 的取值范围呢?学完本节课,你就会知道如何用不等式的性质解决这种问题.2.学习目标:(1)能运用不等式的性质对不等式进行变形和解简单的不等式.(2)知道符号“≥”和“≤”的意义及在数轴上表示不等式的解集时实心点与空心圈的区别.3.学习重、难点:重点:不等式性质的运用.难点:不等式的解集在数轴上的表示方法.4.自学指导:(1)自学内容:课本P 117例1至P 119“练习”之前的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课文,弄清楚如何运用不等式的性质解简单的不等式,理解符号“≥”和“≤”的意义以及用数轴表示不等式解集时实心圆点和空心圆圈的区别.(4)自学参考提纲:①解不等式与解方程相类似,就是借助不等式的性质使不等式逐步化为x>a 或x<a (a 为常数)的形式.不同的是把未知数的系数化为1时,要特别注意:若未知数的系数为负数,不等式两边同除以这个系数时,不等号方向改变.②把例1的第(3)、(4)小题的解集用数轴表示出来.③符号“≥”与“>”的意思有什么区别?“≤”与“<”呢?④形如a ≥b 或a ≤b 的式子,也具有不等式三个性质,即:若a ≥b,则a ±c ≥b ±c,ac ≥bc 或c a ≥c b (其中c>0),ac ≤bc 或c a ≤cb (其中c<0). ⑤用数轴表示不等式的解集时,实心圆点和空心圆圈有什么区别?试举例说明.二、自学同学们可结合自学指导进行学习.三、助学1.师助生:(1)明了学情:老师巡视课堂,了解学生的自学情况.(2)差异指导:根据学情进行相应指导.2.生助生:小组内同学们相互交流,纠错,互帮互学.四、强化1.用不等式的性质解不等式的方法与步骤.2.不等式的解集在数轴上的表示方法,注意实心圆点与空心圆圈的使用区别.3.练习:做课本P119“练习”的第1、2题.五、评价1.学生的自我评价:学生代表交流学习目标的达成情况及学习的感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现(如态度、方法、效率、效果及存在的问题等)进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课重点探讨了运用不等式的性质对不等式进行变形和解简单不等式,还有就是怎样在数轴上表示不等式的解集,在这一过程中,需要充分调动学生的积极性,让所有学生都参与其中,加深对不等式性质的更进一步的理解,为后续的学习打下基础.一、基础巩固(70分)1.(10分)不等式3-2x≤7的解集是(A)A.x≥-2B.x≤-2C.x≤-5D.x≥-52.(10分)不等式x-2≥0的解集在数轴上表示正确的是(B)A B C D3.(10分)小华拿27元钱购买圆珠笔和练习册,已知一本练习册2元,一支圆珠笔1元,他买了4本练习册,x支圆珠笔,则关于x的不等式表示正确的是(B)A.2×4+x<27B.2×4+x≤27C.2x+4≤27D.2x+4≥274.(20分)用不等式表示:(1)c 的4倍大于或等于8;(2)c 的一半小于或等于3;(3)d 与e 的和不小于0;(4)d 与e 的差不大于-2.解:(1)4c ≥8;(2)21c ≤3;(3)d+e ≥0;(4)d-e ≤-2. 5.(20分)利用不等式的性质解下列不等式,并在数轴上表示解集:(1)x+3>-1;(2)6x ≤5x-7;(3)-31x<32;(4)4x ≥-12. 解:(1)x>-4.(2)x ≤-7.(3)x>-2.(4)x ≥-3.二、综合运用(15分)6.用炸药爆破时,如果导火索燃烧的速度是0.8cm/s ,人跑开的速度是每秒4m ,为了使点导火索的战士在爆破时能够跑到100m 以外(不含100m )的安全区域,这个导火索的长度应大于多少厘米?请将解集在数轴上表示出来.解:设导火索的长度是xcm ,根据题意,得:8.0x ×4>100, 解得:x >20.答:导火索的长度应大于20cm.在数轴上表示x 的取值范围如图右所示:三、拓展延伸(15分)7.若不等式(2k+1)x <2k+1的解集是x >1,求k 的取值范围, 并将其解集在数轴上表示出来.解:因为不等式(2k+1)x <2k+1的解集是x >1,∴2k+1<0,解得:k <-21. 在数轴上表示k 的取值范围如图所示:【知识与技能】1.了解近似数的概念.2.会按精确度要求取近似数.3.给一个近似数,会说出它精确到哪一位.【过程与方法】通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.【情感态度】通过师生合作,联系实际,激发学生学好数学的热情.【教学重点】近似数和精确度的意义.【教学难点】由给出的近似数求其精确度,按给出的精确度求近似数.一、情境导入,初步认识我们常会遇到这样的问题:(1)七年级(2)班有42名同学;(2)每个三角形都有3个内角.这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:(3)我国的领土面积约为960万平方千米;(4)王强的体重约是49千克.960万、49是准确数吗?这里的960万、49都不是准确数,而是由四舍五入得来的,与实际数很接近的数.我们把像960万、49这些与实际数很接近的数称为近似数.近似数产生的主要原因在于:①在计算时,有时只能得到近似数,如10÷3得近似商3.33;②在度量时,由于受测量工具和测量技术的局限性影响,一般只能得到近似数.如现有最小刻度分别是厘米、毫米的尺子各一把,用它们分别测量同一个人的身高就会得到不完全相同的结果;③在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也就是精确度的问题.我们都知道,π=3.14159…….我们对这个数取近似数:如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1);如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01);一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.二、典例精析,掌握新知例1指出下列问题中出现的数,哪些是准确数?哪些是近似数?(1)某中学七年级有897人;(2)小华的身高为1.6m;(3)一本书共有178页;(4)临园口每天的车流量大约有30000辆;(5)地球的平均半径约为6370km;(6)某小区在入冬以后有38户人家向物业部门报修暖气.【分析】在实际生活中,我们会遇到很多数字,在有些实际问题中我们不可能得到准确数字,如(5)中地球的半径,这时我们研究问题时一般都取近似数字.解:(1)(3)(6)中给出的数字是准确数;(2)(4)(5)中给出的数字是近似数.例2按括号内的要求,用四舍五入法对下列各数取近似数:(教材第46页例6)(1)0.0158(精确到0.001);(2)304.35(精确到个位);(3)1.804(精确到0.1);(4)1.804(精确到0.01).解:(1)0.0158≈0.016;(2)304.35≈304;(3)1.804≈1.8;(4)1.804≈1.80.【教学说明】教师提醒学生精确到0.1就是精确到十分位,精确到0.01就是精确到百分位,精确到0.001就是精确到千分位,精确到0.0001就是精确到万分位.试一试教材第46页练习.例3下列由四舍五入法得到的近似数,各精确到哪一位?(1)132.4;(2)0.0572;(3)2.40万解:(1)132.4精确到十分位(精确到0.1);(2)0.0572精确到万分位(精确到0.0001);(3)2.40万精确到百位.【教学说明】教师提醒学生由于2.40万的单位是万,所以不能说它精确到百分位.例4一辆卡车最多能装4吨沙子,现有沙子79吨.(1)至少需要多少辆这样的卡车才能运完沙子?(2)这些沙子能装满多少辆这样的卡车?【分析】题目中所要求的是运沙子的卡车辆数,必须取整数.解:(1)因为79÷4=19.75,所以至少需要20辆这样的卡车才能运完这些沙子.(2)因为79÷4=19.75,所以这些沙子能装满19辆这样的卡车.【教学说明】取近似数常用的是“四舍五入”法,但在实际问题中就不一定能用“四舍五入”法,而要用“去尾法”或“进一法”来取近似数.本例中(1)是采用的“进一法”,(2)是采用的“去尾法”.“进一法”和“去尾法”在小学时曾学过,所以设计本例的目的在于让学生回顾所学知识,并让学生知道取近似数并不是只有“四舍五入”这一种方法.三、运用新知,深化理解1.请你列举出生活中准确值和近似值的实例.2.下列各题中的数,哪些是精确数?哪些是近似数?(1)某中学共有98个教学班;(2)我国约有13亿人口.3.用四舍五入法,按括号里的要求对下列各数取近似值:(1)0.65148(精确到千分位);(2)1.5673(精确到0.01);(3)0.03097(精确到0.0001).4.下列由四舍五入得到的近似数,各精确到哪一位?(1)54.8;(2)0.00204;(3)3.6万.【教学说明】上面4题都是有关近似数的题,比较简单,可由学生口答.【答案】1.略.2.(1)精确值;(2)近似值.3.(1)0.65148≈0.651;(2)1.5673≈1.57;(3)0.03097≈0.0310.4.(1)精确到十分位;(2)精确到十万分位;(3)精确到千位.四、师生互动,课堂小结引导学生回忆相关概念,并由学生表述,互相指点.1.布置作业::从教材习题1.5中选取.2.完成练习册中本课时的练习.3.选做题.(1)下列由四舍五入得到的近似数各精确到哪一位?①32;②17.93;③0.084;④7.250;⑤1.35×104;⑥0.45万;⑦2.004;⑧3.1416.(2)23.0是由四舍五入得来的近似数,则下列各数中哪些数不可能是真值?①23.04②23.06③22.99④22.85【答案】3.(1)①精确到个位;②精确到百分位;③精确到千分位;④精确到千分位;⑤精确到百位;⑥精确到百位;⑦精确到千分位;⑧精确到万分位.(2)②和④.本课时教学应多角度选择生活事例作为情境,激发学生参与学习的热情,以学生身边最熟悉的数据引导学生认识概念,再在习题的解答和纠错中准确接受新知识.同时,可鼓励学生积极查阅资料,收集分析数据,形成数感.。
人教版七年级上册数学学案:1.2.2数轴

师生共用导学稿年级:七年级学科:数学执笔:审核:七年级数学组内容:1.2.2数轴课型:新授时间:9月〖课前回顾〗下列各数:25%、-2.5、3.14、-2、72 、π、-π、0、-0.0101、中正数有__________非负整数有________整数有_________负分数有__________有理数有___________________________〖学习目标〗1、掌握数轴的概念,和数轴的画法;(重点)2、理解数轴上的点与有理数的对应关系“并非一一对应”(难点)〖自主学习〗一、数轴概念:自学课本第8-9页数轴-3 -2 -10 1 2 3图中这条直线有方向(向右方向为正方向),有原点(用0表示),有单位长度,它是数轴。
小结:像上面这样规定了、、和的直线叫数轴。
1、下列各图表示的数轴是否正确?A ······答:-3-2-1 1 2 3B ····答:-2 -1 0 1C ·答:D ·····答:-2-1 0 1 22、读出数轴上的数B D AC E········-4-3-2-1 0 1 2 3答:A点表示-1,B点表示,C点表示,D点表示,E点表示。
3、在图中指出表示0,3,-3.5,-2,2的点A B C D E···········-4-3-2-1 0 1 2 3 4 5答:C点表示0,表示3,表示-3.5,表示-2,表示2.小结:数轴上原点右边的点表示的数是,原点左边的点表示的数是,原点表示的数是。
二、数轴画法画出数轴并在数轴上表示下列各数的点,再按数轴上从左到右的顺序将这些数重新排成一行 4,-3,-1.5,1.3,0小结:在数轴上画出表示数的点,可以先由这个数的符号确定它在原点的哪一边,然后在相应的方向上确定它与原点相距几个单位长度,最后画上点。
人教版七年级数学上册:第一章有理数1.2.2数轴(教案)

-理解数轴上的对称性,尤其是关于原点的对称。
-掌握数轴上两点间距离的计算方法。
-理解数轴上的相反数和绝对值概念。
-解决与数轴相关的复杂问题。
举例:难点在于让学生理解数轴上对称性的概念,如-3和3在数轴上是关于原点对称的。同时,解释数轴上两点间距离的计算,如点A表示数-2,点B表示数5,点A和点B之间的距离是7个单位长度。此外,帮助学生理解一个数的相反数在数轴上的位置关系,以及绝对值表示的几何意义。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解数轴的基本概念。数轴是一个直线,用来表示有理数,它有三个要素:原点、正方向和单位长度。数轴是数学中非常重要的工具,它帮助我们直观地理解数的大小和相对位置。
2.案例分析:接下来,我们来看一个具体的案例。比如,气温的变化可以用数轴来表示,零上温度在原点右侧,零下温度在原点左侧,这样我们可以清楚地看到温度的升降。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用尺子在教室内创建一个数轴,并标出不同的有理数位置。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“数轴在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
学生小组讨论的环节,让我看到了学生们思维的火花。他们能够从不同的角度看待问题,提出各种有趣的见解。但我也意识到,我需要更好地引导他们,将讨论聚焦于数轴的核心概念和应用上,避免讨论偏离主题。
总的来说,今天的课堂让我认识到,教学过程中需要关注每一个学生的个体差异,因材施教,充分调动他们的学习积极性。在今后的教学中,我将不断总结经验,努力提高教学效果,让数学课堂变得更加生动有趣。
1[1].2.2数轴学案
![1[1].2.2数轴学案](https://img.taocdn.com/s3/m/578266858762caaedd33d40b.png)
学科长:审核意见:签名时间:备课组长:杨爱国编写组组成员:杨爱国、杨明海、杨占成班级:姓名:学号:课题:1.2.2数轴(学案)学习目标1.会正确画出数轴,初步了解有理数与数轴上的点的对应关系.2.能将有理数用数轴上的点来表示,能说出数轴上的点所表示的数.预习要求1.预习课本P8-10有关内容,完成练习。
2.掌握数轴三要素,能正确画数轴,理解有理数与数轴上点的对应关系.尝试练习一1.中的各图是不是数轴?为什么?尝试练习二1.指出数轴上A、B、C、D、E各点分别表示什么数。
2.在数轴上与表示1的点的距离是2个单位长度的点有几个?请你有数轴上把它们画出来,它们分别表示什么数?尝试练习三在数轴上有M、N两点(如图),请回答:(1)将M点向右移动5个单位,点M表示什么数?(2)将N点向左移动2个单位,点N表示什么数?(3)将M、N点怎样移动才能使它们表示的数是0?课堂练习一、选择题。
1、在数轴上,原点及原点左边所表示的数是( )A 、正数B 、负数C 、不是负数D 、不是正数2、下列语句中正确的是( )A 、 数轴上的点只能表示整数B 、 两个不同的有理数可以用数轴上的同一点表示C 、 数轴上的一个点,只能表示一个数D 、 数轴上的点所表示的数都是有理数二、填空。
1、数轴上表示-3的点在原点 侧,距原点的距离是 ,表示-4的点在原点的 侧,距原点的距离是 。
2、与原点的距离为3个单位的点有 个,它们分别表示有理数 和 。
3、在数轴上,A 点表示3,现在将A 点向右移动5个单位,再向左移动12个单位,这时A 点必须向 移动 单位,才能到达原点。
配餐作业一、1、把下列各数在数轴上表示出来。
(1)、-1 ,221 ,0 ,-0.52、指出数轴上A 、B 、C 、D 、E 各点表示什么数。
二、一个点从原点开始,按下列条件移动两次后到达终点,说出它是表示什么数的点?1、向右移动2个单位,再向左移动3个单位。
2、向右移动个单位,再向左移动3个单位。
【北大绿卡】七年级数学上册 1.2.2 数轴导学案(含解析)(新版)新人教版

数轴学习目标:1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数; 3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学重点:数轴的概念和用数轴上的点表示有理数.教学难点:数形结合思想的理解与应用.教学过程:、温故知新,激发情趣1:有理数包括那些数?整数和分数统称有理数;有理数还可分为正有理数,0和负有理数.2.在一条东西向的马路上,有一个汽车站,汽车站以东3 m 和7.5 m 处分别有一棵柳树和一棵杨树,汽车站以西3 m 和4.8 m 处分别有一棵槐树和一根电线杆,试画图表示这一情境.你还能找出用刻度表示这些数的实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:如何表示图中温度计的温度?零上5°C 用 +5°C 表示。
(2)0°C 用 0°C 表示。
(3)零下10°C 用-10°C 表示。
然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?(答案是肯定的,从而引出课题:数轴。
)、得出定义,揭示内涵:设问:到底什么是数轴?如何画数轴呢?画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。
)(2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸。
)(3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。
单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。
人教版数学七年级上册 第一章 有理数 1.2.2 数轴

人教版数学七年级上册第一章有理数1.2.2 数轴【学习目标】1.理解数轴的概念及三要素;2.理解有理数与数轴上的点的关系,并会借助数轴比较两个数的大小;【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.【典型例题】类型一、数轴的概念【例题】1.如图所示是几位同学所画的数轴,其中正确的是 ( )A.(1)(2)(3) B.(2)(3)(4) C.只有(2) D.(1)(2)(3)(4)【答案】C【解析】对数轴的三要素掌握不清.(1)中忽略了单位长度,相邻两整点之间的距离不一致;(3)中负有理数的标记有错误;(4)图中漏画了表示方向的箭头.【总结升华】数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可.【巩固练习】一、选择题1.下列说法正确的是( )A.数轴上一个点可以表示两个不同的有理数B.数轴上的两个不同的点表示同一个有理数C.有的有理数不能在数轴上表示出来D.任何一个有理数都可以在数轴上找到与它对应的唯一点2.如图,有理数a,b在数轴上对应的点如下,则有( ).(A)a>0>b (B)a>b>0 (C)a<0<b (D)a<b<03.从原点开始向右移动3个单位,再向左移动1个单位后到达A点,则A点表示的数是( ). A.3 B.4 C.2 D.-24.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这条数轴上任意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是( )A.2002或2003 B.2003或2004C.2004或2005 D.2005或20065.北京、纽约等5个城市的国际标准时间(单位:小时)可在数轴上表示如图若将两地国际标准时间的差简称为时差,则()A.首尔与纽约的时差为13小时B.首尔与多伦多的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时二、填空题1.已知数轴上有A,B两点,A,B之间的距离为1,点A与原点O的距离为3,那么点B对应的数是.2. 若a为有理数,在-a与a之间(不含-a与a)有21个整数,则a的取值范围是.3.如图所示,矩形ABCD的顶点A,B在数轴上,CD=6,点A对应的数为-1,则点B所对应的数为.4.数轴上离原点的距离小于3.5的整数点的个数为m , 距离原点等于3.5的点的个数为n , 则3____m n -=.三、解答题1.小敏的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A 、B 、C 、D ,学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米.(1)用数轴表示A 、B 、C 、D 的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米?【答案与解析】一、选择题1.【答案】D【解析】A 、B 、C 都错误,因为所有的有理数都能在数轴上表示出来,但数轴上的点不都表示有理数;一个有理数在数轴上只有一个表示它的点.数轴上表示有理数的点一个点对应一个有理数.2.【答案】C3.【答案】C4.【答案】C【解析】若线段AB 的端点与整数重合,则线段AB 盖住2005个整点;若线段AB 的端点不与整点重合,则线段AB 盖住2004个整点.可以先从最基础的问题入手.如AB =2为基础进行分析,找规律.所以答案:C5.【答案】B【解析】本题以“北京等5个城市的国际标准时间”为材料,编拟了一道与数轴有关的实际问题.从选项上分析可得:两个城市之间相距几个单位长度,两个点之间的距离即为时差.所以首尔与纽约的时差为14小时,首尔与多伦多的时差为13小时,北京与纽约的时差为13小时,北京与多伦多的时差为12小时.因此答案:B.二、填空题1.【答案】±2,±4【解析】解:∵点A 和原点O 的距离为3,∴点A 对应的数是±3.当点A 对应的数是+3时,则点B 对应的数是1+3=4或3﹣1=2;当点A 对应的数是﹣3时,则点B 对应的数是﹣3+1=﹣2或﹣3﹣1=﹣4.2. 【答案】1011-1110a a <≤≤<-或3. 【答案】5【解析】CD =AB =6,即A 、B 两点间距离是6,故点B 对应的数为5.4. 【答案】1【解析】由题意可知:7,2m n ==,所以27321m n -=-⨯=三、解答题1. 【解析】(1)如图所示(2)小敏从邮局出发,以每分钟50米的速度往图书馆方向走了约8分钟,其路程为50×8=400(米),由上图知,此时小敏位于家西300米处,所以小敏在学校与图书馆之间,且距图书馆100米,距学校150米.。