逻辑函数最大项表达式
逻辑函数及其表示方法

C 0 1 0 1 0 1 0 1
上页
Y 0 0 0 1 0 1 1 1
下页 返回
输出变量Y
为1表示通过, 为0表示没通过。
第四节 逻辑函数及其表示方法
2.逻辑函数式
三人表决电路真值表
把输入与输出之间的逻辑关系
A B 0 0 写成与、或、非等运算的组合式, 0 0 就得到了逻辑函数式。 0 1 0 1 根据电路功能的要求和与、或的逻辑定义, 1 0 三人表决电路的逻辑函数式为: 1 0 1 1 1 1
0 1 2 3 4 5 6 7
上页
M0 M1 M2 M3 M4 M5 M6 M7
下页 返回
第四节 逻辑函数及其入变量的任何取值下必有一个最大项,
而且仅有一个最大项的值为0。 2. 全体最大项之积为0。 3. 任意两个最大项的和为1。 4. 只有一个变量不同的两个最大项的乘积, 等于各相同变量之和。
2.最大项
定义:在n变量逻辑函数中,若M为n个变量之和, 而且这几个变量均以原变量或反变量的形式在M中 出现一次, 则称M 为该组变量的最大项。
n变量的最大项应为2n个。
输入变量的每一组取值, 都使一个对应的最大项的值等于0。
上页
19
下页
返回
第四节 逻辑函数及其表示方法
三变量最大项的编号表
最大项
使最大项为0的变量取值
上页
8
Y
下页
返回
第四节 逻辑函数及其表示方法
4.各种表示方法间的互相转换
从真值表写出逻辑函数式
一般方法:
(1)找出真值表中使逻辑函数为1的那些输入变量 取值的组合。
(2)每组输入变量取值的组合对应一个乘积项,
其中取值为 1 的写入原变量,
逻辑代数的基本定律及规则2010.9.23

_ _ _
_
_ _
_
三变量最小项的编号
长春理工大学软件学院
最大项
最大项标准式是以“或与”形式出现的标准式。 最大项: 对于一个给定变量数目的逻辑函数, 所有变 量参加相“或”的项叫做最大项。 在一个最大项中, 每个 变量只能以原变量或反变量出现一次。 例如, 一个变量A有二个最大项: (2 ) A, A。
例题:化简函数
AB + AC + BC = AB + AC
F = ABC + AD + C D + BD
F = ABC + AD + C D + BD
= ABC + ( A + C ) D + BD
= AC ⋅ B + AC ⋅ D + BD
= AC ⋅ B + AC ⋅ D
= ABC + AD + C D
最小项
2 n 个最小项。最小项通 以此类推,n变量共有
常用 mi 表示。 最小项标准式:全是由最小项组成的“与或” 式,便是最小项标准式(不一定由全部最小项 组成)。 例如:
F ( ABC ) = A B C + BC + A C = A B C + ABC + A BC + AB C + AB C = ∑ m(0,3,4,6,7)
长春理工大学软件学院
逻辑代数的基本定律及规则
对合律: A = A
冗余律: AB + A C + BC = AB + A C
长春理工大学软件学院
逻辑代数的基本定律及规则
3 基本规则
代入规则:任何一个含有变量A的等式,如果将所有 出现A的位置都用同一个逻辑函数代替,则等式仍然 成立。这个规则称为代入规则。 反演规则:对于任何一个逻辑函数F,想要得到F的反 函数,只需要将F中的所有“·”换成“+”,“+”换 成“·”,“0”换成“1”,“1”换成“0”,原变量换成反 变量,反变量换成原变量。 长春理工大学软件学院
第1章 逻辑代数基础

①代入规则:任何一个含有变量 A 的等式,如果将所有出现 A 的位置都用
同一个逻辑函数代替,则等式仍然成立。这个规则称为代入规则。 例如,已知等式 AB A B ,用函数 Y=AC 代替等式中的 A,
根据代入规则,等式仍然成立,即有:
( AC) B AC B A B C
A
E
B Y
4
第1章 逻辑代数基础---三种基本运算
功能归纳:
真值表:
开关 A 开关 B 断开 断开 闭合 闭合 断开 闭合 断开 闭合
灯Y 灭 灭 灭 亮
A 0 0 1 1
B 0 1 0 1
Y 0 0 0 1
将开关接通记作1,断开记作0;灯亮记作1,灯灭记作0。可以作出如
上表格来描述与逻辑关系,这种把所有可能的条件组合及其对应结果一一列
的逻辑函数, 并记为:
F f ( A, B, C , )
3
第1章 逻辑代数基础---三种基本运算
②三种基本运算
a.与逻辑(与运算)
定义:仅当决定事件(Y)发生的所有条件(A,B,C,…)均满足 时,事件(Y)才能发生。表达式为:
Y=A· C· B· …=ABC…
描述:开关A,B串联控制灯泡Y
法进行描述。每种方法各具特点,可以相互转换。 ①真值表
将输入变量的各种可能取值和相应的函数值排列在一起而组成的表格。
真值表列写方法:每一个变量均有0、1两种取值,n个变量共有2n种不 同的取值,将这2n种不同的取值按顺序(一般按二进制递增规律)排列起
来,同时在相应位置上填入函数的值,便可得到逻辑函数的真值表。
原式左边
AB A C ( A A ) BC
数字电路、圈卡诺图、最大项最小项

逻辑函数表达式的转换
最大项表达式 真值表中每一个对应函数值为0的输入变量实际上就是一个 函数包含的最大项,例如三变量ABC=111,函数F=0,就对应最 大项 M7。如果列出了函数的真值表,则只要将函数值为0的那些 最大项取出相与,便是函数的最大项表达式。
逻辑函数表达式的转换
例 将函数 F(A, B,C) AC ABC 转换为最大项表达式。
AB C
0
1
00
01
11
10
1
0
0
1
0
1
1
0
ABC ABC BC
ABC ABC BC
逻辑函数化简—卡诺图化简
(2)任何4个(22个)标1的相邻最小项, 可以合并为一项,并消去2个变量。
AB
C
00
01
11
10
ABC ABC ABC ABC
0
1
1
1
1 (AB AB AB AB)C
① 表达式中的与项最少; ② 在满足①的条件下,每个与项中的变量个数最少。
实现最简与-或式逻辑功能对应的电路所需要的与门最少,并 且与门总的输入引脚最少,因而电路的连线最少。
逻辑函数化简—代数化简
逻辑函数的公式化简法就是运用逻辑代数的基本公式、定 理和规则来化简逻辑函数。
(1)并项法
利用公式 AB AB A 将两个与项合并成一个与
逻辑函数化简—卡诺图化简
下图显示的是三变量(A、B、C)的卡诺图。格中标出相 应的最小项mi。
三变量的每个最小项有三个相邻的最小项,图中m2有三个 相邻最小项:m0、m3 、m6
AB
C
00 01 11 10
0 m0 m2 m6 m4 1 m1 m3 m7 m5
数电习题解答_杨志忠_第二章练习题_部分

教材:数字电子技术基础(“十五”国家级规划教材) 杨志忠 卫桦林 郭顺华 编著高等教育出版社2009年7月第2版; 2010年1月 北京 第2次印刷;第二章 逻辑代数基础练习题P58【题2.2】用逻辑函数的基本公式和定律将下列逻辑函数式化简为最简与或表达式。
解题思路:要求熟练理解、运用逻辑代数的定理和公式。
(3)、(1)()Y A ABC ABC BC BC A BC BC C B B A C =++++=++++=+;(4)、()Y AB BD DCE AD AB D A B DCE AB D AB DCE AB D =+++=+++=++=+; (8)、()()()(())()Y A B C D E A B C DE A B C DE A B C DE DE =++++++=++++++=i i ; (9)、()()()Y A C BD A BD B C DE BC ABCD ABD BC BDE BC B =+++++=++++=; 【2.3】、证明下列恒等式(证明方法不限)。
解题思路:熟练使用逻辑函数公式和相关定理、真值表、卡诺图完成证明。
(9)、()A ABC ACD C D E A CD E ++++=++;证明:()A ABC ACD C D E A ACD CDE A CD CDE A CD E ++++=++=++=++; (10)、()()BC D D B C AD B B D ++++=+;证明:()()()())BC D D B C AD B BC D B C AD B BC D BC AD B BC D AD B B D++++=++++=+++=+++=+;【2.4】、根据对偶规则求出下列逻辑函数的对偶式。
解题思路:对任何表达式,将“·”和“+”互换,所有1、0互换,原变量和非变量保持不变、而且原运算顺序不变;可得到一个新的表达式,此式是原式的对偶式。
(1)、()()Y A B C A B C =+++;解:'()()Y A B C A BC =++i i(4)、()()()()Y A C A B C B C A B C =++++++;解:'Y AC ABC BC ABC =+++; 【2.5】、根据反演规则求下列逻辑函数的反函数;解题思路:对任何一个表达式,将“·”和“+” 、原变量和反变量互换,所有1、0互换,而且原运算顺序不变;所得表达式是原式的反。
数电思考题与答案

1~5章思考题答案1.1思考题1.什么是数字信号?什么是模拟信号?答:数字信号:电压或电流在幅度上和时间上都是离散、突变的信号。
模拟信号:电压或电流的幅度随时间连续变化。
2.和模拟电路相比,数字电路有哪些特点?答:(1)电路结构简单,便于集成化。
(2)工作可靠。
抗干扰能力强。
(3)数字信号便于长期保存和加密。
(4)数字集成电路产品系列全,通用性强,成本低。
(5)数字电路不仅能完成数值运算,而且还能进行逻辑判断。
3.在数字逻辑电路中为什么采用二进制?它有哪些优点?答:由于二进制数中的0和1与开关电路中的两个状态对应,因此,二进制数在数字电路中应用十分广泛。
二进制只有0和1两个数码,可分别表示数字信号的高电平和低电平,使得数字电路结构简单,抗干扰能力强,便于集成化,通用性强。
4.简述数字集成电路的分类。
答:(1)小规模集成电路(SSI)。
主要是逻辑单元电路.(2)中规模集成电路(MSI)。
主要是逻辑功能部件。
(3)大规模集成电路(LSI)。
主要是数字逻辑系统。
(4)超大规模集成电路(VLSI)。
主要是高集成度的数字逻辑系统,如单片机计算机等。
1.2 思考题1.简述十进制数转换为二进制数、八进制数和十六进制数的方法。
答:整数部分采用连续“除基取余法";小数部分采用连续“乘基取整法”.2.简述二进制数、八进制数和十六进制数转换为十进制数的方法。
答:分别写出二进制、八进制和十六进制数按权位展开式,各位加权系数的和便为对应的十进制数.注意三者的基数不同.3.简述二进制数、八进制数和十六进制数相互转换的方法。
答:二进制数转换为八进制数的方法是:整数部分从低位开始,每3位二进制数为一组,最后一组不足3位时,则在高位加0补足3位为止;小数点后的二进制数则从高位开始,每3位二进制数为一组,最后一组不足3位时,则在低位加0补足3位,然后用对应的八进制数来代替,再按原顺序排列写出对应的八进制数.二进制数转换为八进制数的方法与上述方法雷同,只改变为每4位为一组.4.8421码和8421BCD码有何区别?答:所谓BCD码是将十进制数的0~9十个数字用4位二进制数表示的代码,而8421BCD 码是取4位自然二进制数的前10种组合,即0000(0)~1001(9),从高位到低位的权值分别为8、4、2、1.而8421码仅表示权值分别为8、4、2、1的四位二进制代码。
逻辑函数的三个规则和标准形式

A B C = m2
0
1
1
A B C = m3
1
0
0
A B C = m4
1
0
1
A B C = m5
1
1
0
A B C = m6
1
1
1
A B C = m7
① n 个变量的所有最小项(2n个)之和为1 ;
② 相同变量的任意两个最小项mi 和mj 之积为0(i≠j); ③ n变量最小项有n 个相邻最小项。
数字电路与逻辑设计
数字电路与逻辑设计
第二章 逻辑函数及其简化
数字电路与逻辑设计
(2) 最大项表达式 全部由最大项相与而构成的或-与表达式称为最大项表达式,又称为标准或-与式, 或标准和之积式。
最大项表达式的书写形式:
对于逻辑函数:F A B C A B C A B C
可以简写成: 或写成:
F A, B, C M0×M1×M4 F A, B,C M 0,1,4
等式仍成立。 解:
原式左边=A[B +(C +D )]=AB +A(C +D ) = AB +AC +AD 原式右边=AB +A(C +D ) = AB +AC +AD
所以等式仍然成立。
第二章 逻辑函数及其简化
数字电路与逻辑设计
2.反演规则
设F 是一个逻辑函数表达式,若将其中所有的与、或互换,“0”、“1”互换,原、 反变量互换,长非号(两个或两个以上变量上的非号)不变,这样可得F 的反函数。
第二章 逻辑函数及其简化
数字电路与逻辑设计
(2) 最小项表达式 全部由最小项相加而构成的与-或表达式称为最小项表达式,又称为标准与-
数字电路ch3补充:最大项、最小项、无关项

四.最简或与表达式
F ( A B)( A B)
__ __
__
__
五.最简或-与非表达式 F ( A B)( A B)
【例1】: 将逻辑函数
Y AB C BC BD 化成与非-与非形式。
解: 首先将Y化成标准的与-或式
Y ABC BC BD
再利用德-摩根定律即得到
可写成:
ABC ABC ABC ABC ABC 0
约束项:恒等于0的最小项
2)、 任意项
有时还会遇到另外一种情况,就是 在输入变量的某些取值下函数值是1还 是0皆可,并不影响电路的功能。
任意项:在这些变量取值下,其值等于1的那 些最小项称为任意项。
3)、无关项
约束项和任意项统称为无关项 。
强化: 逻辑函数的公式化简法
1 逻辑函数的最简形式
乘积项最少;每个乘积项里的因子也最少 一. 最简与-或式 二. 最简与非-与非式等
_ _
F AB A B
F AB A B
__________ ______ ____ __ __
三.最简与或非表达式
F AB AB
__________ ___ __ __
( ABD ABD) ( ACD ACD) AD AD
【例3】 化简具有约束的逻辑函数
Y ABCD ABCD ABCD
给定约束条件为
ABCD ABCD ABCD ABCD ABCD ABCD ABCD 0
解:采用卡诺图化简法
AD
Y AD AD
变量的各组取值 对应的最大项及其编号 最大项 编 号 A B C
0 0 0 0 1 1 1 1