数学建模讲义 线性规划模型2_运输问题等
数学建模之运输问题

数学建模之运输问题1. 引言运输问题是指在给定产地到销售地之间有若干个供应点和需求点的情况下,如何安排运输使得总运输成本最低。
这是一个经济管理中的经典问题,也是数学建模中常见的一个研究方向。
2. 问题描述假设有n个供应点和m个需求点,其中每个供应点的供应量和每个需求点的需求量已知,并且每个供应点到每个需求点的运输成本也已知。
我们的目标是确定供应点到需求点的运输量,使得总运输成本最小。
3. 模型建立为了建立数学模型,我们可以引入一个矩阵来表示供应点和需求点之间的运输成本。
设C为一个n行m列的矩阵,其中Cij表示供应点i到需求点j的运输成本。
我们需要引入决策变量X,其中Xij表示从供应点i到需求点j的运输量。
那么,目标函数可以定义为最小化总运输成本,即$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} X_{ij}$$同时,我们需要保证供应点和需求点的供需平衡,即满足每个供应点的供应量和每个需求点的需求量。
这可以表示为以下约束条件:1. 对于每个供应点i,有 $\sum_{j=1}^{m} X_{ij} = s_i$,其中$s_i$ 表示供应点i的供应量。
2. 对于每个需求点j,有 $\sum_{i=1}^{n} X_{ij} = d_j$,其中$d_j$ 表示需求点j的需求量。
进一步地,我们需要确保运输量的非负性,即$X_{ij} \geq 0$。
4. 求解方法对于较小规模的问题,我们可以使用线性规划方法求解运输问题。
线性规划是一种数学优化方法,可以在满足一定约束条件的前提下,使得目标函数达到最小值。
对于大规模的问题,我们可以使用近似算法或启发式算法进行求解。
这些算法可以快速找到较好的解,但不能保证找到最优解。
常用的算法包括模拟退火算法、遗传算法等。
5. 应用领域运输问题在许多实际应用中都有广泛的应用。
例如,在物流管理中,优化运输方案可以减少运输成本、提高运输效率;在生产计划中,合理安排运输可以确保供应链的稳定性和高效性。
运筹学第3章:运输问题-数学模型及其解法

整数规划模型
01
整数规划模型是线性规划模型 的扩展,它要求所有变量都是 整数。
02
整数规划模型适用于解决离散 变量问题,例如车辆路径问题 、排班问题等。
03
在运输问题中,整数规划模型 可以用于解决车辆调度、装载 等问题,以确保运输过程中的 成本和时间效益达到最优。
混合整数规划模型
混合整数规划模型是整数规划和线性规划的结合,它同时包含整数变量和 连续变量。
运筹学第3章:运输问题-数学模 型及其解法
目录
• 引言 • 运输问题的数学模型 • 运输问题的解法 • 运输问题的应用案例 • 结论
01 引言
运输问题的定义与重要性
定义
运输问题是一种线性规划问题,主要 解决如何将一定数量的资源(如货物 、人员等)从起始地点运送到目标地 点,以最小化总运输成本。
总结词
资源分配优化是运输问题在资源管理 领域的应用,主要解决如何将有限的 资源合理地分配到各个部门或项目, 以最大化整体效益。
详细描述
资源分配优化需要考虑资源的数量、 质量、成本等多个因素,通过建立运 输问题的数学模型,可以找到最优的 资源分配方案,提高资源利用效率, 最大化整体效益。
05 结论
运输问题的发展趋势与挑战
生产计划优化
总结词
生产计划优化是运输问题在生产领域的应用,主要解决如何合理安排生产计划, 满足市场需求的同时降低生产成本。
详细描述
生产计划优化需要考虑原材料的采购、产品的生产、成品的销售等多个环节,通 过建立运输问题的数学模型,可以找到最优的生产计划和调度方案,提高生产效 率,降低生产成本。
资源分配优化
发展趋势
随着物流行业的快速发展,运输问题变得越来越复杂,需要更高级的数学模型和算法来 解决。同时,随着大数据和人工智能技术的应用,运输问题的解决方案将更加智能化和
数学建模运输问题

有时候把两个表写在一起:
销地 产地 1 2 . . . m 销量
销地 产地 1 2 . . . m
1
2
…
n
产 量 a1 a2 . . . am 销地 产地 1 1 2 … n 产 量 a1 a2 . . . am
b1
1
b2
2
…
…
bn
n
2 . . . m
销量
c11 c12 … c1n c21 c22 … c2n . . . . . . . . . cm1 cm2 … cmn b1 b2 … bn
B2 10 4 5 6 14 6 5 3 4 3+4 B3 B4’ B4’’ 产量 (万台) 10 12 10 10
4
4 2
6
4
Global optimal solution found at iteration: 8 Objective value: 172.0000
销地 厂家 1 2
1
2
3
4
销地 厂家 A1 A2 A3 最高需求(万台)
31
x
32
x x x x x
33
x 2 3 4 6
34
7
x 11 x x 12 x x 13 x x 14 x x
ij
21
31
22
32
23
33
LINGO求解
24
34
0
设有三个电视机厂供应四个地区某种型号的电视机。 各厂家的年产量、 销地 各地区的年销售量以及 B1 B2 B3 厂家 各地区的单位运价 A1 6 3 12 如右表, A2 4 3 9 试求出总的运费最省的 A3 9 10 13 6 14 0 最低需求(万台) 电视机调拨方案。
数学建模,线性规划,运输为问题

X31 30.00000 0.000000
X32 20.00000 0.000000
X33 0.000000 3.000000
X34 0.000000 11.00000
X35 0.000000 23.00000
X36 0.000000 8.000000
X41 0.000000 7.000000
Objective value: 1620.000
Infeasibilities: 0.000000
Total solver iterations: 9
Variable Value Reduced Cost
X11 0.000000 14.00000
X12 0.000000 6.000000
X13 0.000000 4.000000
X55 0.000000 8.000000
X56 0.000000 32.00000
X64 30.00000 0.000000
X65 0.000000 3.000000
X66 0.000000 7.000000
Row Slack or Surplus Dual Price
1 1620.000 -1.000000
X42 0.000000 0.000000
X43 40.00000 0.000000
X44 0.000000 26.00000
X45 0.000000 16.00000
X46 0.000000 13.00000
X52 30.00000 0.000000
X53 0.000000 0.000000
X54 0.000000 21.00000
供应限制:x11+x12+x13+x14+x15+x16=20
管理运筹学讲义运输问题

管理运筹学讲义运输问题引言在现代社会,运输问题是管理运筹学中的一个重要问题。
无论是物流行业还是供应链管理,运输问题都是必不可少的一环。
运输问题的解决可以帮助企业有效地规划和管理物流流程,降低运输成本,提高运输效率。
本文将介绍管理运筹学中的运输问题,包括问题的定义、数学模型、常用的解决方法以及在实际应用中的案例分析。
运输问题的定义在管理运筹学中,运输问题是指在给定的供应点和需求点之间,如何分配物品的问题。
通常,问题的目标是找到一种分配方案,使得总运输成本最小。
运输问题可以抽象成一个图模型,其中供应点和需求点之间的路径表示运输线路,路径上的边表示运输的数量和成本。
每个供应点和需求点都有一个需求量或供应量。
问题的目标是找到一种分配方案,使得满足所有需求量的同时最小化总运输成本。
数学模型运输问题可以用线性规划来建模。
假设有m个供应点和n个需求点,每个供应点的供应量为si,每个需求点的需求量为dj。
定义xij为从供应点i到需求点j 的运输量,则运输问题的数学模型可以形式化表示为如下线性规划问题:minimize ∑(i=1 to m)∑(j=1 to n) cij * xijsubject to∑(j=1 to n) xij = si, for all i = 1,2,...,m∑(i=1 to m) xij = dj, for all j = 1,2,...,nxij >= 0, for all i = 1,2,...,m and j = 1,2,...,n其中cij表示从供应点i到需求点j的运输成本。
解决方法针对运输问题,常用的解决方法有以下几种:1. 单纯形法单纯形法是一种用于解决线性规划问题的常用方法。
对于运输问题,可以通过将其转化为标准的线性规划问题,然后使用单纯形法来求解最优解。
2. 匈牙利算法匈牙利算法是一种经典的图论算法,可以用于解决运输问题。
算法的核心思想是通过不断寻找增广路径来寻找最大匹配。
数学建模中优化模型之运输问题讲解

6
5 3
9
10
6
v1=10
v2=6
v3=4
单位费用变化:5-(4+(-4)=5
4 3
u1=-4
7 u2=-2
6
13 u3=6
v4=0
对偶变量法(10)
1
2
3
6
7
5
1
14
5
5
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
v3=4
单位费用变化:3-(0+(-4)=7
4
3 u1=-4
7
7 u2=-2
6
6
13 u3=6
v4=0
对偶变量法(6)
1
2
3
6
7
5
1
14
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
u2+v1=c21 v1=10
v3=4
4 3
u1
7 u2=-2
6
13 u3=6
v4=0
对偶变量法(7)
1
2
3
6
7
5
1
14
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
u1+v1=c11 u1=-4
运输问题
运输问题的表示 网络图、线性规划模型、运输表 初始基础可行解 西北角法、最小元素法 求解方法 闭回路法、对偶变量法 特殊形式运输问题 不平衡问题、转运问题
数学建模--运输问题

运输问题摘要本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。
关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。
考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。
关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。
首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。
即最短路线为:1-5-7-6-3-4-8-9-10-2-1。
但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。
关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。
这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。
因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。
得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。
关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。
运输问题的数学模型详细讲解,有案例+多种方法

m ( 3 1) x ij b j j 1,2, , n i 1 n s .t . x ij a i i 1,2, , m j 1 x 0 ij m n 其中,ai和bj满足: ai b j 称为产销平衡条件。
2、流向图
流向图:
在交通图上表示物资流向的图被称为流向 图。在图中每个发点吨数全部运完,每个 收点所需吨数均已满足。
2、流向图
发点A到收点B的 运输量,用括号 括起。
2、流向图
关于流向图的一些规定 箭头必须表示物资运输的方向 流量写在箭头的旁边,加小括号。 流向不能直接跨越路线上的收点、发点、 交叉点 任何一段弧上最多只能显示一条流向!即 同一段弧上的多条流向必须合并。 除端点外,任何点都可以流进和流出
2 4 6 4 B4
(2)
B5
4 2
8 B3
(8)
4
B2
(8) (1)
4 6 7 A1
3
5 8 A2
图 4-10
第三步:补上丢掉的边,检查有无迂回。 圈 B5B4B3A2 的 圈 长 =4+4+5+8=21, 内 圈长= 4+4+5=13>21/2,有迂回,所 以流向图不是最优流向图。需要调整。
约束方程式中共mn个变量,m+n个约束。
上述模型是一个线性规划问题。但是其结构很特殊, 特点如下: 1.变量多(mn个),但结构简单。
x11 x12 x1n x 21 x 22 x 2 n x m 1 x m 2 x mn 1 1 1 1 1 1 技术系数矩阵 A 1 1 1 1 1 1 1 1 1 1 1 1 m行 n行
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
决策变量 水库i 向j 区的日供水量为 xij(x34=0)
目标 函数
约束 条件
MZ i 1 nx 6 1 1 1 0x 3 1 22 0x 2 1 3 1 0x 7 140
1x 4 2 1 1 0x 3 2 2 1 0x 9 2 3 1 0x 5 2 4 1 0x 9 3 1 2 0x 0 3 22 0x 3 3
X2 168.000000 -3.000000
X3
0.000000 -4.000000
IP 的最优解x1=64,x2=168,x3=0,则至少生产80辆,求生产计划。
Mza 2 x 1 3 x 2 4 x 3
x10,x20,x380
s.t. 1.5x13x25x3600 x10,x28,0 x30
28x1 025x2 040x30 600x0 10 0,x28,0 x380
x1,x2,, x3=0 或 80
x18,0 x20,x30
方法1:分解为8个LP子模型
x18,0 x28,0 x30
其中3个子模型应去掉,然后 x18,0 x20,x380
逐一求解,比较目标函数值, x18,0 x28,0 x380
模型求解 整数规划(Integer Programming,简记IP)
Mza 2 x 1 3 x 2 4 x 3
IP可用LINGO直接求解
s.t. 1.5x13x25x3600
Max=2*x1+3*x2+4*x3;
28x1 025x2 040x30 600010 .5*x1+3*x2+5*x3<600;
结果为小数, 怎么办?
OBJECTIVE FUNCTION VALUE
1) 632.2581
VARIABLE VALUE
REDUCED COST
X1 64.516129
0.000000
X2 167.741928
0.000000
X3 0.000000
0.946237
ROW SLACK OR SURPLUS DUAL PRICES
2) 0.000000
0.731183
3) 0.000000
0.003226
1)舍去小数:取x1=64,x2=167,算出目标函数值z=629,与 LP最优值632.2581相差不大。
2)试探:如取x1=65,x2=167;x1=64,x2=168等,计算函数 值z,通过比较可能得到更优的解。
• 但必须检验它们是否满足约束条件。为什么? 3) 模型中增加条件:x1, x2, x3 均为整数,重新求解。
数学建模讲义
第4章 线性规划模型
--运输问题等
dx rx dt
1 运输问题:自来水输送(§4.2) 小 小
水 库
A:50
供
水 量
B:60
千 吨
C:50
(以天计)
甲:30;50 乙:70;70 丙:10;20 丁:10;40
区区 基额 本外 用用 水水 量量 千千 吨吨
() ()
()
收入:900元/千吨
x1, x2, x3为非负整数
280*x1+250*x2+400*x3<60 000;
IP 结果输出
gin(x1);
OBJECTIVE FUNCTION VALUE 1) 632.0000
gin(x2); gin(x3);
VARIABLE VALUE REDUCED COST
X1 64.000000 -2.000000
甲:30;50 乙:70;70 丙:10;20 丁:10;40
< 总需求量:120+180=300
收入:900元/千吨 总收入900160=144,000(元)
支出 引水管理费
其他费用:450元/千吨 其他支出450160=72,000(元)
确定送水方案使利润最大
使引水管理费最小
模型建立 确定3个水库向4个小区的供水量
元/千吨 甲 乙 丙 丁
支出 引水管理费
A
160 130 220 170
B
140 130 190 150
其他费用:450元/千吨
C
190 200 230 /
• 应如何分配水库供水量,公司才能获利最多?
• 若水库供水量都提高一倍,公司利润可增加到多少?
问题 分析
A:50 B:60
C:50
总供水量:160
小型 钢材 1.5 时间 280 利润 2
中型 3
250 3
大型 5
400 4
现有量 600 60000
Mza 2 x 1 3 x 2 4 x 3
s.t. 1.5x13x25x3600
线性 规划
28x1 025x20 40x30 6000模0型
x1,x2,x3 0
(LP)
模型 求解
模型求解
OBJECTIVE FUNCTION VALUE
A(50) B(60)
50 40 甲(30;50)
50
乙(70;70)
10 丙(10;20)
1) 24400.00
VARIABLE VALUE REDUCED COST
X11 0.000000 30.000000
X12 50.000000
0.000000
X23 0.000000 X24 10.000000 X31 40.000000 X32 0.000000
20.000000 0.000000 0.000000 10.000000
= 47600(元)
X33 10.000000 0.000000
2 0-1规划:汽车厂生产计划(§4.3)
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
C(50)
10 丁(10;40)
X13 0.000000 50.000000 X14 0.000000 20.000000
引水管理费 24400(元)
X21 0.000000 X22 50.000000
10.000000 0.000000
利润=总收入-其它费 用-引水管理费 =144000-72000-24400
供应 限制
x 11 x 12 x 13 x 14 50
x21x22x23x2460
x31x32x33
50 线性
规划
需求 限制
3 0x11 x21 x31 80模型 70 x12 x22 x32 140(LP) 1 0x13 x23 x33 30
1 0x 14 x 24 50