3.2.4 切比雪夫多项式零点插值

合集下载

切比雪夫多项式的应用

切比雪夫多项式的应用

4 3.5 3 2.5 2
←f(x)
1.5 1 0.5
→L3(x)
0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
对于连续函数 g ( x) = x 20 , e x , sin(5πx), e − x sin(2πx) ,分别绘出 n = 10,13,20,21 次拉格朗日 插值多项式 Ln ( x) 的图像和原函数的图像如图 1-4 所示
>> k=0:1:10; >> X=cos((2*k+1)*pi/22); >> %求出 10 次切比雪夫多项式的零点 syms x >> F=inline('x.^20'); >> %要插值的原函数 f(x)=x.^20 >> t=linspace(-1,1,100000); >> yt=F(t); y=F(X); yi=interp1(X,y,t,'language'); plot(t,yt,'r--',t,yi,'k-')
k=0:1:20; X=cos((2*k+1)*pi/42); syms x >> F=inline('sin(5*pi*x)'); %要插值的原函数 f(x)=sin(5*pi*x) t=linspace(-1,1,100000); yt=F(t); y=F(X); yi=interp1(X,y,t,'language'); plot(t,yt,'r--',t,yi,'k-')
Rn ( x ) =
1 f ( n +1) (ξ x )ω n ( x) (n + 1)!

计算方法最佳一致逼近多项式切比雪夫多项式

计算方法最佳一致逼近多项式切比雪夫多项式
计算方法最佳一致逼近 多项式切比雪夫多项式
路漫漫其修远兮, 吾将上下而求索
2020年4月11日星期六
内容
1. 函数逼近的基本概念 2. 切比雪夫多项式 3. 最佳一致逼近多项式 4. 切比雪夫多项式在函数逼近中的应用 5. 利用切比雪夫多项式的0点构造最佳逼近多
项式的例子
路漫漫其修远兮, 吾将上下而求索
y
y=L (x)
路漫漫其修远兮, 吾将上下而求索
一致逼近的几何意义
x Home
切比雪夫多项式
路漫漫其修远兮, 吾将上下而求索
切比雪夫(Chebyshev)多项式
• 切比雪夫多项式在逼近理论中有重要的应用 • 。切比雪夫多项式的0点可以用于构造具有最佳
一致逼近性质的插值多项式。
切比雪夫多项式的(简单)定义:
三、切比雪夫多项式在函数逼近中的应用
希望构造最高次幂xn 系数为1 的多项式:
路漫漫其修远兮, 吾将上下而求索

三、切比雪夫多项式在函数逼近中的应用
证明比较复杂,省略。
路漫漫其修远兮, 吾将上下而求索
这个定理的 结论非常重要
怎样才能使得拉格朗日插值多项式成为最佳逼近 ?

偏差估计
路漫漫其修远兮, 吾将上下而求索
吾将上下而求索
(5)切比雪夫多项式的极值点 …
路漫漫其修远兮, 吾将上下而求索

1
T2(x )
T1(x
)
-1
1
T3(x ) 路漫漫其修远兮,
吾将上下而求索
T4(x )
-1
T3(x)有3个0值点,4个极值点
总结: Tn(x)具有很好的性质。
y
x
Tn(x)是n阶多项式,具有n个0点,n+1个极值点;有 界[-1, 1]; T1(x), T3(x),…只含x的奇次项,是奇函数

切比雪夫多项式-详细-Chebyshev polynomials

切比雪夫多项式-详细-Chebyshev polynomials

切比雪夫多项式是与棣美弗定理有关,以递归方式定义的一系列正交多项式序列。

通常,第一类切比雪夫多项式以符号Tn表示,第二类切比雪夫多项式用Un表示。

切比雪夫多项式Tn 或Un 代表n 阶多项式。

切比雪夫多项式在逼近理论中有重要的应用。

这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值。

相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近。

在微分方程的研究中,数学家提出切比雪夫微分方程和相应地,第一类和第二类切比雪夫多项式分别为这两个方程的解。

这些方程是斯图姆-刘维尔微分方程的特殊情形.定义:第一类切比雪夫多项式由以下递推关系确定也可以用母函数表示第二类切比雪夫多项式由以下递推关系给出此时母函数为从三角函数定义:第一类切比雪夫多项式由以下三角恒等式确定其中n = 0, 1, 2, 3, .... . 是关于的n次多项式,这个事实可以这么看:是:的实部(参见棣美弗公式),而从左边二项展开式可以看出实部中出现含的项中,都是偶数次的,从而可以表示成的幂。

用显式来表示尽管能经常碰到上面的表达式但如果借助于复函数cos(z), cosh(z)以及他们的反函数,则有类似,第二类切比雪夫多项式满足以佩尔方程定义:切比雪夫多项式可被定义为佩尔方程在多项式环R[x] 上的解(e.g., 见Demeyer (2007), p.70). 因此它们的表达式可通过解佩尔方程而得出:归递公式两类切比雪夫多项式可由以下双重递归关系式中直接得出:T0(x) = 1 U − 1(x) = 1 Tn + 1(x) = xTn(x) − (1 − x2)Un − 1(x) Un(x) = xUn − 1(x) + Tn(x) 证明的方式是在下列三角关系式中用x 代替xTn(x) − (1 − x2)Un(x)正交性Tn 和Un 都是区间[−1,1] 上的正交多项式系.第一类切比雪夫多项式带权即:可先令x= cos(θ) 利用Tn (cos(θ))=cos(nθ)便可证明.类似地,第二类切比雪夫多项式带权即:其正交化后形成的随机变量是Wigner 半圆分布).基本性质对每个非负整数n,Tn(x) 和Un(x) 都为n次多项式。

切比雪夫多项式及其在物理学中的应用

切比雪夫多项式及其在物理学中的应用

切比雪夫多项式及其在物理学中的应用切比雪夫多项式是数学中的一种特殊类型的多项式,它以俄罗斯数学家彼得·切比雪夫的名字命名。

切比雪夫多项式在数学和物理学中都有广泛的应用,特别是在信号处理、逼近理论和波动现象的研究中。

切比雪夫多项式是通过切比雪夫方程定义的。

切比雪夫方程是一个二阶常微分方程,形式为(1-x^2)y''-xy'+n^2y=0,其中n是一个实数。

它的解就是切比雪夫多项式,通常记作Tn(x)。

切比雪夫多项式具有许多独特的性质。

首先,切比雪夫多项式是正交的,即在区间[-1,1]上的任意两个不同的切比雪夫多项式的积分为0。

这个性质在信号处理和逼近理论中非常有用,可以用来表示信号和函数的展开系数,实现信号的压缩和重构。

其次,切比雪夫多项式是最佳逼近多项式。

这意味着在给定的函数空间中,切比雪夫多项式是与被逼近函数的误差最小的多项式。

这个性质在逼近理论中被广泛应用,例如在数据拟合、函数逼近和图像处理中。

切比雪夫多项式还有一些重要的性质。

例如,它们是对称的,即Tn(x)=Tn(-x),这使得它们在对称性问题的研究中非常有用。

此外,切比雪夫多项式在微分方程的解和特殊函数的表示中也有应用。

在物理学中,切比雪夫多项式的应用非常广泛。

首先,切比雪夫多项式可以用来描述波动现象。

例如,在光学中,切比雪夫多项式可以用来描述光的干涉和衍射现象。

在声学中,切比雪夫多项式可以用来描述声波的传播和共振现象。

其次,切比雪夫多项式还可以用来解决物理学中的特殊问题。

例如,在量子力学中,切比雪夫多项式可以用来描述量子力学中的谐振子问题。

在统计物理学中,切比雪夫多项式可以用来描述理想气体的分布函数。

此外,切比雪夫多项式还与傅里叶级数有着密切的关系。

通过将切比雪夫多项式展开成傅里叶级数,可以得到切比雪夫多项式的频谱分布,从而更好地理解切比雪夫多项式在信号处理和逼近理论中的应用。

总之,切比雪夫多项式是一种重要的数学工具,在数学和物理学中都有广泛的应用。

切比雪夫多项式零点证明

切比雪夫多项式零点证明

切比雪夫多项式零点证明切比雪夫多项式(Chebyshev polynomial)是一类在数学中具有重要应用的特殊多项式。

在实分析和数值计算中,切比雪夫多项式的零点分布具有独特的性质,可以用于插值、逼近和优化等领域。

本文将详细介绍切比雪夫多项式的零点证明。

首先,我们来定义切比雪夫多项式。

切比雪夫多项式可以用递归的方式定义,如下:T0(x) = 1T1(x) = xTn(x) = 2xTn-1(x) - Tn-2(x) (n ≥ 2)切比雪夫多项式的零点通常被称为切比雪夫节点。

切比雪夫多项式的第n个零点可以表示为:xk = cos(π(k + 0.5)/n) (0 ≤ k < n)为了证明这一结论,我们可以通过数学归纳法来进行证明。

首先,我们可以验证n=1和n=2的情况,这是基本情况。

当n=1时,切比雪夫多项式为T1(x) = x,其零点为x0 = 0,与结论一致。

当n=2时,切比雪夫多项式为T2(x) = 2x^2 - 1,其零点为x0 = -1/√2 和x1 = 1/√2,也与结论一致。

接下来,我们假设对于任意的n≥2,切比雪夫多项式的零点公式成立。

我们要证明对于n+1的情况,也能得到相应的结论。

假设切比雪夫多项式Tn(x)的零点为x0, x1, ..., xn-1。

我们定义新的多项式Un(x) = Tn(x) - λ,其中λ为待确定的常数。

根据切比雪夫多项式的递推关系,我们有:Un+1(x) = 2xUn(x) - Un-1(x)假设Un(x)有m个零点,我们用y0, y1, ..., ym-1来表示。

因为Un(x) = Tn(x) - λ,所以Un(x)的零点与Tn(x)的零点相同。

我们还可以得到:Un+1(yi) = 2yiUn(yi) - Un-1(yi) = 0现在,我们来确定λ的值,使得Un+1(x)的零点为切比雪夫多项式Tn+1(x)的零点。

我们假设Un(x)的零点在[-1,1]之间,因为切比雪夫多项式的定义域为[-1,1]。

切比雪夫多项式的三角函数表示

切比雪夫多项式的三角函数表示

切比雪夫多项式的三角函数表示切比雪夫多项式是一类重要的数学函数,它可以通过三角函数来表示。

在本文中,我们将介绍切比雪夫多项式的定义、性质以及如何使用三角函数来表示它。

让我们来了解一下切比雪夫多项式的定义。

切比雪夫多项式是由切比雪夫多项式方程所定义的一组多项式。

切比雪夫多项式方程可以表示为T_n(x) = cos(n\arccos(x)),其中n是多项式的阶数,x是自变量。

切比雪夫多项式是一个在区间[-1, 1]上定义的函数,它具有一些特殊的性质。

切比雪夫多项式具有递推关系,即T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x),其中T_0(x) = 1,T_1(x) = x。

这个递推关系可以用来计算高阶切比雪夫多项式。

切比雪夫多项式的性质非常丰富。

首先,切比雪夫多项式是一个奇函数,即T_n(-x) = -T_n(x)。

其次,切比雪夫多项式在区间[-1, 1]上具有n个不同的实根,这些实根被称为切比雪夫节点,可以用来进行数值计算和插值。

现在让我们来看一下如何使用三角函数来表示切比雪夫多项式。

我们知道,三角函数是一个周期函数,可以用来表示周期性的现象。

而切比雪夫多项式是一个在区间[-1, 1]上定义的函数,因此可以通过三角函数来表示。

具体来说,我们可以使用余弦函数来表示切比雪夫多项式。

根据切比雪夫多项式的定义,可以将cos(n\arccos(x))展开为cos(n\theta),其中\theta = \arccos(x)。

然后,利用三角函数的和差化积公式,可以将cos(n\theta)表示为余弦函数的线性组合。

例如,切比雪夫多项式T_2(x) = 2x^2 - 1可以表示为cos(2\arccos(x)) = 2\cos^2(\arccos(x)) - 1。

进一步化简,可以得到T_2(x) = 2\cos^2(\arccos(x)) - 1 = 2x^2 - 1。

这就是切比雪夫多项式T_2(x)的三角函数表示形式。

数值分析切比雪夫多项式

数值分析切比雪夫多项式

(2k 1)
xk cos( 22 )
( k = 0, 1, 2, ···, 10)
11/18
令, P11(x) = (x – x0)(x – x1)···(x – x10) Q11(x) = (x – t0)(x – t1)···(x – t10)
则有
max
1 x1
|
P11( x)
|
max
1 x1
a22= - 1/3 a21=0
所以,
2(x)
x2
1 3
5/18
切比雪夫多项式:
T0(x)=1, T1(x)= cos = x, T2(x)=cos2 ······
1.递推公式:Tn(x)=cos(n),·········
由 cos(n+1)=2 cos cos(n) – cos(n-1) 得
Tn+1(x) = 2 x Tn(x) – Tn-1(x) (n ≥ 1) 所以, T0(x)=1, T1(x)=x, T2(x)=2x2 – 1 , ···········
88 135
17/18
最佳平方逼近:
P( x) 7 88 ( x 5) 9 135 8
f (x) x
P( x) 7 88 ( x 5) 9 135 8
18/18
0 cos m cos nd 0
所以,切比雪夫多项式在[– 1 , 1]上带权
( x) 1 正交
1 x2
9/18
3.切比雪夫多项式零点
T1=cos=x
n阶Chebyshev多项式: Tn=cos(n),
或, Tn( x ) = cos(n arccos x )
取 narccos x (2k 1) (k=0,1,···,n-1 )

高中数学竞赛切比雪夫(Chebyshev)多项式知识整理

高中数学竞赛切比雪夫(Chebyshev)多项式知识整理

方法一:余弦倍角公式是由余弦的幂整系数线性组合来表示倍角的余弦.这样就产生余弦的n 倍角能否用余弦的幂次的整系数线性组合表示等问题.通过研究,发现cos n α都是关于2cos α的首项系数为1的、次数等于α的倍数的、系数符号正负相间的整系数多项式,还进一步得到cos n α的一些性质.应用此性质,可以得到一些求和公式及解决许多数学问题.进一步研究,发现此多项式可以转化为切比雪夫多项式.在初等数学中,三角函数是一个十分有用的工具,余弦cos n α是众所周知的偶函数,它的倍角公式如:2cos 22cos 1αα=- ,(1)3cos34cos 3cos ααα=-. (2)它们都是由余弦cos α的幂整系数线性组合来表倍角的余弦.这样就自然产生了余弦的n 倍角能否用余弦cos α的幂次的整系数线性组合表示问题,稍作计算可以得42cos 48cos 8cos 1ααα=-+ ,(3)53cos516cos 20cos 5cos αααα=-+ .(4)观察公式(1—4),可以发现.如果公式两端同乘以2,则公式右边都是关于2cos α的首系数为1的、次数等于公式左边α的倍数的、系数符号正负相间的整系数多项式.由此猜测2cos n α也具有这一性质,下面用数学归纳法加以证明.猜想2,02cos (1)(2cos )m n m n m m n a αα-==-∑,(;n N m N +∈∈) (5)(5)式可改写为:n/312112cos (2cos )(1)(2cos )ent nmm n m n m m n n C mααα----==+-∑,(9) (9)式称为n 倍角余弦公式.12424cos 2(cos )(cos )(cos )n n n n n n n αααααα-----=-++…,其中i α为正整数.因为余弦cos α在[]0,απ∈上单调,对应值为1降到1-,即cos α[]1,1∈-,[]0,απ∈ .因此存在反函数,若令cos x α=,则arccos x α=,[]1,1x ∈-,[]0,απ∈.因此,在余弦n 倍角公式中令arccos x α=,[]0,απ∈,[]1,1x ∈-,则倍角公式为[][][]24124cos(arccos )2cos(arccos )cos(arccos )cos(arccos )nn n n n n n x x x x αα-----=-++…124242n n n n n n x x x αα-----=-++….于是cos(arccos )n x 首项系数为12n -的多项式,各项系数是整数,符号依次变化,x 的幂依次递减2次,若递减到最后,幂次为负,则该项取零.若记cos(arccos )n x =()n T x ,则()n T x 满足,12()2()()n n n T x xT x T x --=-,()n T x 称为切比雪夫多项式.从递推关系可以得到:0()1T x =,1()T x x =,22()21T x x =-,33()43T x x x =-,424()88+1T x x x =-, 535()1620+5T x x x x =-,6426()3248+181T x x x x =--.第一类切比雪夫多项式有许多良好的性质,例如:1.(cos )cos(),,n T n R n N θθθ=∈∈.(分析:令cos x θ=,arccos x θ=)2.()(1)()n n n T x T x -=-,,x C n N ∈∈.这表明()n T x 当n 为奇(偶)数时是奇(偶)函数. 3.()1,,1n T x x R x ≤∈≤.4.21(0)0m T +=,2(0)(1),m m T m N =-∈. 5.函数列{}()n T x 的生成函数为21(),,112nn n xtT x t t R t xt t≥-=∈≤-+∑. (分析:生成函数又叫母函数,在数学中,某个序列的母函数是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息.使用母函数解决问题的方法称为母函数方法.母函数的思想就是把离散数列和幂级数一一对应起来,把离散数列间的相互结合关系对应成为幂级数间的运算关系,最后由幂级数形式来确定离散数列的构造.母函数是解决组合计数问题的有效工具之一,其思想方法是把组合问题的加法法则和幂级数的乘幂的相加对应起来.)6.函数列{}()n T x 满足2阶递推关系21()2()()n n n T x xT x T x ++=-,,x C n N ∈∈.(分析:由三角恒等式cos(1)cos(1)2cos cos n n n θθθθ++-=)最小偏差切比雪夫在1857年提出这样一个问题:在最高项系数为1的n 次多项式()()()01n x x x x x ω=--…()1()n n n x x x P x --=-中,寻求在区间[]1,1-上与零的偏差最小的多项式.换句话说,就是寻求[]1,1n x C ∈-在1n H -中的最佳一致逼近多项式1()n P x *-,这里{}1111()min()n n n nn n P H x P x xP x --*--∞∞∈-=-.定理 在区间[]1,1-上所有最高项系数为1的多项式中,111()())2(n n n n n x x P x x T ω**--=-=, 与零的偏差最小,其偏差为112n -.()n U x 称为第n 个第二类切比雪夫多项式,前7个第二类切比雪夫多项式为:230123()1,()2,()41,()84U x U x x U x x U x x x ===-=-,424()16121U x x x =-+,535()32326U x x x x =-+,6426()6480241U x x x x =-+-.第二类切比雪夫多项式也有许多良好的性质,例如:1.()(1)(),,n n n U x U x x C n N -=-∈∈.即当以为奇(偶)数时是奇(偶)函数. 2.21(0)0m U +=,2(0)(1)m m U =-,(1)1n U n =+,(1)(1)(1)n n U n -=-+,m N ∈. 3.函数列{}()n U x 的生成函数为(),1nn n U x t t R t ≥=∈≤∑. 4.()1,,1n U x n x R x ≤+∈≤. 5.函数列{}()n U x 满足2阶递推关系21()2()(),,n n n U x xU x U x x C n N ++=-∈∈.两类切比雪夫多项式的关系定理1设()n T x 和()n U x 分别为第一类和第二类切比雪夫多项式,0n ≥为整数,则0()()nn i n i i U x T x x -==∑.证明 由两类切比雪夫多项式的定义得21),12(n n nT xt t x x t t ∞=-=-+∑ 而2211112121xt xt t xt t xt-=⨯-+-+-, 则(((())))n nnnnnn i n n n i i n n n t tUx T x x T x t x t∞∞∞∞-=======∑∑∑∑∑.比较式在子两边n t 项的系数,即有0(())nn i i n i U x T x x -==∑.4切比雪夫多项式的应用4.1切比雪夫多项式插值切比雪夫多项式在逼近理论中有重要的应用.这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值.相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近. 切比雪夫多项式插值法:定理:设01,,x x …,n x 为区间[],a b 上1n +个互不相同的点,[]1(),n f x C a b +∈,则对任何[],x a b ∈,存在[]01,,,x n x x x ξ∈,使得拉格朗日插值余()()()n R x f x L x =-,满足()()()(1)1(1)!n n x n R x f x n ξω+=+.其中[]{}{}[]010101,,,,min ,,,,,max ,,,,,n n n x x x x x x x x x x x x a b =⊂⎡⎤⎣⎦,()()()()()010nn n j j x x x x x x x x x ω==---=-∏.插值多项式的余项极小化:要使拉格朗日插值多项式()n L x 尽量逼近()f x ,就要使余项()n R x 尽量小.在 ()n R x 中,()f x 是固定的,而 x ξ又是未知数,所以要减小()n R x ,只有恰当选择节点集,使得在插值区间内余项的最大值为极小值.为了应用切比雪夫多项式,首先应将插值区间[],a b ,通过简单变换归一化到区间[−1,1],做变换()12k k z b a x b a =-++⎡⎤⎣⎦ 所以插值节点应取为()121cos 222k k z b a b a n π+⎡⎤=-++⎢⎥+⎣⎦.其中0,1,2,,1k n =-,所以下面我们只需要讨论区间[−1,1]上的函数的切比雪夫插值法:当取定第一类切比雪夫点21cos,0,1,2,,22k k x k n n π+==+后,()()()()()010nn n j j x x x x x x x x x ω==---=-∏()12n n T x -+=.令()1111max n n x M fx ++-≤≤=,则有()()11max 1max(1)!2(1)!n n n n x R x M M n n ++=≤++∏,故切比雪夫插值法可以使得余项的最大值极小化,得到较佳逼近多项式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
(x − xj )
j=0
其中ξ ∈ (a,b) ,若得到
则有
M n+1
=
max
−1< x<1
f
(n+1) (x)

∏ R( x)

M n+1 (n + 1)!
n
(x − xj )
j=0
n
∏ 显然,余项的大小,取决于因子 x − x j 的大小。 j=0
《数值计算》
主讲: 施明辉 厦门大学
现在我们提出一个问题:怎样选取节点 xj ( j = 0, 1, 2, …, n)
能使
max (x
−1< x<1

x0
)( x

x1 )L(x

xn
)
尽可能小?
n
∏ 由于 (x − x j ) 是一个最高次项系数为 1 的 n + 1 次多项式,由 Tn(x)的极性讨论知, j=0
当 xj 满足 时,
(x

x0 )(x

x1 )
LL ( x

xn
)
=
1 2n
Tn+1 (x)
max (x −
设在[-1, 1]上给定 n + 1 个互异的节点 x0, x1, …, xn,函数 f (x)在[-1, 1]上具有 n + 1 阶连 续导数 f (n+1) (x),对 f (x)作多项式插值时,由拉格朗日插值的余项表示式
∏ R(x) =
f (x) − Ln (x) =
f (n+1) (ξ ) (n + 1)!

Ln (x)

M n+1 max (x (n + 1)! −1<x<1

x0 )L(x

xn )
= M n+1 max Tn+1 (x) = M n+1
(n + 1)! −1<x<1 2n
(n + 1)!⋅2n
例: P64 例 4
注意:如果插值区间是[a, b],而不是[-1, 1],总可以作变换
−1< x<1
x0 )LL(x −
xn )
=
1 2n
取得极小,亦即只要插值节点 xk 取成 n + 1 次切比雪夫多项式的零点
xk
= cos(2k
+ 1) π 2(n + 1)
(k = 0, 1, 2, L, n)
则插值公式的余项在全区间[-1, 1]上的最大绝对值为极小,此时,有余项公式:
f
(x)

0
≤ max p(x) − 0 −1< x<1
从这个定理知,所有首项系数为 1 的 n 次多项式在区间[-1, 1]上的最大值满足
max
−1< x<1
p(x)

1 2 n−1
该定理称为切比雪夫多项式的极性,这种极性也是切比雪夫多项式的一种重要性质。
作为应用,介绍一下多项式插值余项的极小化。
3.2.4 切比雪夫多项式零点插值
《数值计算》
主讲: 施明辉 厦门大学
定理 6 在-1≤x ≤1 上,在首项系数为 1 的一切 n 次多项式 Hn (x)中
T~n
(x)
=
1 2 n −1
Tn
(x)
Hale Waihona Puke 与零的偏差最小,且其偏差为 1 2 n−1
即,对于任何 p(x) ∈ H n (x) ,有
1 2 n −1
=
max
−1< x<1
T~n
(x)
x= a+b+b−at 22
把函数变换成
f (x) = f ⎜⎛ a + b + b − a t ⎟⎞ = g(t)
⎝2
2⎠
其中 -1≤t ≤1,即可将定义在区间[a,b]上的函数 f (x)化为新变量 t 的定义在区间[-1, 1]上
的函数 g (t)。
例: P65 例 5
相关文档
最新文档