层次分析法的基本步骤和要点
层次分析法经典案例

层次分析法经典案例篇一:层次分析法步骤层次分析法实例与步骤结合一个具体例子,说明层次分析法的基本步骤和要点。
【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
1.建立递阶层次结构应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。
AHP要求的递阶层次结构一般由以下三个层次组成:? 目标层(最高层):指问题的预定目标;? 准则层(中间层):指影响目标实现的准则;? 措施层(最低层):指促使目标实现的措施;通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。
然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。
在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。
最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递page1阶层次结构的最下面(最低层)。
明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。
AHP(层次分析法)方法、步骤

归一化后的特征向量W= (w1, w2, …,wn) T
AW= λ W max
由此得到的特征向量W= (w1, w2, …,wn) T 就作 为对应评价单元的权重向量。 λmax和W的计算一般采用幂法、和法和方根法
2009.11
方根法
m
bn aibni i 1
2009.11
(4)评价层次总排序计 算结果的一致性
设:CI为层次总排序一致性指标: RI为层次总排序随机一致性指标。
其计算公式为:CI m aiCIi i 1
CIi为Ai相应的B层次中判断矩阵的一致性指标。 m RI ai RIi i 1
RIi为Ai相对应的B层次中判断矩阵随机一致性指标 并取 CR CI
在单层次判断矩阵A中,当
aij
aik a jk
时,称判断矩阵为一致性矩阵。
进行一致性检验的步骤如下:
(a)计算一致性指标C.I.:C.I. max n ,式中n为判断矩阵阶数。
n 1 (b)计算平均随机一致性指标R.I.
R.I.是多次重复进行随机判断矩阵特征值的计算后取算术平均数得到的 ,下表给出1~15维矩阵重复计算1000次的平均随机一致性指标:
max 4
d3 W23
d4 w24
d5 w25
C.R.=0
C1
C2
C3
d1 d2 d3 d4 d5
2009.11
(3)计算各元素的总权重
准则 权重 方案 d1 d2 d3 d4 d5
C1
0.105
0.491 0.232 0.092 0.136 0.046
C2
0.637
0 0.055 0.564 0.118 0.265
层次分析法的具体步骤

层次分析法的具体步骤(1)建立层次结构模型如上所述,家纺纺织产业实施循环经济评价指标体系可被分为四层,最上层为最高层(目标层),即纺织企业循环经济各个方面的综合水平;第二层为准则层,即相互独立、分别隶属于总系统层的子系统;第三层为指数层,是对准则层的进一步细分和阐述;最底层为指标层,该层隶属于准则层,是对纺织企、Ek循环经济各个方面具体的评价指标。
在层次分析法巾多采用三层分析,即目标层、准则层和指标层。
(2)构造比较判断矩阵根据层次结构模型,通过对某层次中各元素的相对重要性做出比较判断,即对于上一层次某一推则而言,在其下一层次中所有与之相关的元素中依次两两比较,从而得出逐层进行判断评分,进而构成两两判断矩阵,如表6—2所示。
如A1,A2,…,久,在考虑相对上一层准则H:前提下构造判断矩阵H‘—A。
具体的做法是:先将矩阵左侧的指标A1依次与矩阵上边一排所列的指标Al—A。
相对于目标Hf做两两比较,比较结果按AHP法设计的范围标度(表6—3)对它的重要性给予量化,并相应填入矩阵第一行;接着依次用左列指标A2,A3,…,A4重复进行上述比较,以完成矩阵的第二行至第n行。
对于每个准则层以及每个准则下的指标群,进行同样过程,这样也就形成了多级比较判断矩阵。
AHP采用这种标度方法,不仅能克服一些指标和指标子系统无标度情况下无法测量、统计等困难,而且这种标度法有特定的科学依据,这主要表现为:第一。
实验心理学有关研究表明,人们对不同程度刺激的感觉区别,最佳的区别个数为7土2,若取其最大的极限,恰好是9个。
也就是说,人们对某个事物的属性同时进行比较,要使其前后的判断基本保持一致,最多只能对9个不向事物向时进行比较判断。
按照人们惯用的相邻标度差为1的离散标度值确定法,对1—9种事物进行比较判别时,其比例标度恰好为[1,9]间的整数。
第二,人们在估计事物问区别时,习惯采用五种判断表述:相等、较强、强、4硼、绝对强。
若需要更高精度,还可在这五种相邻判断之间做出比较,这样共有9个等级。
层次分析法

决策论层次分析法一、层次分析法概述1. 层次分析法的产生背景定量分析方法对于社会科学的发展产生了巨大的促进作用,因此越来越受到重视,特别是最优化模型,曾一度在决策问题中得到非常广泛应用。
但在应用过程中,也出现了一些问题,主要体现在以下几个方面。
第一,社会问题的复杂性决定了难以构造合适的模型。
即使构造出数学模型,有时也难以准确说明问题或者难以执行。
第二,决策问题带有相当多的主观性,而这很难体现在最优化模型中第三,庞大的模型成本太大,难以理解由于存在上述问题,人们重新思考数量方法在社会科学中的作用,特别是对于决策问题,如何既考虑数学分析的精确性,又考虑人类决策思维过程及思维规律,即定性与定量相结合,正是在这种背景下,产生了层次分析法。
2. 层次分析法的发展层次分析法(The Analytic Hierarchy Pricess,以下简称AHP)是由美国运筹学家、匹兹堡大学萨第(T.L.Saaty)教授于本世纪70年代提出的,他首先于1971年在为美国国防部研究“应急计划”时运用了AHP,又于1977年在国际数学建模会议上发表了“无结构决策问题的建模—层次分析法”一文,此后AHP在决策问题的许多领域得到应用,同时AHP的理论也得到不断深入和发展。
目前每年都有不少AHP的相关论文发表,以AHP为基本方法的决策分析系统—“专家选择系统”软件也已早推向市场,并日益成熟。
AHP于1982年传入我国。
在当年召开的中美能源、资源、环境会议上萨第教授的学生高兰尼柴(H.Gholamnezhad)向中国学者介绍了这一新的决策方法。
随后,许树柏等发表了发表了国内第一篇介绍AHP的文章“层次分析法—决策的一种实用方法”(1982年)。
此后,AHP在我国得到迅速发展,1987年9月我国召开了第一届AHP学术讨论会,1988年在我国召开了第一届国际AHP学术会议,目前AHP在应用和理论方面得到不断发展与完善。
3. 层次分析法基本原理层次分析法的基本原理是排序的原理,即最终将各方法(或措施)排出优劣次序,作为决策的依据。
AHP层次分析法步骤讲解

AHP层次分析法AHP层次分析法是一种解决多目标复杂问题的定性和定量相结合进行计算决策权重的研究方法。
层次分析法基本原理AHP层次分析法是将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。
AHP层次分析法的操作步骤完整的AHP层次分析法通常包括五个步骤:第一步:建立层次结构模型在深入分析问题的基础上,将决策的目标、考虑的因素和决策对象按相关关系分为最高层、中间层和最低层。
●最高层:决策的目的、要解决的问题●中间层(若干层):考虑的因素、决策的准则●最底层:决策时的备选方案比如现在想选择一个最佳旅游景点,当前有三个选择标准(分别是景色,门票和交通),并且对应有三种选择方案。
现通过旅游专家打分,希望结合三个选择标准,选出最佳方案,层次模型大致如下图:第二步:标度确定和构造判断矩阵通过各因素之间的两两比较确定合适的标度。
在建立层次结构之后,需要比较因子及下属指标的各个比重,为实现定性向定量转化需要有定量的标度,此过程需要结合专家打分最终得到判断矩阵表格。
比如对旅游景点选择的4个影响因素(分别是景色,门票,交通和拥挤度)进行评价(即专家评价),最终得出四个影响因素的权重。
采用1-5分标度法(也或者1-9标度法),即比如门票相对景色更加重要,此时门票打3分,那么景色相对于门票就是取其倒数1/3即0.3333分。
交通相对于景色来更重要为2分,景色相对于交通就是0.5分等。
如果A因素相对B因素非常重要,此时打5分(最高5分),那么B因素相对于A因素就是1/5即0.2分如果使用SPSSAU进行分析,操作此步骤时,需要设置【判断矩阵阶数】,可以理解为需要评价权重的因素个数,并且在白色单元格处输入各项分别的名字以及专家打分,蓝色底纹处会自动变化,不需要输入。
层次分析法(详细)

1
1/5 1/3 2 6.53
5
1 3 3 20
3
1/3 1 1 7.33
1/2
1/3 1 1 3.83
B
p1 p2
p1
p2
p3
p4
p5
p6
0.16 0.17 0.15 0.20 0.14 0.13 0.16 0.17 0.30 0.20 0.14 0.13
p3
p4 p5 p6
0.16 0.09 0.15 0.25 0.42 0.13
3
1
1
和积法具体计算步骤:
o将判断矩阵的每一列元素作归一 化处理,其元素的一般项为:
bij= bij 1nbij
(i,j=1,2,….n)
B
p1 p2
p1 1 1
p2 1 1
p3 1 2
p4 4 4
p5 1 1
p6 1/2 1/2
p3
p4 p5 p6
1
1/4 1 2 6.25
1/2
1/4 1 2 5.75
层次分析法(AHP)特点: 分析思路清楚,可将系统分析人 员的思维过程系统化、数学化和模 型化; 分析时需要的定量数据不多,但 要求对问题所包含的因素及其关系 具体而明确;
层次分析法(AHP)特点: 这种方法适用于多准则、多目标 的复杂问题的决策分析,广泛用于 物流系统规划与评价、地区经济发 展方案比较、科学技术成果评比、 资源规划和分析以及企业人员素质 测评。
层次分析法(AHP)具体步骤: 建立两两比较的判断矩阵 判断矩阵表示针对上一层次 某单元(元素),本层次与它有关 单元之间相对重要性的比较。一般 取如下形式:
Cs
p1 b11 b21 … … bn1
层次分析法

第三章决策论§4. 层次分析法一、层次分析法概述1. 层次分析法的产生背景定量分析方法对于社会科学的发展产生了巨大的促进作用,因此越来越受到重视,特别是最优化模型,曾一度在决策问题中得到非常广泛应用。
但在应用过程中,也出现了一些问题,主要体现在以下几个方面。
第一,社会问题的复杂性决定了难以构造合适的模型。
即使构造出数学模型,有时也难以准确说明问题或者难以执行。
第二,决策问题带有相当多的主观性,而这很难体现在最优化模型中第三,庞大的模型成本太大,难以理解由于存在上述问题,人们重新思考数量方法在社会科学中的作用,特别是对于决策问题,如何既考虑数学分析的精确性,又考虑人类决策思维过程及思维规律,即定性与定量相结合,正是在这种背景下,产生了层次分析法。
2. 层次分析法的发展层次分析法(The Analytic Hierarchy Pricess,以下简称AHP)是由美国运筹学家、匹兹堡大学萨第(T.L.Saaty)教授于本世纪70年代提出的,他首先于1971年在为美国国防部研究“应急计划”时运用了AHP,又于1977年在国际数学建模会议上发表了“无结构决策问题的建模—层次分析法”一文,此后AHP在决策问题的许多领域得到应用,同时AHP的理论也得到不断深入和发展。
目前每年都有不少AHP的相关论文发表,以AHP为基本方法的决策分析系统—“专家选择系统”软件也已早推向市场,并日益成熟。
AHP于1982年传入我国。
在当年召开的中美能源、资源、环境会议上萨第教授的学生高兰尼柴(H.Gholamnezhad)向中国学者介绍了这一新的决策方法。
随后,许树柏等发表了发表了国内第一篇介绍AHP的文章“层次分析法—决策的一种实用方法”(1982年)。
此后,AHP在我国得到迅速发展,1987年9月我国召开了第一届AHP学术讨论会,1988年在我国召开了第一届国际AHP学术会议,目前AHP在应用和理论方面得到不断发展与完善。
层次分析法的基本原理和步骤

层次分析法的基本原理和步骤层次分析法(Analytic Hierarchy Process, AHP)是一种定量分析方法,用于多准则决策问题的分析和决策。
它的基本原理是将复杂的决策问题层次化,通过对准则和方案的比较与评价,得出优先级权重,进而得到最佳方案。
1.确定决策目标:确定决策问题的目标,明确要达到的结果。
2.构建层次结构:将决策问题分解成一个层次结构,包括目标层、准则层和方案层。
目标层表示最终要达到的目标,准则层表示影响目标实现的准则因素,方案层表示可供选择的决策方案。
3.构建判断矩阵:在准则层和方案层中,两两比较各个准则或方案之间的重要性或优劣程度。
根据专家判断或个人主观意见,使用尺度(1-9)对两两比较进行评分,构建判断矩阵。
4.计算准则权重:根据判断矩阵的评分,使用特征值法或最大特征向量法计算准则权重。
首先对判断矩阵的列向量进行归一化处理,然后计算归一化后的特征向量,最后将特征向量的元素相加,并按比例得到准则的权重。
5.一致性检验:通过计算一致性指标和一致性比率来检验判断矩阵的一致性。
一致性指标表示判断矩阵与一致性判断矩阵之间的差异程度,一致性比率表示判断矩阵的一致性程度。
如果一致性指标小于一定阈值,且一致性比率接近1,则认为判断矩阵具有满足一致性的权重。
6.计算方案权重:将计算得到的准则权重与判断矩阵相乘,计算每个方案的权重。
权重值越大,表示方案的优先级越高。
7.一致性检验:对方案权重进行一致性检验,与准则权重的一致性检验类似。
8.敏感性分析:通过增加或减少一些因素的权重,分析结果的稳定性和可靠性。
敏感性分析可以帮助决策者了解权重对决策结果的影响程度。
9.最终决策:根据方案的权重和准则的权重,对各个方案的优先级进行排序,选择权重最高的方案作为最终决策。
层次分析法的基本原理是将决策问题逐层分解,通过两两比较和权重计算,理性地确定各个因素的优先级和权重。
通过分析和评价不同方案,辅助决策者做出最佳选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
层次分析法的基本步骤与要点结合一个具体例子,说明层次分析法的基本步骤与要点。
【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案就是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即就是多准则决策问题,考虑运用层次分析法解决。
1、建立递阶层次结构应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。
AHP要求的递阶层次结构一般由以下三个层次组成:●目标层(最高层):指问题的预定目标;●准则层(中间层):指影响目标实现的准则;●措施层(最低层):指促使目标实现的措施;通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求就是唯一的,即目标层只有一个元素。
然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些就是主要的准则,有些就是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次与组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。
在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该就是明显的。
最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。
明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。
【案例分析】市政工程项目进行决策:建立递阶层次结构在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标就是“合理建设市政工程,使综合效益最高”。
为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益与环境效益。
但问题绝不这么简单。
通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。
假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。
根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。
很明显,这两个方案于所有准则都相关。
将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。
同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。
代表不同层次,同一层次从左到右用1、2、3、4。
代表不同因素。
这样构成的递阶层次结构如下图。
目标层A准则层B准则层C措施层D2、 构造判断矩阵并赋值根据递阶层次结构就能很容易地构造判断矩阵。
构造判断矩阵的方法就是:每一个具有向下隶属关系的元素(被称作准则)作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行与第一列。
重要的就是填写判断矩阵。
填写判断矩阵的方法有:大多采取的方法就是:向填写人(专家)反复询问:针对判断矩阵的准则,其中两个元素两两比较哪个重要,重要多少,对重要性程度按1-9赋值(重要性标度值见下表)。
ij n ×n (1) a ij 〉0 (2) a ji =1/ a ji (3) a ii =1根据上面性质,判断矩阵具有对称性,因此在填写时,通常先填写a ii =1部分,然后再仅需判断及填写上三角形或下三角形的n(n-1)/2个元素就可以了。
在特殊情况下,判断矩阵可以具有传递性,即满足等式:a ij *a jk =a ik当上式对判断矩阵所有元素都成立时,则称该判断矩阵为一致性矩阵。
【案例分析】市政工程项目建设决策:构造判断矩阵并请专家填写 接前例,征求专家意见,填写后的判断矩阵如下:表2 判断矩阵表3、 )对于专家填写后的判断矩阵,利用一定数学方法进行层次排序。
层次单排序就是指每一个判断矩阵各因素针对其准则的相对权重,所以本质上就是计算权向量。
计算权向量有特征根法、与法、根法、幂法等,这里简要介绍与法。
与法的原理就是,对于一致性判断矩阵,每一列归一化后就就是相应的权重。
对于非一致性判断矩阵,每一列归一化后近似其相应的权重,在对这n 个列向量求取算术平均值作为最后的权重。
具体的公式就是:∑∑===nj n k klij i aa n W 111需要注意的就是,在层层排序中,要对判断矩阵进行一致性检验。
在特殊情况下,判断矩阵可以具有传递性与一致性。
一般情况下,并不要求判断矩阵严格满足这一性质。
但从人类认识规律瞧,一个正确的判断矩阵重要性排序就是有一定逻辑规律的,例如若A 比B 重要,B 又比C 重要,则从逻辑上讲,A 应该比C 明显重要,若两两比较时出现A 比C 重要的结果,则该判断矩阵违反了一致性准则,在逻辑上就是不合理的。
因此在实际中要求判断矩阵满足大体上的一致性,需进行一致性检验。
只有通过检验,才能说明判断矩阵在逻辑上就是合理的,才能继续对结果进行分析。
一致性检验的步骤如下。
第一步,计算一致性指标C 、I 、(consistency index)1..max --=n nI C λ第二步,查表确定相应的平均随机一致性指标R 、I 、(random index) 据判断矩阵不同阶数查下表,得到平均随机一致性指标R 、I 、。
例如,对于5阶的判断矩阵,查表得到R 、I 、=1、12......I R I C R C =当C 、R 、<0、1时,认为判断矩阵的一致性就是可以接受的,C 、R 、>0、1时,认为判断矩阵不符合一致性要求,需要对该判断矩阵进行重新修正。
【案例分析】市政工程项目建设决策:计算权向量及检验 上例计算所得的权向量及检验结果见下:4、 层次总排序与检验总排序就是指每一个判断矩阵各因素针对目标层(最上层)的相对权重。
这一权重的计算采用从上而下的方法,逐层合成。
很明显,第二层的单排序结果就就是总排序结果。
假定已经算出第k-1层m 个元素相对于总目标的权重w (k-1)=(w 1(k-1),w 2(k-1),…,w m (k-1))T,第k 层n 个元素对于上一层(第k 层)第j 个元素的单排序权重就是p j (k)=(p 1j (k),p 2j (k),…,p nj (k))T,其中不受j 支配的元素的权重为零。
令P (k)=(p 1(k),p 2(k),…,p n (k)),表示第k 层元素对第k-1层个元素的排序,则第k 层元素对于总目标的总排序为:w (k)=(w 1(k),w 2(k),…,w n (k))T = p (k) w (k-1) 或 ∑=-=mj j iji k k (k)w pw 1)1()( I=1,2,…,n同样,也需要对总排序结果进行一致性检验。
假定已经算出针对第k-1层第j 个元素为准则的C 、I 、j (k)、R 、I 、j (k)与C 、R 、j (k), j=1,2,…,m,则第k 层的综合检验指标C 、I 、j (k)=(C 、I 、1(k) ,C 、I 、2(k) ,…, C 、I 、m (k))w (k-1)R 、I 、j (k)=(R 、I 、1(k) ,R 、I 、2(k) ,…, R 、I 、m (k))w (k-1))()()(......k k k I R I C R C 当C 、R 、(k)<0、1时,认为判断矩阵的整体一致性就是可以接受的。
【案例分析】市政工程项目建设决策:层次总排序及检验 上例层次总排序及检验结果见下:5、 结果分析通过对排序结果的分析,得出最后的决策方案。
【案例分析】市政工程项目建设决策:结果分析从方案层总排序的结果瞧,建地铁(D2)的权重(0、6592)远远大于建高速路(D1)的权重(0、3408),因此,最终的决策方案就是建地铁。
根据层次排序过程分析决策思路。
对于准则层B 的3个因子,直接经济效益(B1)的权重最低(0、1429),社会效益(B2)与环境效益(B3)的权重都比较高(皆为0、4286),说明在决策中比较瞧重社会效益与环境效益。
对于不瞧重的经济效益,其影响的两个因子直接经济效益(C1)、间接带动效益(C2)单排序权重都就是建高速路远远大于建地铁,对于比较瞧重的社会效益与环境效益,其影响的四个因子中有三个因子的单排序权重都就是建地铁远远大于建高速路,由此可以推出,建地铁方案由于社会效益与环境效益较为突出,权重也会相对突出。
从准则层C 总排序结果也可以瞧出,方便日常出行(C3)、减少环境污染(C5)就是权重值较大的,而如果单独考虑这两个因素,方案排序都就是建地铁远远大于建高速路。
由此我们可以分析出决策思路,即决策比较瞧重的就是社会效益与环境效益,不太瞧重经济效益,因此对于具体因子,方便日常出行与减少环境污染成为主要考虑因素,对于这两个因素,都就是建地铁方案更佳,由此,最终的方案选择建地铁也就顺理成章了。