教案.第六讲_常用CMOS逻辑门电路与74LS系列TTL逻辑门电路
TTL和CMOS门电路

TTL和CMOS门电路摘要:门电路是构成各种复杂数字电路的基本逻辑单元,TTL和CMOS门电路作为目前应用最广的两种门电路,掌握TTL和CMOS 门电路的逻辑功能和电气特性,对于正确使用数字集成电路是十分必要的。
本文对于TTL和CMOS门电路的初学者有一定的参考作用。
关键词:TTL门电路;CMOS门电路1.引言随着数字集成电路的问世和大规模集成电路工艺水平的不断提高,为数字电路的应用开拓了无限广阔的天地。
从制造工艺上可以将目前使用的数字集成电路分为双极型、单极型和混合型三种。
在数字集成电路发展的历史过程中,首先得到推广应用的是双极型的TTL 电路。
由于其体积小、重量轻、可靠性好,至今仍是最流行的集成电路系列之一。
CMOS集成电路出现于20世纪60年代后期,随着其制造工艺的不断进步,CMOS电路逐渐成为当前集成电路的主流产品。
本文将简要总结TTL和CMOS这两种目前使用最多的数字集成电路。
2.TTL门电路TTL门电路是以双极型三极管作为开关器件的集成电路。
在TTL 门电路的定型产品中有反相器(非门)、与门、或门、与非门、或非门、与或非门和异或门几种常见的类型。
尽管它们逻辑功能各异,但输入端、输出端的电路结构形式基本相同。
2.1 反相器2.1.1 反相器的电路结构与逻辑关系反相器是TTL集成门电路中电路结构最简单的一种。
图1给出了74系列TTL反相器的典型电路。
图1 TTL反相器典型电路图1所示电路由三部分组成:T1、R1和D1组成的输入级,T2、R2和R3组成的倒向级,T4、T5和R4组成的输出级。
反向器输入和输出之间是反向关系,即Y=A'。
2.1.2 反相器的外部特性及参数为了正确地解决门电路与门电路、门电路与其他电路的连接问题,必须了解门电路的输入特性、输出特性、负载特性、传输特性和噪声容限等问题。
2.1.2.1 电压传输特性如果把图1所示反相器电路输出电压随输入电压的变化用曲线描绘出来,就得到了图2所示的电压传输特性。
电子课件电子技术基础第六版第六章门电路及组合逻辑电路可编辑全文

逻辑函数除可以用逻辑函数表达式(逻辑表达式)表示以 外,还可以用相应的真值表以及逻辑电路图来表示。真值表 与前述基本逻辑关系的真值表类似,就是将各个变量取真值 (0 和 1)的各种可能组合列写出来,得到对应逻辑函数的真 值(0 或 1)。逻辑电路图(逻辑图)是指由基本逻辑门或复 合逻辑门等逻辑符号及它们之间的连线构成的图形。
TTL 集成“与非”门的外形和引脚排列 a)外形 bOS 集成门电路以绝缘栅场效应管为基本元件组成, MOS 场效应管有 PMOS 和NMOS 两类。CMOS 集成门电路 是由 PMOS 和 NMOS 组 成的互补对称型逻辑门电路。它具 有集成度更高、功耗更低、抗干扰能力更强、扇出系数更大 等优点。
三、其他类型集成门电路
1. 集电极开路与非门(OC 门) 在这种类型的电路内部,输出三极管的集电极是开路的, 故称集电极开路与非门,也称集电极开路门,简称 OC 门。
OC 门 a)逻辑符号 b)外接上拉电阻
74LS01 是一种常用的 OC 门,其外形和引脚排列如图所 示。
74LS01 的外形和引脚排列 a)外形 b)引脚排列
2. 主要参数 TTL 集成“与非”门的主要参数反映了电路的工作速度、抗 干扰能力和驱动能力等。
TTL 集成“与非”门的主要参数
TTL 集成“与非”门具有广泛的用途,利用它可以组成很多 不同逻辑功能的电路,其外形和引脚排列如图所示。如 TTL“ 异或”门就是在 TTL“与非”门的基础上适当地改动和组合而成 的;此外,后面讨论的编码器、译码器、触发器、计数器等 逻辑电路也都可以由它来组成。
数字电子技术基础课件:逻辑门电路

逻辑门电路
逻辑门电路
3.非门电路 图2.1.5(a)是由三极管构成的反相器,也称为非门电路。 当输入电压uI为低电平(0V)时,此时发射结和集电结均处于反 向偏置,所以三极管 V 截止,输出uO为高电平。当输入电压uI 为高电平(+5V)时,此时发射结和集电结均处于正 向偏置,三 极管 V 饱和,输出uO为低电平。若分别用A 和F 表示该电路 的输入和输出逻辑 变量,把分析结果列入表2.1.5中,可知图 2.1.5(a)电路完成的是非逻辑运算关系,其逻辑表 达式为
逻辑门电路
图2.2.4 TTL与非门电压传输特性的测试电路
逻辑门电路
图2.2.5 TTL与非门的电压传输特性
逻辑门电路
2.TTL与非门的输入特性 图2.2.6(a)为 TTL与非门的输入电路,在图示参考方向下 的输入电流为
根据图2.2.6(a)电路,可以画出 TTL 与 非 门 的 输 入 电 流 与 输 入 电 压 之 间 的 关 系 曲 线———输入特性曲线, 如图2.2.6(b)所示。
逻辑门电路
图2.2.3 有源泄放 TTL与非门电路
逻辑门电路
2.2.2 TTL与非门的外特性 1.TTL与非门的电压传输特性 TTL与非门的电压传输特性是指与非门的输出电压与输
入电压的关系,它表示输入信 号由低电平逐渐上升到高电平 时输出电平的相应变化。图2.2.4为 TTL与非门电压传输特 性的测试电路,图中输入端A 与可调直流电源E 相连接,其余 输入端均接高电平。改变可调 直流电源E 的大小,用电压表 测出输入电压uI和输出电压uO 的大小,就可得到图2.2.5所 示 的电压传输特性。
逻辑门电路
4.TTL与非门的输入端负载特性 图2.2.8(b)为输入信号uI随输入负载电阻R 变化的规律, 也就是输入端负载特性曲线。 由图2.2.8(a)可知
逻辑门电路课件

Rp(min)
VDD VOL(max) I OL(max) I IL(total)
… …
+V DD IOL(max) RP
0
IIL(total)
k
IIL
1
n
m
1
当VO=VOH
为使得高电平不低于规定的VIH的 最小值,则Rp的选择不能过大。 Rp的最大值Rp(max) :
I0Z(total)
+V DD RP
50%
10%
t
f
90%
50% 10%
tr
4. 功耗
静态功耗:指的是当电路没有状态转换时的功耗,即门电路空 载时电源总电流ID与电源电压VDD的乘积。
动态功耗:指的是电路在输出状态转换时的功耗, 对于TTL门电路来说,静态功是主要的。 CMOS电路的静态功耗非常低,CMOS门电路有动态功耗
5. 延时功耗积 是速度功耗综合性的指标.延时功耗积,用符号DP表示。 几种CMOS系列非门的DP见下页。
D2
CN
TN
(3) vI < vDF D2导通, D1截止 vG = vDF
当输入电压不在正常电压范围时,二极管导通,限制了电容两端电 压的增加,保护了输入电路。
RS和MOS管的栅极电容组成积分网络,使输入信号的过冲电压延 迟且衰减后到栅极。
(2)CMOS逻辑门的缓冲电路
输入、输出端加了反相器作为缓冲电路,所以电路的逻 辑功能也发生了变化。增加了缓冲器后的逻辑功能为与非 功能
6.8 25.84
C、I=2V~3V
TN导通,TP导通
vO vI
2. 传输门的应用
(1) 传输门组成的异或门
B=0
A
第六讲 真值表与基本逻辑运算

1 10
11
灌电流
IOL
IIL …
1
低电平扇出数:
N OL
I OL ( 驱 动 门) I IL (负 载 门)
IIL n个 IOL(max) ≥ IIL(total)
0 拉电流
11
IOH
10
IIH
…
1
IIH n个 IOH(max) ≥IIH(total)
高电平扇出数:
N OH
IOH ( 驱 动 门) IIH (负 载 门)
3 基本逻辑门电路
1 逻辑门:实现基本逻辑运算和复合逻辑运算的单元电路。
2 逻辑门电路的分类 分立门电路
逻辑门电路 集成门电路
二极管门电路
三极管门电路 MOS门电路
TTL门电路
NMOS门 PMOS门 CMOS门
1.CMOS门电路和TTL门电路
(1)CMOS集成电路:
广泛应用于超大规模、甚大规模集成电路
00000011 数字输出
保持、量化、 编码
(4)数字信号的描述方法
二值数字逻辑 0、1数码 ---表示数量时称二进制数
表示方式
---表示事物状态时称二值逻辑
逻辑电平与电压值的关系(正逻辑)
电压(V) 二值逻辑 +5(3.3~5) 1 0(0~1.5) 0
电平 H(高电平) L(低电平)
2 二值逻辑变量与基本逻辑运算
最大数目。驱动器件必须对负载器件提供足够大的拉电流和灌 电流。
负载器件所要求的输入电压
1 vO
驱动门
vI 1
负载门
vO
VOH (min)
vI
VIH (min)
VOH(min)
≥ VIH(min)
数电CMOS逻辑门

THANKS FOR WATCHING
感谢您的观看
稳定性好
CMOS逻辑门的输出电压范围较小,不易受到温度和工艺变化的影响。
CMOS逻辑门的阈值电压也相对稳定,有利于提高数字电路的稳定性。
输入阻抗高
CMOS逻辑门的输入电路采用反相器结构,具有较高的输入阻抗。
高输入阻抗能够减小信号传输过程中的损耗,提高信号的保真度。
03
CMOS逻辑门的应用
在数字电路中的应用
新型CMOS逻辑门的研究
总结词
随着集成电路技术的发展,新 型CMOS逻辑门不断涌现,以
满足新的应用需求。
详细描述
新型CMOS逻辑门通过创新设 计理念和结构,提高性能、降 低功耗和减小尺寸。
总结词
新型CMOS逻辑门包括可重构 逻辑门、自适应逻辑门和神经 网络逻辑门等。
详细描述
这些新型逻辑门具有更高的灵 活性、自适应性和智能化水平 ,为未来集成电路的发展提供
输入级通常由一个或两个反 相器构成,用于实现逻辑非 的功能。
输出级由一个反相器和两个 串联的二极管构成,用于实 现逻辑与的功能。
CMOS逻辑门的制作工艺
CMOS逻辑门采用成熟的半导体制作工艺, 包括外延、光刻、腐蚀、扩散和蒸镀等工艺 。
外延工艺用于生长单晶硅层,光刻工艺用于 在硅片上形成电路图形,腐蚀工艺用于去除 不需要的硅层,扩散工艺用于掺杂不同元素 形成导电区域,蒸镀工艺用于形成金属导线
数电CMOS逻辑门
目 录
• CMOS逻辑门简介 • CMOS逻辑门的特点 • CMOS逻辑门的应用 • CMOS逻辑门的实现 • CMOS逻辑门的发展趋势
01
CMOS逻辑门简介
什么是CMOS逻辑门
数字电子技术逻辑门电路课件

数字电子技术-逻辑门电路
二极管与门/或门电路的缺点
(1)在多个门串接使用时,会出现低电平偏离标准数值 的情况。 (2)负载能力差。
+VCC(+5V)
R 3kΩ
D1
0V
D2
5V
D1
p
5V
D2
0.7V
+VCC(+5V) R 3kΩ
L
RL
1.4V
数字电子技术-逻辑门电路
解决办法:
将二极管与门(或门)电路和三极管非门电路组 合起来。
1
3
2T 3
Hale Waihona Puke R e21kΩ输入级
中间级
输出级
数字电子技术-逻辑门电路
TTL与非门的逻辑关系分析
1、输入全为高电平3.6V时。
T2、T3饱和导通, 由于T2饱和导通,VC2=1V。
由于T3饱和导通,输出电压为: VO=VCES3≈0.3V
T4和二极管D都截止。
实现了与非门的逻 辑功能之一: 输入全为高电平时, 输出为低电平。 A
管相当于一个闭合的开关。
D
K
V
F
IF
RL
V
F
IF
RL
数字电子技术-逻辑门电路
半导体二极管的理想开关特性
(2)加反向电压VR时,二极管截止,反向电流IS可忽略。二
极管相当于一个断开的开关。
D
K
V
R
IS
RL
V
R
RL
iD
理想二极管 伏安特性
uD
0V
数字电子技术-逻辑门电路
半导体二极管的实际开关特性
实际的硅二极管正向导通时,存在 一个0.7V的门槛电压(锗二极管为 0.3V),其伏安特性曲线为:
cmos逻辑门电路[最新]
![cmos逻辑门电路[最新]](https://img.taocdn.com/s3/m/6cf0544676232f60ddccda38376baf1ffc4fe3e0.png)
CMOS逻辑门电路CMOS是互补对称MOS电路的简称(Complementary Metal-Oxide-Semiconductor),其电路结构都采用增强型PMOS管和增强型NMOS管按互补对称形式连接而成,由于CMOS 集成电路具有功耗低、工作电流电压范围宽、抗干扰能力强、输入阻抗高、扇出系数大、集成度高,成本低等一系列优点,其应用领域十分广泛,尤其在大规模集成电路中更显示出它的优越性,是目前得到广泛应用的器件。
一、CMOS反相器CMOS反相器是CMOS集成电路最基本的逻辑元件之一,其电路如图11-36所示,它是由一个增强型NMOS管T N和一个PMOS管T P按互补对称形式连接而成。
两管的栅极相连作为反相器的输入端,漏极相连作为输出端,T P管的衬底和源极相连接电源U DD,T N管的衬底与源极相连后接地,一般地U DD>(U TN+|U TP|),(U TN和|U TP|是T N和T P的开启电压)。
当输入电压u i=“0”(低电平)时,NMOS管T N截止,而PMOS管T P导通,这时T N 管的阻抗比T P管的阻抗高的多,(两阻抗比值可高达106以上),电源电压主要降在T N上,输出电压为“1”(约为U DD)。
当输入电压u i=“1”(高电平)时,T N导通,T P截止,电源电压主要降在T P上,输出u o=“0”,可见此电路实现了逻辑“非”功能。
通过CMOS反相器电路原理分析,可发现CMOS门电路相比NMOS、PMOS门电路具有如下优点:①无论输入是高电平还是低电平,T N和T P两管中总是一个管子截止,另一个导通,流过电源的电流仅是截止管的沟道泄漏电流,因此,静态功耗很小。
②两管总是一个管子充分导通,这使得输出端的等效电容C L能通过低阻抗充放电,改善了输出波形,同时提高了工作速度。
③由于输出低电平约为0V,输出高电平为U DD,因此,输出的逻辑幅度大。
CMOS反相器的电压传输特性如图11-37所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•CMOS电路容易受静电感应而击穿,在使用和存放时应注意静电屏蔽,焊接时电烙铁应接地良好,尤其是CMOS电路多余不用输入端不能悬空,应根据需要接地或接高电平。
1.常用逻辑功能的CMOS门电路
(一)CMOS逻辑与非和或非门电路
①与非门
②或非门
(二)CMOS漏极开路输出门电路(OD门)
为什么需要OD门?能否将普通2个及以上的CMOS门电路的输出直接连在一起,进而实现“线与”!
是否可以如此连接与应用?
漏极开路输出CMOS门电路(OD门)
用途:输出缓冲/驱动器;输出电平的变换;满足大功率负载电流的需要;实现线与逻辑。
T6电路的作用
T2由截止变导通,先驱动T5饱和导通,然后T6才导通,对T5进行分流,饱和度将变浅。使其从饱和变截止时更加迅速。
T5变截止的瞬态,由于T6比T5晚截止,使T5有很好的泄放回路而很快脱离饱和,提高了电路工作速度。
(二)LSTTL门电路的相当于接高电平。为了防止干扰,一般应将定义为高电平的悬空输入引脚,通过一个几千欧的电阻接电源。也可以根据逻辑情况与其它输入引脚接在一起使用。
3.1.5介绍CMOS电路的特点与使用注意问题。
3.2讲解74LS系列TTL门电路结构与工作原理。
3.2.1讲解LSTTL非门结构与工作原理。
3.2.2讲解LSTTL门电路的特性曲线和一些规定参数。
3.2.3讲解TTL功耗问题。
3.2.4讲解LSTTL与非门结构和原理。
3.2.5介绍CMOS门电路与TTL门电路两者特点比较。
为了节约课时采用课件PPT演示方式组织教学。
2.提出问题,导入常用CMOS及TTL门电路问题的讨论。
1)CMOS构成常用逻辑门结构是什么样的,工作原理如何;
2)两个CMOS门的输出是否可以并联使用;
3)CMOS异或门是如何构成的,电路工作原理又如何;
4)用双极性三极管构成的集成逻辑门电路结构是什么样的,工作原理又如何?
输入电路的静电保护
•所有与CMOS电路直接接触的工具、仪表等必须可靠接地。
•存储和运输CMOS电路,最好采用金属屏蔽层做包装材料。
多余的输入端不能悬空
•可以按功能要求接电源或接地,或与其它输入端并联使用。
输入电路需过流保护
•低阻信号源时,输入端与信号源之间串进保护电阻;
•输入端接有大电容时,应在输入端和电容之间串联接入保护电阻;
(四)LSTTL与非门74LS00
(五)CMOS门电路与TTL门电路两者特点比较
•CMOS工作速度一般比TTL低,HCMOS与TTL相当。
•CMOS扇出系数比TTL电路大。
•CMOS电路的电源电压允许围较大,约在1.5~20V,抗干扰能力比TTL电路强。
•CMOS电路的功耗比TTL电路小得多。TTL功耗几mW、CMOS的功耗只有几个μW。
•输入端接长线时,应在门电路的输入端串联接入保护电阻。
2.74LS系列TTL门电路
(一)LSTTL非门结构与工作原理
TTL集成门电路发展主要经历了四个系列,74系列、74H系列、74S系列、74LS系列。前三个系列已经被淘汰,74LS系列虽面临淘汰,但是目前仍有使用,故课程仅简单介绍74LS系列原理。
3.74LS系列TTL逻辑门电路原理及应用特点。
教学手段
本讲宜教师主导讲授,用多媒体演示为主、板书为辅。
教学步骤
教学容
设计意图
表达方式
1.回顾上一讲CMOS反相器容为本次课做准备。
上一讲容回顾:
CMOS反相器结构和工作原理
电压传输特性和电流传输特性
为了与前次课容衔接,需要进行复习与回顾,加深学生印象。之后,引入新容,如此处理教学效果会更好。
第六讲常用CMOS逻辑门电路及74LS系列TTL逻辑门电路
本讲重点
1.CMOS与非及或非逻辑门电路原理;
2.漏极开路CMOS门电路结构及应用方法;
3.CMOS传输门及异或逻辑门电路原理;
4.74LS系列TTL逻辑门电路原理及特性。
本讲难点
1.漏极开路OD门电路原理及“线与”逻辑概念与应用原则;
2.CMOS传输门构成逻辑门电路工作原理;
用问题激发学生听课的兴趣。
3.对上述问题的逐一讲解、解答。
3.1讲解常用逻辑功能的CMOS门电路。
3.1.1讲解CMOS逻辑与非门和或非门电路结构及工作原理。
3.1.2讲解CMOS漏极开路输出门电路OD门结构、工作原理及其应用。
3.1.3讲解CMOS传输门和双向模拟开关以及异或门结构与工作原理。
3.1.4讲解三态输出CMOS门电路结构与工作原理及其应用。
应用举例
RL的选择
(三)CMOS传输门和双向模拟开关及CMOS异或门
传输门的一个用途可作模拟开关,用来传输连续变化的模拟电压信号。
C=1时开关接通;C=0时开关截止。
利用CMOS传输门和CMOS反相器可以组合成各种复杂的逻辑电路,如:异或门、同或门、触发器等。
用反相器和传输门构成异或门电路
(四)三态输出CMOS门电路
利用肖特基管的低导通电压(0.3V~0.4V)和多数载流子形成电流特性抗深饱和提高速度。
D2、D3的作用
D2在T5导通的瞬间起作用,可抽取T4的基区电荷,加速其截止过程。
D3在T5导通的过程中起作用,此时T2的集电极电位比T5的集电极电位低,可以通过D3给负载电容放电,而这个放电电流又去驱动T5,减小了电路的导通延迟。
(三)TTL功耗问题
TTL功耗有静态功耗PD和动态功耗PT。由于静态时TTL工作需要的电流很大,所以说对于TTL电路静态功耗是主要的。但是动态工作时电流会出现很大的尖峰干扰和电源瞬态大电流输出,应用时必须加大电源功率,一般为2~3倍平均功率!
平均功耗=PD+PT=VCC×IccAV。其中,电源平均电流IccAV约为:IccAV=(IccH+IccL)/2+f·tPLH·(IccM-IccL)/2
三态输出的CMOS反相器
控制端低电平有效三态门:
控制端高电平有效三态门:
三态门有三种状态:高电平、低电平、高阻态。
注意:高阻状态不是逻辑状态!
三态输出反相器应用举例
(五)CMOS电路的特点与使用注意问题
①CMOS电路的优点
•静态功耗小;允许电源电压围宽(1.520V);扇出系数大,噪声容限大。
②CMOS电路的正确使用