线性代数讲解
diag线性代数

diag线性代数《Diag线性代数》一、线性代数基础线性代数是数学中一个重要且广泛应用的领域,可用来分析和研究空间、结构及空间中物理量的变化规律。
线性代数主要可以用来解决矩阵和向量、线性系统和线性变换、矩阵分解以及空间和位置等问题。
这些研究对许多学科非常重要,特别是在数学、物理学、经济学和计算机科学等领域。
在高等教育阶段,学生通常需要学习线性代数的基础知识,以帮助他们理解深入学习和实际应用中所用到的各种数学技巧和知识。
在学习线性代数时,其中最常用的工具就是Diag 线性代数,它是一种特殊的离散线性变换系统,由一组基矢量组成的方阵的变换,用来解决矩阵和向量、线性系统和线性变换、矩阵分解以及空间位置等问题。
二、Diag线性代数的基础概念Diag线性代数的基础概念是方阵的变换,它是指由一组基矢量组成的方阵的变换,基矢量可称为特征向量,它们表示了方阵在正交基矢量上的变换。
此外,Diag线性代数还涉及到一些其他概念,如逆变换、交换行列、伴联行列、三角分解以及特征值分解等。
方阵变换有助于对空间物理量的变化规律进行更精确的分析,这对许多学科有重要的意义,特别是在数学、物理学和工程学中。
在实际应用中,例如机器学习中也有许多奇妙的用途,比如特征提取、矩阵计算、数据降维和物体检测等。
三、Diag线性代数的教学资源在高等教育阶段,对于线性代数的学习,除了通过课堂讲解外,还需要同时提供合适的教学资源,以帮助学生更好地理解和掌握线性代数。
米斯特德提供了一些特殊的Diag线性代数教学资源,以帮助学生更好地理解课程的内容,学习Diag线性代数的基础知识,懂得它的原理和技巧,并对矩阵计算、数据降维和物体检测等有一定的了解。
四、结语Diag线性代数是高等教育阶段学习线性代数时最常用的工具,它可以帮助学生更好地理解和掌握线性代数,用于解决矩阵和向量、线性系统和线性变换、矩阵分解以及空间位置等问题。
米斯特德还提供了一些关于Diag线性代数的教学资源,帮助学生更好地理解课程的内容,掌握Diag线性代数的基础知识,懂得它的原理和技巧,并可以在实际应用中发挥重要作用。
线性代数教材讲解ppt课件

a11
A
a21
a12
a22
a1n a2n
am1 am1 amn
矩阵A的
m, n元
简记为
A Amn
aij
mn
aij
.
这m n个数称为A的元素,简称为元.
元素是实数的矩阵称为实矩阵,
元素是复数的矩阵称为复矩阵.
例如
1 9
0 6
3 4
5 3
是一个 2 4 实矩阵,
0
0
单位阵.
0 0 1
线性变换
x1 y1
cosx siny, sinx cosy.
对应 cos sin sin cos
这是一个以原点为中心
旋转 角的旋转变换.
Y P1 x1, y1
Px, y
O
X
三、小结
(1)矩阵的概念 m行n列的一个数表
a11
A
a21
a12
且对应元素相等,即
aij bij i 1,2,,m; j 1,2,,n,
则称矩阵 A与B相等,记作 A B.
(8)线性变换与矩阵之间关系:
例1 n个变量x1, x2,, xn与m个变量y1, y2,, ym之
间的关系式
y1 a11x1 a12 x2 a1n xn ,
y2 a21x1 a22 x2 a2n xn ,
13 2
6 2
2i 2
是一个
33
复矩阵,
2 2 2
1 2 是一个 3 1 矩阵,
4
2 3 5 9
4
是一个 1 4 矩阵,
是一个 11 矩阵.
矩阵与行列式有本质的区别, 行列式是一个算式, 其行数和列数相同,一个数字行列式经过计算 可求得其值, 而矩阵仅仅是一个数表, 它的行数和 列数可以不同.
线性代数要点讲解

这组基向量之间是线性无关的,线性无关也就是说空间的张成需要刚刚好不多不少的向量张成,没有产生多余的向量
该组向量的任意线性组合形成的空间的维度恰好和基向量的个数是一致的
linear transformation,线性函数,input vectors 经过线性变换output vectors
1/22
线性组合
在三维空间里面找一个含有某个向量的子空间===》scalar*该向量=span(v)
在三维空间里面找一个含有二个具体向量的子空间===》scalar*向量+scalar*向量2=span(u,v)
也就是 span(V)=linear combination
在一个vector space中,有若干个vectors,这几个vectors的所有线性组合叫做这几个vectors的span
1/23
由于线性变换会涉及区域面积大小的变化===》自然就会问,变化的大小,前后的比例是多少呢?
===》我们给这个比例一个标签就是行列式,线性变换`矩阵,也就矩阵的行列式
===》然而行列式的值可以是negtive也就意味着图像进行了orientation变换
在二维空间里的orienta,我们知道变换有很多种,比如旋转,翻面等等
变换是input一个object,变换后,output a new object
因此,你也可以用function代替transformation,但是transformation更具有动态性的意义在里面
现在,我们仅研究简单的一种变换,叫做linear transformation
线性代数简介

序 言1.什么是线性代数:线性代数名曰代数,是代数学乃至整个数学的一个非常重要的学科,顾名思义,它是研究线性问题的代数理论,具体来说是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。
1.1 那么什么是代数呢?代数英文是Algebra ,源于阿拉伯语,其本意是“结合在一起”的意思。
也就是说代数的功能是把许多看似不相关的事物“结合在一起”,也就是进行抽象。
抽象的目的不是为了显示某些人智商高,而是为了解决问题的方便,为了提高效率,把许多看似不相关的问题化归为一类问题。
比如线性代数中的一个重要的抽象概念是线性空间(对所谓的要满足“加法”和“数乘”等八条公理的元素的集合),而其元素被称为向量。
也就是说,只要某个集合里的元素满足那么几条公理,元素之间的变化满足这些规律,我们就可以对这个集合(现在可以改名为线性空间了)进行一系列线性化处理和分析,这个陌生的集合的性质和结构特点我们一下子就全知道了,因为宇宙间的所有的线性空间类的集合的性质都一样,地球人都知道(如果地球人都学了线性代数的话)。
多么深刻而美妙的结论!这就是代数的一个抽象特性。
1.2 那么线性问题又是什么样的问题呢?在大家的科技实践中,从实际中来的数学问题无非分为两类:一类线性问题,一类非线性问题。
线性问题是研究最久、理论最完善的;而非线性问题则可以在一定基础上转化为线性问题求解。
因此遇到一个具体的问题,首先判断是线性还是上非线性的;其次若是线性问题如何处理,若是非线性问题如何转化为线性问题。
下面我们通过介绍一个重要的概念来逐渐的把握线性这个核心意思。
“线性”的意义线性代数里面的线性主要的意思就是线性空间里的线性变换。
线性变换或线性映射是把中学的线性函数概念进行了重新定义,强调了函数的变量之间的变换的意义。
线性函数的概念线性函数的概念在初等数学和高等数学中含义不尽相同(高等数学常常把初等数学的关键概念进行推广或进一步抽象化,初等数学的概念就变成了高等数学概念的一个特例)。
北师大二上数学知识点讲解

北师大二上数学知识点讲解北师大二上数学课程包含了许多重要的数学知识点,本文将对其中的几个重要知识点进行讲解。
一、线性代数线性代数是数学中一个非常重要的分支,它研究的是向量空间及其上的线性变换。
在北师大二上的数学课程中,线性代数是一个必修的模块。
1. 向量和矩阵在线性代数中,向量是一个非常基本的概念。
向量可以表示为一个有序的实数或复数数组。
矩阵则是由多个向量组成的矩形数组。
我们可以通过矩阵运算来进行向量的加法、减法、数乘等操作。
2. 线性方程组线性方程组是线性代数中的一个重要概念。
它由多个线性方程组成,方程中的变量之间存在线性关系。
我们可以通过高斯消元法、矩阵运算等方法来求解线性方程组。
3. 特征值和特征向量特征值和特征向量是线性代数中的重要概念。
对于一个线性变换,它的特征值可以表示该变换的特定性质,特征向量则是与该特征值对应的非零向量。
二、概率论与数理统计概率论和数理统计是数学中的重要分支,它们研究随机现象和数据分析的方法。
1. 随机变量和概率分布随机变量是概率论中的关键概念,它表示随机试验的结果。
概率分布则描述了随机变量取值的概率情况,常见的概率分布有离散型分布和连续型分布。
2. 数理统计数理统计是对数据进行分析和推断的数学方法。
它包括参数估计和假设检验等内容。
参数估计是通过样本数据对总体参数进行估计,假设检验则是根据观察到的样本数据对关于总体的假设进行检验。
三、微分方程微分方程是数学中的一门重要分支,它研究函数与其导数之间的关系。
1. 常微分方程常微分方程是微分方程中的一个重要类别。
它是指未知函数的一阶或多阶导数与自变量之间的关系。
通过求解常微分方程,我们可以得到函数的解析解或数值解。
2. 高阶线性微分方程高阶线性微分方程是常微分方程的一个重要类型,它由未知函数及其导数组成。
通过特征方程、常数变易法等方法,我们可以求解高阶线性微分方程。
四、数学分析数学分析是数学中的一门基础课程,它研究函数、极限、连续性等概念。
线性代数第一章PPT讲解1-4

aaijij 0 0
D
1 i1
1
a j 1 i1, j
ai1, j1
ai1,n
anj an, j1 ann
aaiijj
0
0
1 i j2 ai1, j ai1, j1 ai1,n
anj an, j1 ann
aijj
0
0
1 i j ai1, j ai1, j1 ai1,n
anj an, j1 ann
aaiijj
0
0
元 素aij在 行 列 式ai1, j ai1, j1 ai1,n 中 的
anj an, j1 ann
余 子 式 仍 然 是aij在 a11 a1 j a1n
D 0 aaiijj 0 中的余子式 Mij .
an1 anj ann
二、行列式按行(列)展开法则
定理3 行列式等于它的任一列(行)的各元 素与其对应的代数余子式乘积之和,即
D a1 j A1 j a2 j A2 j anj Anj j 1,2,, n
证 a11 a1 j 0 0 a1n
D
a21
0 a2 j 0
a2n
an1 0 0 anj ann
1பைடு நூலகம்
x2
x2 x1
( xi x j ),
2i j1
当 n 2 时(1)式成立.
假设(1)对于 n 1 阶范德蒙德行列式成立,
依次做行变换:
rn x1rn1 , rn1 x1rn2 , ....., r2 x1r1
有
1
1
1
1
0
Dn 0
x2 x1
x2 ( x2 x1 )
x3 x1
线性代数重要知识点讲解
线性代数重要知识点讲解1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、◤和◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基;⇔A 是n R 某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其均A 、B 可逆:若12s A A A A ⎛⎫⎪⎪= ⎪⎪⎝⎭,则: Ⅰ、12s A A A A = ; Ⅱ、11111s A A A A ----⎛⎫⎪⎪= ⎪⎪⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭;(副对角分块) ④、1 1111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11A O A O C B B CAB -----⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵 A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与 A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵 A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则 A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪⎪= ⎪⎪⎪⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪⎪⎪⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫⎪⎪=≠ ⎪⎪⎪⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果 A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ; ③、利用特征值和相似对角化: 7. 伴随矩阵: ①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 有n 阶子式全部为0; ③、()r A n ≥,A 有n 阶子式不为0;9. 线性方程组:Ax b =,其A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax ba a a xb ⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪⎪⎪=⇔= ⎪⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪⎪= ⎪⎪⎝⎭(全部按列分块,其12n b b b β⎛⎫⎪⎪= ⎪⎪⎝⎭ ); ④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα; m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪⎪= ⎪⎪⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义: ①、α线性相关⇔0α=;②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组 A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤;向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由 B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s sA a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K = (B AK =)其K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x x x ααα⎛⎫⎪⎪= ⎪⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ- 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ- 线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩ ; ②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若 A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a 11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=---- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与 B 等价⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同⇔=T C AC B ,其可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数;③、A 与B 相似 1-⇔=P AP B ;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)。
线性代数重点知识总结
说明:1.本总结只是把课本的重点知识总结了一下,我没有看到期末考试题,所以考着了算是侥幸,考不着也正常。
2.知识点会了不一定做的对题,所以还要有相应的练习题。
3.前后内容要贯穿起来,融汇贯通,建立自己的知识框架。
第一章行列式1.行列式的定义式(两种定义式)-->行列式的性质-->对行列式进行行、列变换化为上下三角(求行列式的各种方法逐行相加、倒叙相减、加行加列、递推等方法,所有方法是使行列式出现尽可能多的0为依据的)。
2.行列式的应用——>克拉默法则(成立的前提、描述的内容、用途,简单的证明可从逆矩阵入手)。
总结:期末第一章可能不再单独考,但会在求特征值/判断正定性等内容时顺便考察行列式的求解。
第二章矩阵1.矩阵是一个数组按一定的顺序排列,和行列式(一个数)具有天壤之别。
2.高斯消元法求线性方程组的解—>唯一解、无解、无穷解时阶梯型的样子(与第三章解存在的条件以及解的结构联系在一起)3.求逆矩阵的方法(初等变换法,I起到记录所有初等变换的作用)、逆矩阵与伴随矩阵的关系。
4.初等矩阵和初等变换的一一对应关系,学会由初等变换找出与之对应的初等矩阵。
5.分块矩阵(运用分块矩阵有时可以很简单的解决一些复杂问题)记得结论A 可逆,则)A -(1|A |A -1T T αααα=+。
第三章 线性方程组第三章从向量组的角度入手,把线性方程组的系数矩阵的每一列看作一个列向量,从而得到一个向量组假设为n 21,,,ααα ,右边常则看作一个向量β,1)若向量β被向量组n 21,,,ααα 表出唯一(即满足关系:n n n ==),,,,(r ),,,(r 2121βαααααα 时,因为只有向量组n 21,,,ααα 线性无关才表出唯一),则只有唯一解;2)若β不能由向量组n 21,,,ααα 线性表出(即满足条件),,,,(r 1),,,(r 2121βααααααn n =+时)则无解;3)若β由向量组n 21,,,ααα 表出不唯一(即满足条件n n n <=),,,,(r ),,,(r 2121βαααααα 时,只有n 21,,,ααα 线性相关才表出不唯一)有无穷解。
《线性代数》课件
通过本PPT课件,帮助您深入了解线性代数的原理和应用,从基本概念到实例 讲解,全面提升您的线性代数知识。
课程介绍
了解线性代数的重要性和应用领域,介绍课程内容和学习目标。
基本概念和定义
1 向量
2 矩阵
介绍向量的定义和性质, 包括向量的运算和几何 表示。
解释矩阵的概念、矩阵 的运算和特殊类型的矩 阵。
对角化
探索对角化矩阵的定义和性质,以及 如何对角化一个矩阵。
应用物理学等领域中的应用实例,激发学习者对线性代数的兴趣和学习 动力。
介绍高斯消元法解线性方程组 的步骤和应用。
矩阵表示
讲解线性方程组的矩阵表示和 矩阵方程的求解。
向量空间
深入研究向量空间的定义和性质,探讨基、维数和子空间的相关概念。
特征值和特征向量
1
特征向量
2
解释特征向量的概念和性质,以及特
征向量与特征值之间的关系。
3
特征值
介绍特征值的定义和求解,以及特征 值的几何意义和应用。
3 行列式
探讨行列式的计算和性 质,以及行列式在线性 代数中的应用。
矩阵运算
加法与减法
介绍矩阵的加法和减法运算, 以及相关的性质和规则。
数乘
详细讲解数乘运算的定义和 性质,以及数乘对矩阵的影 响。
乘法
解释矩阵的乘法运算,包括 矩阵乘法的定义和运算法则。
线性方程组
什么是线性方程组?
高斯消元法
解释线性方程组的概念和解法, 包括矩阵法和消元法。
高等数学中的线性代数初步讲解
高等数学中的线性代数初步讲解近几年,线性代数已成为高等数学课程中必修的一门学科。
与其他数学分支不同,线性代数在实际生活中占据着重要的角色。
它不仅是数学基础中的重要组成部分,也在计算机科学、化学、物理学、社会科学、经济学等各个领域得到了广泛应用。
本文旨在初步讲解高等数学中的线性代数内容,帮助读者更好地理解这一学科。
一、向量和矩阵线性代数以向量和矩阵为其基本的概念。
向量简单的理解就是有方向的线段。
我们可以使用坐标来描述每个向量的位置。
假设在平面直角坐标系中有两个向量,分别表示为向量$u$和向量$v$,那么它们的坐标表示分别是:$u = (u_1, u_2), v = (v_1, v_2)$两个向量的和是它们的坐标分别相加:$u + v = (u_1 + v_1, u_2 + v_2)$与此同时,矩阵也是线性代数中的重要概念。
矩阵是一个由数值排列成的矩阵。
例如下面的2x2的矩阵:$\begin{bmatrix}1 & 2 \\3 & 4\end{bmatrix}$矩阵的上下文语境是重要的,它可以表示线性映射、方程组、向量空间等概念。
二、线性变换和线性方程组线性变换是指一种将每个向量映射到另一个向量的映射方法。
它是一种线性的映射方法,遵循以下原则:(1)变换不改变向量的零长度;(2)变换不改变两向量之间的距离或角度;(3)变换不改变向量的方向。
线性变化有一个特殊的矩阵形式,称之为变换矩阵,利用这个矩阵可以表示线性变化。
例如,下面的矩阵:$\begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 0\end{bmatrix}$其中零在最后一行最后一个位置上。
这个变换矩阵表示将三维空间中的向量映射到二维空间中。
线性方程组在实际应用中也非常广泛。
我们可以使用矩阵和向量表示线性方程组。
例如,下面的二元一次方程:$ax + by = c \\dx + ey = f$可以表达为如下矩阵形式:$\begin{bmatrix}a & b \\d & e\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}c \\f\end{bmatrix}$当然,这样表示的优势不仅仅在于简化表达,也在于简化解决问题的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章基本代数结构简介 4
注意:
这里的“乘法”与“加法”并不是通常的乘法与 加法,而仅表示代数运算所确定的对应关系。
例8.1设A 所有整数 ,B 所有不等于零的整数 , C 所有有理数 。规定 a a A, b B ab b
第八章基本代数结构简介
9
三、Байду номын сангаас结
1、代数运算的定义; 结合律 2、代数运算满足的运算律 交换律 左分配律 分配律 右分配律
第八章基本代数结构简介
10
例8.3 设V是数域 K上的线性空间,则加法 运算是 V 上的代数运算, K中的数与 V中的数乘运算是 K和V到V 的代数运算。 例8.4 设A 0,1, 规定 0 1 1 0 1, 0 0 0, 1 1 0, 0 1 1 0 0 0 0, 1 1 1.
则 是从集合A和B到C的代数运算,也就是普通的 除法。
第八章基本代数结构简介 5
例8.2 设A K mn , B K n p , C K m p , 规定 A B AB ( A K m n , B K n p )
则 是从集合A和B到C的代数运算,这就是矩阵 的乘法。
第八章基本代数结构简介 6
则 和 都是集合 A上的代数运算,这两种 运算 可用运算表的形式表示 为
0 1
0
0 1
1
1 0
0 1
0 0
0
1 0
1
常用的是集合A上的代数运算,在这样的代数 运算之下,可以对A中任意两个元素加以运算, 而且所得结果还在A中,所以当 或 是集合A 上的代数运算时,也称集合A对于代数运算 或 是封闭的。
第八章基本代数结构简介
8
定义8.4 设 和 是集合 A上的两种代数运算,如 果 对任意 a, b, c A,都有 a b c a b a c 则称代数运算 和 满足左分配律。如果 b c a b a c a 则称代数运算 对 满足右分配律。如果代 数运算 对 同时满足左分配律和右 分配律,则称 对 满足分配律。
第八章基本代数结构简介 7
二、运算律
定义8.2 设 是集合 A上的代数运算,如果对 任 意a, b, c A都有 (a b) c a b c 则称代数运算 满足集合律。 定义8.3 设 是集合 A上的代数运算,如果对 任 意a, b A都有 ab ba 则称代数运算 满足交换律。
第八章基本代数结构简介
1
第八章 基本代数结构简介
第一节 代数运算
第二节 群及其基本性质 第三节 环与域
第八章基本代数结构简介
2
第一节 代数运算
代数运算的定义
代数运算的运算律 小结
第八章基本代数结构简介
3
一、代数运算的定义
定义8.1 设A, B, C是三个非空集合,如果 按 照某一法则把任意 a A和b B与C中唯一确定 的元素 c对应,则称这一对应为 集合 A和B到C的 一个代数运算。如果 A B C,则称这一对应 为集合 A上的一个代数运算。