(完整word版)农杆菌介导植物转化的机制及影响转化效率的因素

(完整word版)农杆菌介导植物转化的机制及影响转化效率的因素
(完整word版)农杆菌介导植物转化的机制及影响转化效率的因素

二、农杆菌介导植物转化的机制及影响转化效率的因素

转化机制:

与植物基因转化有关的农杆菌有两种类型:根癌农杆菌(Agrobacterium tumefaciens)和发根农杆菌(Agrobacterium rhizogenes)。根癌农杆菌含有Ti 质粒。发根农杆菌含有Ri 质粒。根癌农杆菌的Ti 质粒和发根农杆菌Ri 质粒都具有一段转移DNA (transfer DNA,又称T-DNA),在农杆菌侵染植物时,T-DNA 可以插入到植物基因组中,使其携带的基因在植物中得以表达。由于T-DNA 能够进行高频率的转移,而且Ti 质粒和Ri 质粒上可插入大到甚至150kb 的外源基因,因此,Ti 质粒和Ri 质粒成为植物基因转化中的理想载体系统。

1 与农杆菌转化相关的基因

与转化相关的基因主要包括农杆菌染色体上的基因和Ti 质粒上T-DNA 以外Vir 区的基因。染色体基因包括chvA、chvB、att、pscA、chvD 以及chvB。它们大多编码一些膜相关蛋白,负责细菌向植物受伤细胞趋化移动和帮助细菌附着于植物受伤细胞上。ChvD 蛋白可能在低pH 和磷酸饥饿情况下提高VirG 蛋白的合成水平。ChvE 与VirA 蛋白共同对virG 起激活作用。

原始的Ti质粒根据其功能的不同,可分为4个区:

(1)T-DNA区:是在农杆菌侵染细胞时,从Ti质粒上切割下来转移到植物基因组中的一段DNA,其携带的基因与肿瘤的形成有关,但与T-DNA本身的转移与整合无关。T-DNA 上最重要的是两端的2个边界(LB和RB),它们是T-DNA转移所必需的。只要其存在,T-DNA可以将携带的任何基因转移并整合到植物基因组中, T-DNA的右边界在T-DNA的整合中对于靶DNA位点的识别具有重要作用,因此,尤以右边界更为重要.

(2)毒性区:位于T-DNA以外的1个30~40 kb的区域内,该区段编码的基因但对T-DNA 的转移和整合非常重要.这些基因也称为Ti质粒编码毒性基因(vir)。

(3)接合转移区:该区段存在有与细菌间接合转移有关的基因(tra),调控Ti质粒在农杆菌间转移。

(4)复制起始区:该区段调控Ti质粒的自我复制。在遗传转化过程中除了Ti质粒上的基因参与外,还有农杆菌染色体基因。染色体基因包chvA、chvB、att、pscA、chvD 以及chvB。它们大多编码一些膜相关蛋白,负责细菌向植物受伤细胞趋化移动和帮助细菌附着于植物受伤细胞上。延伸因子P对于农杆菌的生长非常重要,但非必需.高水平的糖结合蛋白一ChvE可以扩大VirA蛋白对酚类物质的识别范围。结合ATP盒式转运体类似物蛋白ChvD,参与Vir区基因的表达调控,chvD基因座中插入无启动子的lacZ,农杆菌侵染力以及Vir区基因表达量大大下降,ChvD突变体中virG组成型表达侵染力则得以恢复,这一现象说明ChvD通过影响virG表达控制毒性。

2 Vir 基因的诱导表达机制

在植物受到创伤后,创伤组织的细胞释放出创伤信号——酚类化合物,如乙酰丁香酮。

当农杆菌接受到此类信号时,其vir 区基因可被诱导转录。另一类诱导化合物是组成植物细胞壁的一些特异单糖,As 和单糖可协同诱导Ti 质粒上vir 区基因的表达。Vir 区基因的活化首先是从virA 基因开始的。VirA 蛋白是一种结合在膜上的化学受体蛋白,可直接对植物产生的酚类化合物感应,其感应部位可能位于胞质区域。VirA 蛋白的胞质区域有自激酶的功能,自身被磷酸化激活后,使VirG 蛋白活化。VirG 蛋白是DNA 结合活化蛋白,可以以二体或多体形式结合到vir 启动子的特定区域,从而成为其它vir 基因转录的激活因子,打开VirB、virC、virD、virE、virH 等几个基因。ChvE 可大大增强vir 基因被As 诱导的效果,ChvE 可结合一些单糖,也可直接与VirA 周质区相互作用,以加强As 对Vir 基因的诱导。

3 T-DNA 复合物的形成

T-DNA 的加工与转移是由Vir 基因被诱导后产生的蛋白完成。VirD基因编码的两个产物VirD1和VirD2直接参与加工过程。VirD1 蛋白是一种拓扑异构酶,可将超螺旋型DNA 变成松弛型DNA。VirD2 蛋白具有特异剪切单链DNA 的内切酶活性,它可以识别T-DNA 底链边界重复序列上的特定位点,并在底链24 bp 重复序列和第四个碱基之间切割,将T-DNA 从Ti 质粒上剪切下来,称为T-strand 或T-链。切开T-DNA后,VirD2 蛋白与T-链的5,端共价结合,避免核酸外切酶降解T-链。新的T-DNA 底链以此链为模板,从右端产生的DNA 缺口处以5’-3’方向进行合成。被取代的旧链游离出来,与许多VirE2 蛋白分子结合组成T-DNA 复合体。此外,VirD2 作为一个导向蛋白,可以指导整个T-DNA 复合体(或叫T-复合体)从农杆菌进入到植物细胞核。

4 T-DNA 复合物的跨膜转运

农杆菌的T-DNA 转移通道由多达12 种蛋白组成,包括两个主要部分:纤毛附属丝(或纤毛)和膜结合复合体。该通道也可称为T-复合体运输器,由virB 编码的11 种蛋白和VirD4 蛋白组成。VirB1可在细菌膜上为T-复合体运输器的装备提供位点;VirB2 和VirB5 可被移动到细胞表面形成纤毛;其余的VirB、VirD4 为T-复合体的运输提供能量。合成的T-复合体经过T-复合体运输器,以类似于细菌转导过程的方式注射到植物细胞内,并在VirD2 和VirE2 的核定位信号(NLS)序列引导下,以VirD2为先导向植物细胞核运动。在人工构建的质粒中,vir 基因和T-DNA 可以放在同一个质粒上,也可以放在不同的质粒上。

影响转化效率的因素

1、菌株染色体背景

不同农杆菌株的类型的chv基因决定了其对受体细胞的识别和附着能力的差异。根癌农杆菌的胭脂碱型和琥珀碱型生长快、不结球,转化易于操作,但共培养时菌体附着能力较差:章鱼碱型则生长慢、易结球,转化难于操作,但共培养时菌体附着后不易洗去。

2、共培养方式

农杆菌转化的共培养介质可以是细菌培养基或植物受体培养基。烟草等对农杆菌侵染比

较敏感的植物的共培养时间一般较短,液体细菌培养基介质应用较多。许多单子叶植物等不敏感植物受体与农杆菌共培养时间一般较长,用细菌培养介质容易造成农杆菌过度繁殖,导致植物外植体呼吸作用抑制和细菌分泌物毒害,因此多采用液体植物培养基作为共培养介质。

3、侵染浓度和时间

农杆菌适宜的侵染浓度和时间因外植体对侵染的敏感性不同而有很大差异。浓度过高、时间过长会引起农杆菌细胞间的竞争性抑制,而且过度增殖会抑制受体细胞的呼吸作用;浓度过底、时间过短则造成受体细胞表面农杆菌附着不足。禾谷类作物一般侵染浓度较高,Hiei用LBA4404(pTOK233)转化水稻的最佳接种浓度为OD600=0.8~1.0, Ishida 用LBA4404(pSB131)转化玉米幼胚采用的侵染浓度为OD600=2.0;但烟草、大白菜等对侵染敏感的双子叶植物要求菌体浓度要低的多,一般为OD600= 0.5。

4、共培养条件

(1)共培养温度农杆菌在20~30℃的范围内都可以生长,不同研究结果中vir区基因表达的适宜温度有一定差异,但多数在20~25℃获得较高的表达水平[]。外植体生长温度也一般在此范围内,所以通常选取外植体的最佳生长温度为共培养温度,通常在25℃左右。

(2)共培养PH值研究人员普遍认为酸性培养环境有利于农杆菌的侵染。因为植物细胞释放的对农杆菌有趋化作用的化学物质(如酚类、糖类)虽然在不同酸碱度下比较稳定,但在pH=5.0~5.8时对vir基因的诱导能力最高。

(3)诱导物和抑制物酚类是vir区基因表达的主要信号物质。酚类物质产量低一度被认为是影响农杆菌转化,特别是单子叶植物转化的主要原因之一。在众多的酚类物质中,乙酰丁香酮和羟基乙酰丁香酮诱导能力较强,AS的促进效果与菌株类型、植物材料种类和共培养培养基的pH值有关。没食子酸、二羟基苯甲酸、香草酚、儿茶酚、对羟基苯酚等多酚混合处理农杆菌也有很高的作用,但不同酚类物质是否有累加效应在不同研究结果中不近相同。不同农杆菌类型对酚类物质的敏感性不同,根癌农杆菌的章鱼碱株系比胭脂碱系需要更高的酚类物质诱导,发根农杆菌的农杆碱型比甘露碱型对酚类物质刺激的敏感性更低。

糖类等小分子,这些小分子一方面可作为化学源吸引农杆菌的趋化运动,另一方面可诱导或抑制农杆菌vir基因的表达。而糖类的主要作用是与农杆菌染色体毒性蛋白ChvE结合,激活virA蛋白进而诱导vir基因高水平表达和扩大农杆菌的寄主范围。特别在AS浓度很低的情况下,它们可强烈诱导vir基因的表达,并且与AS存在协同效应,可显著提高AS诱导效果。糖类在不含酚类化合物的情况下效果较明显,但是糖类和酚类化合物同时存在时却没有明显的协同效应。

多胺也参与植物宿主和病原之间的相互作用。Kumar等曾用多胺物质对农杆菌进行活化后侵染烟草做GUS瞬时表达研究,结果表明农杆菌的侵染活力显著提高。

(4)共培养时激素的添加、有无光照

共培养培养基中添加生长素、细胞分裂素对转化更有利。而光照的有无要是植物种类而异。

5、受体类型和生理状态

不同基因型对农杆菌侵染敏感性有差异。目前用过的受体材料有叶盘、叶柄、根尖根段、茎尖茎段、幼穗、花药、子叶(柄)、胚或其部分结构(胚轴)、芽等,可以看出分生组织是较通用的受体。分生能力强的植物细胞对农杆菌敏感,活跃的细胞分裂促进了T-DNA的整合。

6、预培养培养基

外植体进行共培养前,在含有外源激素的培养基上预培养一段时间,使植物组织代谢活跃,促进细胞分裂,分裂状态的细胞更易整合外源DNA,从而提高外源基因的瞬时表达和转化率。有人认为,在预培养时降低钙的含量会促进农杆菌的侵染。钙在对致病微生物抵抗方面起到重要作用,而钙的不足会引起细胞壁结构的改变,这种改变使农杆菌更容易附在愈伤上,增强农杆菌对愈伤的感染能力。

7、接种方式

比较常用的接种方式是将外植体置于侵染液中浸泡,时间长短视菌种和外植体种类而异。有的研究者在浸泡的基础上结合了振荡进行接种,振荡培养能打破细胞表面的气泡,使农杆菌与外植体的接触面增大,有利于农杆菌侵染。近年来,在提高遗传转化效率方面发展了一些新技术,如超声波辅助农杆菌介导法、负压与农杆菌介导结合法以及基因枪与农杆菌介导结合法等,均可增强农杆菌浸染,提高转化效率

8、感受态细胞保存条件

有实验表明,农杆菌感受态细胞以新鲜制备时效果较好,农杆菌感受态细胞在4℃保存7 d以内时进行转化可以得到部分转化子,而用甘油保存置于-20℃和-58℃的感受态细胞转化效率较低。不过应该根据自己的试验情况进行优化。

另外,植物基因型、靶细胞生理状态及对转化植株的筛选程序、外植体处理、合适的再生筛选体系等因素也会对转化效率产生影响。

植物转录因子及转录调控数据与分析平台

植物转录因子及转录调控数据与分析平台 PlantTFDB:植物转录因子数据库 URL: https://www.360docs.net/doc/398918589.html, 包含资源:植物转录因子的家族分类规则、基因组转录因子全谱、丰富的注释、转录因子结合图谱(binding motifs)、转录因子预测、系统发生树等 涉及物种:包含拟南芥、水稻、杨树、大豆、玉米、小麦等165个物种。 PlantRegMap:植物转录调控数据与分析平台 URL: https://www.360docs.net/doc/398918589.html, 包含资源:植物转录调控元件、植物转录调控网络、转录因子结合位点预测、转录调控预测与富集分析、GO富集分析、上游调控因子富集分析等。 涉及物种:包含拟南芥、水稻、杨树、大豆、玉米、小麦等156个物种。 ATRM: 拟南芥转录调控网络及其结构和演化分析 URL: https://www.360docs.net/doc/398918589.html, 包含资源:基于文本挖掘和人工校验的拟南芥转录调控网络、植物转录调控网络的结构和演化特征 涉及物种:拟南芥 植物转录因子及转录调控数据与分析平台(导航页) 我们致力于为广大科研人员提供一个关于植物转录因子和转录调控、集数据和分析于一体的高质量平台,为研究和理解植物转录调控系统保驾护航。 植物转录因子数据库(PlantTFDB) 一套完整的植物转录因子分类规则 覆盖绿色植物各大分支的转录因子全谱 丰富的功能和演化注释 基因组范围的高质量转录因子结合矩阵(156个物种) 在线转录因子预测平台 植物转录调控数据与分析平台(PlantRegMap) 基于高通量实验(ChIP-seq和DNase-seq)和比较基因组方法鉴定的多种转录调控元件 基于转录因子结合矩阵和转录调控元件推测的转录调控网络 涉及165物种的GO注释 一套植物转录调控预测与分析工具,包括转录因子结合位点预测、转录调控预测与富集分析、GO富集分析及上游调控因子富集分析等 拟南芥转录调控网络及其结构和演化特征(ATRM) 基于文本挖掘和人工校验的拟南芥转录调控网络 植物转录调控网络的结构和演化特征

植物bHLH转录因子研究进展_刘文文

生物技术进展 2013年第3卷第1期7 11 Current Biotechnology ISSN 2095-櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅殯 殯 殯 殯 2341 进展评述 Reviews 收稿日期:2012-12-12;接受日期:2012-12-31基金项目:国家自然科学基因项目(30970221)资助。 作者简介:刘文文,硕士研究生,研究方向为玉米氮利用效率生理学及拟南芥抗逆作用机制。*通讯作者:李文学,研究员,博士,主要 从事小RNA 功能及植物抗逆机制研究。E- mail :liwenxue@caas.cn 植物bHLH 转录因子研究进展 刘文文,李文学 * 中国农业科学院作物科学研究所,北京100081摘 要:bHLH (basic helix-loop-helix protein )是真核生物中存在最广泛的一大类转录因子,其通过特定的氨基酸残基与 靶基因相互作用,进而调节相关基因的表达。系统发育分析表明植物的bHLH 转录因子为单源进化。bHLH 转录因子不仅对于植物的正常生长和发育必不可缺,同时参与植物适应多种逆境胁迫的反应过程。然而,由于植物bHLH 家族成员众多、 参与的生物过程复杂,对于其了解还不是十分清楚。本文针对植物bHLH 的进化、结构特点、生物功能,尤其是在适应逆境胁迫中作用等的最新研究结果进行综述,以期为进一步深入了解植物bHLH 转录因子的功能提供理论参考。关键词:bHLH ;结构特点;生物学功能DOI :10.3969/j.issn.2095-2341.2013.01.02 Progress of Plant bHLH Transcription Factor LIU Wen-wen ,LI Wen-xue * Institute of Crop Science ,Chinese Academy of Agricultural Sciences ,Beijing 100081,China Abstract :Basic helix-loop-helix proteins (bHLHs )are found throughout the eukaryotic kingdom ,and constitute one of the largest families of plant transcription factors.They can regulate gene expression through interaction with specific motif in target genes.Phylogenetic analysis indicates that plant bHLHs are monophyletic.bHLHs are necessary for plant normal growth and development ,and play important roles in abiotic-stress responses.However ,we know little about their origins ,structures ,and functions due to the large quantities and complexity of plant bHLH family.This paper reviews on the evolution ,structure characteristics ,biological function of plant bHLHs ,especially their functions in adapting to abiotic-stress tolerance ,so as to provide a theoretical reference for further research on the function of plant bHLH transcription factors.Key words :bHLHs ;structural features ;biological function bHLH 转录因子广泛存在于真核生物。自 bHLH 发现以来,越来越多的研究表明该转录因子对于真核生物的正常生长及发育必不可缺。在酵母等单细胞真核生物中,bHLH 参与染色体的分离、新陈代谢调节等过程[1] ;在动物中,bHLH 主要与感知外界环境、调节细胞周期、组织分化等 相关 [2 4] 。植物中bHLH 家族成员数量众多,仅 次于MYB 类转录因子,譬如在拟南芥中有超过140个bHLH 转录因子,水稻中则超过160个。家族的庞大不可避免的造成功能冗余,使研究单个bHLH 转录因子的功能相对困难。本文拟对有限的植物bHLH 家族研究结果,尤其是参与植物 适应逆境胁迫过程中的作用进行综述,以期为进 一步深入了解植物bHLH 转录因子的功能的提供理论参考。 1 植物bHLH 的结构特点、家族分类及 进化 1.1 bHLH 的基本结构 bHLH 转录因子因含有bHLH 结构域而得名。bHLH 结构域由50 60个氨基酸组成,可分为长度为10 15个氨基酸的碱性氨基酸区和40个氨基酸左右的α-螺旋-环-α-螺旋区(HLH 区)。

植物转录因子汇总2013

Plant Transcription Factor Database v3.0 Center for Bioinformatics , Peking University , China Previous versions:v1.0v2.0 Home | Blast | Search | Download | Prediction | Help | About | Links LFY) Browse by Species open all | close all Taxonomic Group (83 species) (G)-species with genome sequence Chlorophyta (10 species)Bryophyta (1 species) Lycopodiophyta (1 species)Coniferopsida (4 species) Basal Magnoliophyta (1 species)Monocot (17 species) Eudicot (49 species) Bathycoccus prasinos (G)Chlamydomonas reinhardtii (G)Chlorella sp. NC64A (G)Coccomyxa sp. C-169 (G) Micromonas pusilla CCMP1545 (G)Micromonas sp. RCC299 (G) Ostreococcus lucimarinus CCE9901 (G)Ostreococcus sp. RCC809 (G)Ostreococcus tauri (G) Volvox carteri (G) Physcomitrella patens subsp. patens (G) Selaginella moellendorffii (G)Picea abies (Norway spruce) (G)Picea glauca (white spruce)Picea sitchensis (Sitka spruce) Pinus taeda (loblolly pine) Amborella trichopoda (G)Aegilops tauschii (Tausch's goatgrass) (G) Brachypodium distachyon (purple false brome) (G)Hordeum vulgare (barley) (G)Musa acuminata (dwarf banana) (G)Oryza barthii (African wild rice) (G)Oryza brachyantha (malo sina) (G)Oryza glaberrima (African rice) (G)Oryza punctata (G) Oryza sativa subsp. indica (Indian rice) (G)Oryza sativa subsp. japonica (Japanese rice) (G)Phoenix dactylifera (date palm) (G) Phyllostachys heterocycla (moso bamboo) (G)Saccharum officinarum (sugarcane)Setaria italica (foxtail millet) (G)Sorghum bicolor (sorghum) (G)Triticum aestivum (wheat)Triticum urartu (G) Zea mays (maize) (G)Aquilegia coerulea (columbine) (G) Asterids (9 species) Artemisia annua (sweet wormwood)Capsicum annuum (chilli pepper)Helianthus annuus (sunflower) Lactuca sativa (garden lettuce) Mimulus guttatus (spotted monkey flower) (G)

转录因子蛋白质结构分析

植物转录因子蛋白质结构 转录因子是生物体内直接结合或间接作用于基因启动子区域、形成具有RNA聚合酶活性的转录复合体的蛋白质因子,通过其调控基因的表达来影响生物的表型及对外界刺激的保护,从而完成了生物在转录水平的调控。按功能可分为通用转录因子、序列特异性转录因子、辅助转录因子等。而与RNA聚合酶I、Ⅱ、Ⅲ相对应的有3类转录因子,分别是TFI、TFⅡ、TFⅢ。锌指蛋白就是属于其中的TFⅢ型转录因子,它是生物中发现种类最多、研究较为广泛、在真核生物中具有重要调控作用的一类转录因子。 通过对蛋白质的结构进行分析表明,典型的植物转录因子一般由DNA结合区(DNA—binding domain)、寡聚化位点(oligomerization site)、转录的调控区(transcription regulation domain)、细胞核定位信号区(nuclear localization signal,NLS)组成,这些功能区域决定了各个转录因子的具体功能。 DNA结合区(DNA—binding domain)DNA序列中有许多具有重要作用的顺式作用元件,能够识别并与之结合的氨基酸序列就是转录因子的DNA结合区。相同类型的转录因子都能够识别比较保守的氨基酸序列(DNA结合区)。而且植物转录因子的分类依据就是DNA结合区和寡聚化位点的保守区的差异。其中bHLH结构域、bZIP结构域、锌指结构域、MADS结构域、MYC 结构域、MYB结构域和类Myc蛋白等都是典型的植物转录因子的DNA结合区。这些典型的结合区与顺式作用元件识别及结合的特异性由DNA结合区中特定的氨基酸序列来决定。它们与顺式作用元件的亲和性和特异性由DNA结合区的二级结构来决定。 bHLH(basichelix-loop-helix)家族转录因子普遍存在于真核生物中。目前,已在拟南芥中发现了147个bHLH家族转录因子基因。bHLH转录因子约由60个氨基酸残基组成,因HLH结构上游富含碱性氨基酸而得名,含有两个相连的基本亚区,即HLH Motif及其上游富含碱性氨基酸基序,其中碱性氨基酸基序与DNA结合有关,对基因的转录发挥调控作用。bHLH转录因子的HLH 区长为40-50个氨基酸残基,参与二聚体形成,有HLH蛋白的共同模体,即具有两条短小的既亲水又亲脂的两性α-螺旋,螺旋区的长度为15-16个氨基酸,含有各种保守的氨基酸残基,两个α-螺旋由连接区(环)相连,连接环的长度不等,由12-28个氨基酸组成,螺旋的一侧有疏水氨基酸。bHLH转录因子两条α-链依赖疏水氨基酸的相互作用形成同型或异型二聚体,从而与启动子的不同部位相结合。缺少碱性区的HLH蛋白可以与bHLH蛋白形成二聚体,但无结合DNA 的能力。 bZIP转录因子是真核生物转录因子中分布最广泛、最保守的一类转录因子。几乎所有真核细胞中都发现了bZIP结构域的转录冈子。根据植物bZlP转录因子结构特点和功能可以将bZIP 家族划分为10个亚族。所有的bZIP转录因子除了都具有两种保守的结构域外,同一个亚族内的bZIP转录因子还有额外的共有特征,如亮氨酸拉链的大小、类似的DNA结 合碱性结构域和类似的cis元件等。植物bZIP类转录因子的共同结构特点是:(1)含有与特异DNA序列相结合的碱性结构域,大约由20个氨基酸组成,紧靠亮氨酸拉链结构域的N末端,能与专一的DNA序列进行相互作用;(2)参与寡聚化作用的亮氨酸拉链区与碱性区紧密相连,每7个氨基酸的第7位含有一个亮氨酸。亮氨酸拉链形成一个两亲的螺旋结构,该结构参与bZIP蛋白与DNA结合之前的二聚体化;(3)转录因子的N末端含有酸性激活区;(4)以二聚体形式结合DNA,肽链N末端的碱性区与DNA直接结合。 至今,发现了三类锌指结构。一类是类似TFIIIA,如哺乳动物细胞的SP1。第二类锌指结构是通过NMR(核磁共振)检测到的,这类结构有点类似于HTH结构。它是由两个环-螺旋结构组成,命名为“双环-锌-螺旋”(double loop-Zn-helix),锌离子与在环开始部分中的两个半胱氨酸和两个а-螺旋的N端的两个氨基酸残基作用,靠近第一个а-螺旋N端的残基决定了

植物中的MYB转录因子

植物中的MY B转录因子 王希庆1 陈柏君2 印莉萍1 (1首都师范大学生物系,北京100037;2北京大学生命科学学院,北京100871) 摘 要: M Y B转录因子是植物转录因子中最大的家族之一。概述M Y B蛋白的结构、功能、进化以及与DNA结合的多样性。另外,对是否存在冗余M Y B蛋白的问题亦进行了探讨。 关键词: M Y B转录因子 结构 功能 冗余 The Plant MYB T ranscription F actors Wang Xiqing1 Chen Bojun2 Y in Liping1 (1Depart ment of Biology Capital Normal U niversity,Beiji ng100037; 2College of L if e Science Peki ng U niversity,Beiji ng100871) Abstract: The M Y B transcription factors comprise one of the largest families in plant transcription factors.This paper is a survey of main achievements in M Y B proteins’structure、function、evolution and diversity of interaction with DNA.And it is also discussed that whether there is redundant M Y B proteins. K ey words: M Y B transcription factors Structure Function Redundancy 1 引言 在植物的生长发育中,之所以各细胞之间出现了分化,就是因为细胞内基因的表达存在着时间和空间的差异,导致这种差异的主要原因之一就是转录因子(transcription factor,TF)在转录水平上的调节作用[1] 。 转录因子也称为反式作用因子,是指能够与真核基因的顺式作用元件发生特异性相互作用,并对转录有激活或抑制作用的DNA结合蛋白[2]。根据与DNA结合的方式可以把TF分为两类:普遍性转录因子(general transcription factor,GTF)和特异性转录因子(sequence2specific transcription fac2 tor)[3,4,5]。GTF能和启动子的核心序列TA TA框结合,可以激活所有基因的转录,而特异性转录因子和DNA序列上的其它调节元件结合,只能激活特定的基因。 典型的转录因子一般具有4个功能区:DNA结合区、转录调控区、核定位信号区和寡聚化位点。通常根据保守性较强的DNA结合区把转录因子分类,例如螺旋2转角2螺旋(helix2turn2helix)、锌指(zinc finger)结构、亮氨酸拉链(leucine zipper)和MADS盒等结构。M Y B转录因子也是其中非常重要的一类,而且是植物转录因子中最大的家族之一。 最早的M Y B转录因子(v2M Y B)是从鸟类的白血病病毒AMV和E26中发现的,一般认为,v2M Y B 是其前体c2M Y B在氨基端和羧基端缩减部分氨基酸残基而成。玉米的cl基因所编码的蛋白是一个从植物中发现的M Y B转录因子,后来研究发现,在拟南芥和玉米中都存在着大量的M Y B转录因子,它们在转录调节中起着多方面的重要作用。 2 MY B转录因子的结构特征 一般每个M Y B区域,即DNA结合区(DNA2 binding domain)含有51~53个氨基酸,在c2M Y B 蛋白中,含有3个串联的、不完全重复的M Y B区(R1、R2和R3)(图1)[6] ,每个M Y B区折叠成螺旋2转角2螺旋的形式参与与DNA大沟的结合。在每个M Y B区域中,一般都含有3个保守的色氨酸残基(其间隔18~19个氨基酸),起着疏水核心的作用,对于维持HTH的构型有着特别重要的意义[7]。 在c2M Y B的DNA结合区的羧基端有一个酸性的转录激活区(transcription activation domain)[8],一般折叠成双亲性的α2螺旋发挥作用,而且作用有一定的可塑性。一般认为转录激活区区域的氨基酸顺序保守性不是很强,在拟南芥R2R3M Y B家 生物技术通报 ?综述与专论? B IO TECHNOL O G Y BULL ETIN 2003年第2期

相关主题
相关文档
最新文档