房建外文翻译--建筑材料—混凝土与砂浆

合集下载

建筑材料外文翻译及译文

建筑材料外文翻译及译文

Building materialsBuilding materials must have certain structural use.it physical properties. First, they must be able to bear load or weight without permanent deformation. When the load on the structural components, components will deformation, it means rope will be stretching or beam will bend. However, when the load is removed, ropes and beams will return to its original position. This kind of material properties is called elasticity. If material is not elastic, then on removing load deformation exist, repeat the loading and unloading eventually increase deformation to structural lose action.All used in building structure in the materials such as stone, brick, wood, aluminum, reinforced concrete and plastic within a certain range of load performance of flexibility. If loading beyond the scope, two things will happen: brittle and plastic. If it is the former, the material will suddenly destruction; If the latter, in certain load (yield strength) material has begun to yield flow, resulting in destruction. For example, steel, stone material is brittle present plastic. Materials by the damage occurred when the ultimate strength of stress decision.Construction materials and an important characteristic is its stiffness. This feature by elastic modulus decision. Stress (per unit of area, the force) and the strain (per unit length ratio of the deformation) is elastic modulus. Elastic modulus is characterize material under load shape-shifting abilities. For two have the same area and load of the same material. Elastic modulus big materials little deformation. Structure with steel of elastic modulus is pounds per square inch or kg per square centimeter, aluminum, concrete 3 times of ten times, wood 15 times.Masonry. Masonry from natural materials such as stone and artificial materials such as brick, concrete blocks composed. Masonry in ancient times is used. Bricks used in city of Babylon not religious buildings, stone material used in large temples of the Nile valley. The pyramids of Egypt, high 481 feet (147m), is the most spectacular masonry structure. Masonry unit initial without using any binding materials piled up, and modern masonry structure as binder materials. Water mud Modern structure material including stone, red-roast clay brick or tiles, the concrete blocks.Masonry is essentially a pressurized material, it can't sustain tension, ultimate strength concrete-block masonry depends on and mud. Last strength in 1000 to 4,000 pounds per inch (70 to 280 kg per square centimeter) range change, depends on the block and mud bonding situation.Wood. Wood is a kind of the earliest building materials and is a kind of rare tensile performance good natural material. The world find hundreds of wood, and each have different physical properties. Only some use in architectural structures as framework components. In the United States, for example, in over 600 kinds of lumber, only 20 used in structure. These are generally conifers or cork, both because rich and wood easy molding. In the United States, more common in the structure of lumber sort is the loose, spruce and annatto. These timber tensile strength in 50 to 80 pounds per square inch (350 to 5.6 kg per square meter) range. Hardwood initially used as fine wood furniture and interior decoration such as floor.Due to the wood texture characteristics, it along the intensity of transverse texture texture is greater than the intensity. Wood tensile strength,trans-monounsaturated grain compressive strength is particularly big, and it has a lot of flexural strength. These characteristics make it very suitable for structure of the column and beam. Wood, as truss tensile component is invalid, because the truss structures tensile strength depends on component between node, although has produced many USES lumber tensile strength of metal fittings, but it is difficult to design the arrange grain direction of shear strength or tensile strength little relation of components.Steel. Steel is an important structural materials. When compared to the other materials by such as weight, it has high intensity, even if it volumetric weight is lumber ten times. Its elastic modulus is very big, the results under load deformation is small. It can be rolled into many structural forms such as work fonts beam, plate. It can also cast complex style, it also can produce into ropes type used in cable suspension bridge and condole top, production into elevator rope and prestressed concrete in the rods. Steel components are many ways of link together like bolt connection, riveting and welding. Carbon steels are vulnerable to oxidation corrosiontherefore must rely on paint or inserted into the concrete to avoid contact with air. More than steel soon lose strength, so we must set a fire-proof material (usually concrete) in order to increase its refractory ability.Add like silicon or manganese such alloying elements, you'll get tensile strength of 250,000 pounds per square inch (17500 kg/cm2) of high strength steel. These steel on the structure of key parts, such as skyscrapers pillars.Aluminum. When light weight, high strength and corrosion resistance has become an important factor, aluminum became a particularly useful building materials. Because pure aluminum is extremely soft and ductility of, so, the composition of the alloy, such as mn, silicon, zinc and copper must add increase structure required strength. Structural use of aluminium alloy performance of flexibility. Their elastic modulus is steel 1/3, therefore in the same loads deformation is 3 times of steel. Each unit of aluminum alloy is weight steel 1/3. Therefore the same intensities, aluminum alloy component than steel components in weight. Aluminum alloy limit tensile strength variation in 20,000 to 60,000 pounds per square inch (14 to 4,200 kg/cm2) between.Aluminum can fashioned many shapes, it can be extrusion forming strander liang, pull string and stem, rolled into foil and plate. Aluminum component can like steel use the same method, riveting, bolt connection, low strength welded together. Besides being used for architectural framework and prefabrecated house, aluminum also widely used as an window frame and structure curtain box.Concrete. Concrete is water, sand, stone and ordinary Portland cement mixture. Gravel, artificial light stone, and shells were used in natural ShiLiaoChang. Ordinary silicate cement is contains calcium and clay mixtures. In the heating furnace, and then to a fine powder. Concrete strength comes from mixing water farinaceous ordinary Portland cement, then atherosclerosis. In an ideal mixture, concrete by 3/4 volume of sand and stone and 1/4 volume of water mud. The physical characteristics of concrete mixture composition is sensitive to changes, therefore according to strength or contraction design composition ratio to achieve special results. When concrete dump in template, it contains free water, and no need water action of water will evaporate.With concrete sclerosis, it in a certain period of releasing excess water and shrinking. As a result of shrinkage, the fine cracks. In order to minimize the shrinkage crack, concrete sclerosis must protect wet at least five days. Concrete strength increased over time, because the hydration processes will last for years, In fact, 28 days intensity is considered the standard.Concrete under load is elastic deformation. Although its elastic modulus is steel one-tenth, but distortion is same, because its strength also only steel 10. Concrete is essentially a compressive material, its tensile strength can be neglected.Reinforced concrete. Reinforced concrete by placed to undertake in reinforced concrete pulling force. These reinforced in 1/4 inch in diameter (0.64 cm) and 225 inches (5.7 cm) between, the surface has Nick to ensure binding live concrete. Although reinforced concrete in many countries have development, but its discovery should be attributed to a French gardeners, Joseph in 1868 reinforcement strengthening concrete with a cone. The operation is possible, because when a change in temperature, reinforcement and concrete are equal to expansion and contraction. If this is not the case, the temperature changes, the connection between the reinforcement and concrete is destroyed, because the two materials react differently. Reinforced concrete can be pouring into various shapes, for example liang, column, the board and arch. Therefore, it is suitable for construction of special structure. Although most merchandise concrete strength around 6,000 pounds per square inch (4.2 kg/cm2), but the reinforced concrete limit tensile strength than 10,000 pounds per square inch (700 kilograms/cm2) is possible.Plastic. Because of many varieties, high strength, endurance and lightweight, plastic quickly become important structural materials. Plastics are synthetic materials or resin, can be configured to expect any shape and use organic matter for cementing agent. Organic plastic into two categories: thermoset and thermoplastic. Thermosetting plastic when heated through chemical change is strong, once forming, these plastic can no longer be cast. Thermoplastic in high temperature is weak, strong cooling, the former must not generally used for structural plastic material. Although nylon tensile achieves 60,000 pounds per square inch, but most plastics of ultimatestrength in 7000 to 12,000 pounds per square inch (490 to 840 kg/cm2) range.建筑材料建筑材料必须有一定结构上的使用性的物理特性。

建筑材料外文翻译

建筑材料外文翻译

建筑材料外文翻译摘要随着全球化的加速,建筑行业的国际化程度也越来越高。

在国际化交流中,建筑材料的外文名称也成为了一个必须掌握的知识点。

本文将介绍几种常见的建筑材料的英文和法文翻译,以供读者参考。

正文水泥英文:Cement法文:Ciment水泥是建筑中非常重要的一种材料,广泛应用于各种建筑结构中。

有大量的水泥生产厂家以及品牌,因此在国际贸易中水泥的英文和法文称谓也比较统一。

钢筋英文:Reinforcement法文:Armature钢筋作为混凝土结构中的骨架,也是建筑中不可缺少的材料之一。

在国际上,钢筋的名称有些分歧,英文中一般使用“Reinforcement”这个词,而在法文中则称为“Armature”。

砖块英文:Brick法文:Brique砖块是建筑中常用的一种耐力材料,它可以用于墙体、地面、电梯井等部位。

砖块的英文名称是“Brick”,而在法文中则使用“Brique”这个词。

石材英文:Stone法文:Pierre石材作为一种自然材料,被广泛应用于建筑中。

石材的用途也非常多,有的用于室内地面,有的则用于外墙装修。

在国际交流中,石材的英文和法文翻译都比较统一,分别是“Stone”和“Pierre”。

玻璃英文:Glass法文:Verre玻璃是现代建筑中必不可少的材料之一,普遍应用于窗户、墙面和隔墙等部位。

玻璃的英文和法文翻译也比较简单,分别是“Glass”和“Verre”。

本文介绍了几种常见的建筑材料的英文和法文翻译,希望对读者在建筑材料的国际贸易中有所帮助。

建筑材料是建筑行业中不可或缺的一部分,掌握建筑材料的外文称谓,有助于提升国际化交流的效率和准确性。

混凝土工艺中英文对照外文翻译文献

混凝土工艺中英文对照外文翻译文献

混凝土工艺中英文对照外文翻译文献混凝土工艺中英文对照外文翻译文献混凝土工艺中英文对照外文翻译文献(文档含英文原文和中文翻译) Concrete technology and developmentPortland cement concrete has clearly emerged as the material of choice for the construction of a large number and variety of structures in the world today. This is attributed mainly to low cost of materials and construction for concrete structures as well as low cost of maintenance.Therefore, it is not surprising that many advancements in concrete technology have occurred as a result of two driving forces, namely the speed of construction and the durability of concrete.During the period 1940-1970, the availability of high early strength portland cements enabled the use of high water content in concrete mixtures that were easy to handle. This approach, however, led to serious problems with durability of structures, especially those subjected to severe environmental exposures.With us lightweight concrete is a development mainly of the last twenty years.Concrete technology is the making of plentiful good concrete cheaply. It includes the correct choice of the cement and the water, and the right treatment of the aggregates. Those which are dug near by and therefore cheap, must be sized, washed free of clay or silt, and recombined in the correct proportions so as to make a cheap concrete which is workable at a low water/cement ratio, thus easily comoacted to a high density and therefore strong.It hardens with age and the process of hardening continues for a long time after the concrete has attained sufficient strength.Abrams’law, perhaps the oldest law of concrete technology, states that the strength of a concrete varies inversely with its water cement ratio. This means that the sand content (particularly the fine sand which needs much water) must be reduced so far as possible. The fact that the sand “drinks” large quantities of water can easily be established by mixing several batches of x kg of cement with y kg of stone and the same amount of water but increasing amounts of sand. However if there is no sand the concrete will be so stiff that it will be unworkable thereforw porous and weak. The same will be true if the sand is too coarse. Therefore for each set of aggregates, the correct mix must not be changed without good reason. This applied particularly to the water content.Any drinkable and many undrinkable waters can be used for making concrete, including most clear waters from the sea or rivers. It is important that clay should be kept out of the concrete. The cement if fresh can usually be chosen on the basis of the maker’s certificates of tensile or crushing tests, but these are always made with fresh cement. Where strength is important , and the cement at the site is old, it should be tested.This stress , causing breakage,will be a tension since concretes are from 9 to 11times as strong in compression as in tension, This stress, the modulus of rupture, will be roughly double the direct tensile breaking stress obtained in a tensile testing machine,so a very rough guess at the conpressive strength can be made by multiplying the modulus of rupture by 4.5. The method can be used in combination with the strength results of machine-crushed cubes or cylinders or tensile test pieces but cannot otherwise be regarded as reliable. With these comparisons,however, it is suitable for comparing concretes on the same site made from the same aggregates and cement, with beams cast and tested in the same way.Extreme care is necessary for preparation,transport,plating and finish of concrete in construction works.It is important to note that only a bit of care and supervision make a great difference between good and bad concrete.The following factors may be kept in mind in concreting works.MixingThe mixing of ingredients shall be done in a mixer as specified in the contract.Handling and ConveyingThe handling&conveying of concrete from the mixer to the place of final deposit shall be done as rapidly as practicable and without any objectionable separation or loss of ingredients.Whenever the length of haul from the mixing plant to the place of deposit is such that the concrete unduly compacts or segregates,suitable agitators shall be installed in the conveying system.Where concrete is being conveyed on chutes or on belts,the free fall or drop shall be limited to 5ft.(or 150cm.) unless otherwise permitted.The concrete shall be placed in position within 30 minutes of its removal from the mixer.Placing ConcreteNo concrete shall be placed until the place of deposit has been thoroughly inspected and approved,all reinforcement,inserts and embedded metal properly security in position and checked,and forms thoroughly wetted(expect in freezing weather)or oiled.Placing shall be continued without avoidable interruption while the section is completed or satisfactory construction joint made.Within FormsConcrete shall be systematically deposited in shallow layers and at such rate as to maintain,until the completion of the unit,a plastic surface approximately horizontal throughout.Each layer shall be thoroughly compacted before placing the succeeding layer.CompactingMethod. Concrete shall be thoroughly compacted by means of suitable tools during and immediately after depositing.The concrete shall be worked around all reinforcement,embedded fixtures,and into the comers of the forms.Every precaution shall be taken to keep the reinforcement and embedded metal in proper position and to prevent distortion.Vibrating. Wherever practicable,concrete shall be internally vibrated within the forms,or in the mass,in order to increase the plasticity as to compact effectively to improve the surface texture and appearance,and to facilitate placing of the concrete.Vibration shall be continued the entire batch melts to a uniform appearance and the surface just starts to glisten.A minute film of cement paste shall be discernible between the concrete and the form and around the reinforcement.Over vibration causing segregation,unnecessary bleeding or formation of laitance shall be avoided.The effect spent on careful grading, mixing and compaction of concrete will be largely wasted if the concrete is badly cured. Curing means keeping the concretethoroughly damp for some time, usually a week, until it has reached the desired strength. So long as concrete is kept wet it will continue to gain strength, though more slowly as it grows older.Admixtures or additives to concrete are materials arematerials which are added to it or to the cement so as to improve one or more of the properties of the concrete. The main types are:1. Accelerators of set or hardening,2. Retarders of set or hardening,3. Air-entraining agents, including frothing or foaming agents,4. Gassing agents,5. Pozzolanas, blast-furnace slag cement, pulverized coal ash,6. Inhibitors of the chemical reaction between cement and aggregate, which might cause the aggregate to expand7. Agents for damp-proofing a concrete or reducing its permeability to water,8. Workability agents, often called plasticizers,9. Grouting agents and expanding cements.Wherever possible, admixtures should be avouded, particularly those that are added on site. Small variations in the quantity added may greatly affect the concrete properties in an undesiraale way. An accelerator can often be avoided by using a rapid-hardening cement or a richer mix with ordinary cement, or for very rapid gain of strength, high-alumina cement, though this is very much more expensive, in Britain about three times as costly as ordinary Portland cement. But in twenty-four hours its strength is equal to that reached with ordinary Portland cement in thirty days.A retarder may have to be used in warm weather when a large quantity of concrete has to be cast in one piece of formwork, and it is important that the concrete cast early in the day does not set before the last concrete. This occurs with bridges when they are cast in place, and the formwork necessarily bends underthe heavy load of the wet concrete. Some retarders permanently weaken the concrete and should not be used without good technical advice.A somewhat similar effect,milder than that of retarders, is obtained with low-heat cement. These may be sold by the cement maker or mixed by the civil engineering contractor. They give out less heat on setting and hardening, partly because they harden more slowly, and they are used in large casts such as gravity dams, where the concrete may take years to cool down to the temperature of the surrounding air. In countries like Britain or France, where pulverized coal is burnt in the power stations, the ash, which is very fine, has been mixed with cement to reduce its production of heat and its cost without reducing its long-term strength. Up to about 20 per cent ash by weight of the cement has been successfully used, with considerable savings in cement costs.In countries where air-entraining cement cement can be bought from the cement maker, no air-entraining agent needs to be mixed in .When air-entraining agents draw into the wet cement and concrete some 3-8 percent of air in the form of very small bubbles, they plasticize the concrete, making it more easily workable and therefore enable the water |cement ratio to be reduced. They reduce the strength of the concrete slightly but so little that in the United States their use is now standard practice in road-building where heavy frost occur. They greatly improve the frost resistance of the concrete.Pozzolane is a volcanic ash found near the Italian town of Puzzuoli, which is a natural cement. The name has been given to all natural mineral cements, as well as to the ash from coal or the slag from blast furnaces, both of which may become cementswhen ground and mixed with water. Pozzolanas of either the industrial or the mineral type are important to civil engineers because they have been added to oridinary Portland cement in proportions up to about 20 percent without loss of strength in the cement and with great savings in cement cost. Their main interest is in large dams, where they may reduce the heat given out by the cement during hardening. Some pozzolanas have been known to prevent the action between cement and certain aggregates which causes the aggregate to expand, and weaken or burst the concrete.The best way of waterproof a concrete is to reduce its permeability by careful mix design and manufacture of the concrete, with correct placing and tighr compaction in strong formwork ar a low water|cement ratio. Even an air-entraining agent can be used because the minute pores are discontinuous. Slow, careful curing of the concrete improves the hydration of the cement, which helps to block the capillary passages through the concrete mass. An asphalt or other waterproofing means the waterproofing of concrete by any method concerned with the quality of the concrete but not by a waterproof skin.Workability agents, water-reducing agents and plasticizers are three names for the same thing, mentioned under air-entraining agents. Their use can sometimes be avoided by adding more cement or fine sand, or even water, but of course only with great care.The rapid growth from 1945 onwards in the prestressing of concrete shows that there was a real need for this high-quality structural material. The quality must be high because the worst conditions of loading normally occur at the beginning of the life of the member, at the transfer of stress from the steel to theconcrete. Failure is therefore more likely then than later, when the concrete has become stronger and the stress in the steel has decreased because of creep in the steel and concrete, and shrinkage of the concrete. Faulty members are therefore observed and thrown out early, before they enter the structure, or at least before it The main advantages of prestressed concrete in comparison with reinforced concrete are :①The whole concrete cross-section resists load. In reinforced concrete about half the section, the cracked area below the neutral axis, does no useful work. Working deflections are smaller.②High working stresses are possible. In reinforced concrete they are not usually possible because they result in severe cracking which is always ugly and may be dangerous if it causes rusting of the steel.③Cracking is almost completely avoided in prestressed concrete.The main disadvantage of prestressed concrete is that much more care is needed to make it than reinforced concrete and it is therefore more expensive, but because it is of higher quality less of it needs to be needs to be used. It can therefore happen that a solution of a structural problem may be cheaper in prestressed concrete than in reinforced concrete, and it does often happen that a solution is possible with prestressing but impossible without it.Prestressing of the concrete means that it is placed under compression before it carries any working load. This means that the section can be designed so that it takes no tension or very little under the full design load. It therefore has theoretically no cracks and in practice very few. The prestress is usually applied by tensioning the steel before the concrete in which it isembedded has hardened. After the concrete has hardened enough to take the stress from the steel to the concrete. In a bridge with abutments able to resist thrust, the prestress can be applied without steel in the concrete. It is applied by jacks forcing the bridge inwards from the abutments. This methods has the advantage that the jacking force, or prestress, can be varied during the life of the structure as required.In the ten years from 1950 to 1960 prestressed concrete ceased to be an experinmental material and engineers won confidence in its use. With this confidence came an increase in the use of precast prestressed concrete particularly for long-span floors or the decks of motorways. Whereever the quantity to be made was large enough, for example in a motorway bridge 500 m kong , provided that most of the spans could be made the same and not much longer than 18m, it became economical to usefactory-precast prestressed beams, at least in industrial areas near a precasting factory prestressed beams, at least in industrial areas near a precasting factory. Most of these beams are heat-cured so as to free the forms quickly for re-use.In this period also, in the United States, precast prestressed roof beams and floor beams were used in many school buildings, occasionally 32 m long or more. Such long beams over a single span could not possibly be successful in reinforced concrete unless they were cast on site because they would have to be much deeper and much heavier than prestressed concrete beams. They would certainlly be less pleasing to the eye and often more expensive than the prestressed concrete beams. These school buildings have a strong, simple architectural appeal and will be a pleasure to look at for many years.The most important parts of a precast prestressed concrete beam are the tendons and the concrete. The tendons, as the name implies, are the cables, rods or wires of steel which are under tension in the concrete.Before the concrete has hardened (before transfer of stress), the tendons are either unstressed (post-tensioned prestressing) or are stressed and held by abutments outside the concrete ( pre-tensioned prestressing). While the concrete is hardening it grips each tendon more and more tightly by bond along its full length. End anchorages consisting of plates or blocks are placed on the ends of the tendons of post-tensioned prestressed units, and such tendons are stressed up at the time of transfer, when the concrete has hardened sufficiently. In the other type of pretressing, with pre-tensioned tendons, the tendons are released from external abutments at the moment of transfer, and act on the concrete through bond or archorage or both, shortening it by compression, and themselves also shortening and losing some tension.Further shortening of the concrete (and therefore of the steel) takes place with time. The concrete is said to creep. This means that it shortens permanently under load and spreads the stresses more uniformly and thus more safely across its section. Steel also creeps, but rather less. The result of these two effects ( and of the concrete shrinking when it dries ) is that prestressed concrete beams are never more highly stressed than at the moment of transfer.The factory precasting of long prestressed concrete beams is likely to become more and more popular in the future, but one difficulty will be road transport. As the length of the beam increases, the lorry becomes less and less manoeuvrable untileventually the only suitable time for it to travel is in the middle of the night when traffic in the district and the route, whether the roads are straight or curved. Precasting at the site avoids these difficulties; it may be expensive, but it has often been used for large bridge beams.混凝土工艺及发展波特兰水泥混凝土在当今世界已成为建造数量繁多、种类复杂结构的首选材料。

土木工程专业外语课文翻译

土木工程专业外语课文翻译

土木工程专业外语课文翻译专业英语课文翻译Lesson 4Phrases and Expressions1.moisture content 含水量,含湿度; water content 2.cement paste 水泥浆 mortar 3.capillary tension 毛细管张力,微张力 4.gradation of aggregate 骨料级配 coarse fine (crushed stone , gravel ) 5.The British Code PC 100 英国混凝土规范PC 100; nowaday BS 8110 6. coefficient of thermal expansion of concrete 混凝土热膨胀系数 7. The B .S Code 英国标准规范8. sustained load 永久荷载,长期荷载9. permanent plastic strain 永久的塑性应变stress 10. crystal lattice 晶格, 晶格11. cement gel 水泥凝胶体12. water -cement ratio 水灰比13. expansion joint 伸缩缝 14. stability of the structure 结构的稳定性structural stability 15. fatigue strength of concrete 混凝土的疲劳强度 Volume Changes of ConcreteConcrete undergoes volume changes during hardening . 混凝土在硬结过程中会经历体积变化。

If it loses moisture by evaporation , it shrinks , but if the concrete hardens in water , it expands . 如果蒸发失去水分,混凝土会收缩;但如果在水中硬结,它便膨胀。

建筑英语论文建筑材料的应用英汉对照

建筑英语论文建筑材料的应用英汉对照

The application of constructional material建筑材料的应用The availability of suitable structural materials is one of the principal limitations on the accomplishment of an experienced structural engineer. Early builders depended almost exclusively on wood, stone, brick, and concrete. Although iron had been used by humans at least since the building of the Egyptian pyramids, use of it as a structural material was limited because of the difficulties of smelting it in large quantities. With the industrial revolution, however, came both the need for iron as a structural material and the capability of smelting it in quantity.John Smeaton, an English civil engineer, was the first to use cast iron extensively as a structural material in the mid-eighteenth century. After 1841, malleable iron was developed as a more reliable material and was widely used. Whereas malleable iron was superior to cast iron, there were still too many structural failures and there was a need for a more reliable material. Steel was the answer to this demand. The invention of the Bessemer converter in 1856 and the subsequent development of the Siemens-Martin open-hearth process for making steel made it possible toproduce structural steel at competitive prices and triggered the tremendous developments and accomplishments in the use of structural steel over the next hundred years.The most serious disadvantage of steel is that it oxidizes easily and must be protected by paint or some other suitable coating. When steel is used in an enclosure where a fire could occur, the steel members must be encased in a suitable fire-resistant enclosure such as masonry, concrete. Normally, steel members will not fail in a brittle manner unless an unfortunate combination of metallurgical composition, low temperature, and bi-or triaxial stress exists.Structural aluminum is still not widely used in civil engineering structures, though its use is steadily increasing. By a proper selection of the aluminum alloy and its heat treatment, a wide variety of strength characteristics may be obtained. Some of the alloys exhibit stress-strain characteristics similar those of structural steel, except that the modulus of elasticity for the initial linearly elastic portion is about 10,000,000 psi (700,000 kgf/cm*cm) or about one-third that of steel. Lightness and resistance to oxidation are, of course, two of the major advantages of aluminum. Because its properties are very sensitive to its heat treatment, care mustbe used when riveting or welding aluminum. Several techniques have been developed for prefabricating aluminum subassemblies that can be readily erected and bolted together in the field to form a number of beautiful and well-designed shell structures. This general procedure of prefabrication and held assembly by bolting seems to be the most promising way of utilizing structural aluminum.Reinforced and prestesses concrete share with structural material. Natural cement concretes have been used for centuries. Modern concrete construction dates from the middle of the nineteenth century, though artificial Portland cement was patented by Aspidin, an Englishman, about 1825. Although several builders and engineers experimented with the use of steel-reinforced concrete in the last half of the nineteenth century, its dominant use as a building material dates from the early decades of the twentieth century. The last fifty years have seen the rapid and vigorous development of prestressed concrete design and construction, founded largely on early work by Freyssinet in France and Magnel in Belgium.Plain (unreinforced) concrete not only is a heterogeneous material but also has one very serious defect as a structural material, namely, its very limited tensile strength, which isonly of the order of one-tenth its compressive strength. Not only is tensile failure in concrete of a brittle type, but likewise compression failure occurs in a relatively brittle fashion without being preceded by the forewarning of large deformations. (Of course, in reinforced-concrete construction, ductile behavior can be obtained by proper selection and arrangement of the reinforcement.) Unless proper care is used in the selection of aggregates and in the mixing and placing of concrete, frost action can cause serious damage to concrete masonry. Concrete creeps under long-term loading to a degree that must be considered carefully in selecting the design stress conditions. During the curing process and its early life, concrete shrinks a significant amount, which to a degree can be controlled by properly proportioning the mix and utilizing suitable construction techniques.With all these potentially serious disadvantages, engineers have learned to design and build beautiful, durable, and economical reinforced-concrete structures for practically all kinds of structural requirements. This has been accomplished by careful selection of the design dimensions and the arrangement of the steel reinforcement, development of proper cements, selection of proper aggregates and mixproportions, careful control of mixing, placing, and curing techniques and imaginative development of construction methods, equipment and procedures.The versatility of concrete, the wide availability of its component materials, the unique ease of shaping its form to meet strength and functional requirements, together with the exciting potential of further improvements and development of not only the newer prestressed and precast concrete construction but also the conventional reinforced concrete construction, combine to make concrete a strong competitor of other materials in a very large fraction of structures.In modern times, with the increased use of steel and reinforced-concrete construction, wood has been relegated largely to accessory use during construction, to use in temporary and secondary structures, and to use for secondary members of permanent construction. Modern technology in the last sixty years has revitalized wood as a structural material, however, by developing vastly improved timber connectors, various treatments to increase the durability of wood, and laminated wood made of thin layers bonded together with synthetic glues using revolutionary gluing techniques. Plywood with essentially nondirectional strengthproperties is the most widely used laminated wood, but techniques have also been developed for building large laminated wood members that for certain structures are competitive with concrete and steel.Materials with future possibilities are the engineering plastics and the exotic metals and their alloys, such as beryllium, tungsten, tantalum, titanium, molybdenum, chromium, vanadium, and niobium. There are many different plastics available, and the mechanical properties exhibited by this group of materials vary over a wide range that encompasses the range of properties available among the more commonly used structural materials. Thus in many specific design applications it is possible to select a suitable plastic material for an alternative design. Experience with the use of plastics outdoors is limited. Generally speaking, however, plastics must be protected from the weather. This aspect of design is therefore a major consideration in the use of plastics for primary structural elements. One of the most promising potential used of plastics is for panel and shell-type structures. Laminated or sandwich panels have been used in such structures with encouraging results that indicate an increased use in this type of construction in the future.Another materials development with interesting possibilities is that of composites consisting of a matrix reinforced by fibers or fiber like particles. Although glass-fiber-reinforced composites with a glass or plastic matrix have been used for years, they appear to have much broader possibilities for a large variety of secondary structural components. Fiber-reinforced concrete is another composite being actively studied and developed. Several experimental applications are being observed under service conditions. Experiments have been conducted with both steel and glass fibers, but most of the service experience has been with steel fibers.建筑材料的应用适当有效的建筑材料是限制富有经验的结构工程师成就的主要原因之一。

混凝土工程中英文

混凝土工程中英文

混凝土工程 concrete works 一、材料袋装水泥 bagged cement散装水泥 bulk cement砂 sand骨料 aggregate商品混凝土 commercial concrete现浇混凝土 concrete-in-situ预制混凝土 precast concrete预埋件 embedment(fit 安装)外加剂 admixtures抗渗混凝土 waterproofing concrete 石场 aggregate quarry垫块 spacer二、施工机械及工具搅拌机 mixer振动器vibrator电动振动器 electrical vibrator振动棒vibrator bar抹子(steel wood) trowel磨光机 glasser混凝土泵送机 concrete pump橡胶圈 rubber ring夹子 clip混凝土运输车 mixer truck自动搅拌站 auto-batching plant输送机 conveyor塔吊 tower crane汽车式吊车 motor crane铲子 shovel水枪 jetting water橡胶轮胎 rubber tires布袋 cloth-bags塑料水管 plastic tubes喷水雾 spray water fog三、构件及其他专业名称截面尺寸 section size(section dimension)混凝土梁 concrete girder简支梁 simple supported beam挑梁 cantilever beam悬挑板 cantilevered slab檐板eaves board封口梁 joint girder翻梁 upstand beam楼板floor slab空调板 AC board飘窗 bay window(suspending window)振捣 vibration串筒 a chain of funnels混凝土施工缝 concrete joint水灰比ratio of water and cement砂率 sand ratio大体积混凝土 large quantity of pouring混凝土配合比 concrete mixture rate混凝土硬化 hardening of concrete(in a hardening process 硬化中)规定时间 regulated period质保文件 quality assurance program设计强度 design strength永久工程 permanent works临时工程 temporary works四、质量控制及检测不符合规格的 non-standard有机物 organic matters粘土 clay含水率 moisture content(water content)中心线 central line安定性 soundness (good soundness 优良的安定性)坍落度 slump (the concrete with 18mm±20mm slump)混凝土养护 concrete curing标养混凝土试件 standard curing concrete test sample同条件混凝土试件 field-cure specimen收缩 shrinkage初凝时间 initial setting time终凝时间 final setting time成品保护 finished product protection混凝土试件 concrete cube偏心受压 eccentric pressing保护层 concrete cover孔洞 hole裂缝 crack蜂窝 honeycomb五、句子1,Usually we control the cement within 2% 我们将水泥的误差控制在2%2,Are there any pipe clogging happened during the concreting?浇筑混凝土中有堵管现象吗?3,Will the pipe be worn out very fast?管道磨损很快吗?4,This embedment is fixed at 1500mm from the floor and 350mm from the left edge of the column. Would you measure the dimension by this meter?预埋件的位置在地面上1500mm,离柱边350mm。

混凝土工艺中英文对照外文翻译文献

混凝土工艺中英文对照外文翻译文献

混凝土工艺中英文对照外文翻译文献混凝土工艺中英文对照外文翻译文献(文档含英文原文和中文翻译)Concrete technology and developmentPortland cement concrete has clearly emerged as the material of choice for the construction of a large number and variety of structures in the world today. This is attributed mainly to low cost of materials and construction for concrete structures as well as low cost of maintenance.Therefore, it is not surprising that many advancements in concrete technology have occurred as a result of two driving forces, namely the speed of construction and the durability of concrete.During the period 1940-1970, the availability of high early strength portland cements enabled the use of high water content in concrete mixtures that were easy to handle. This approach, however, led to serious problems with durability of structures, especially those subjected to severe environmental exposures.With us lightweight concrete is a development mainly of the last twenty years.Concrete technology is the making of plentiful good concrete cheaply. It includes the correct choice of the cement and the water, and the right treatment of the aggregates. Those which are dug near by and therefore cheap, must be sized, washed free of clay or silt, and recombined in the correct proportions so as to make a cheap concrete which is workable at a low water/cement ratio, thus easily comoacted to a high density and therefore strong.It hardens with age and the process of hardening continues for a long time after the concrete has attained sufficient strength.Abrams’law, perhaps the oldest law of concrete technology, states that the strength of a concrete varies inversely with its water cement ratio. This means that the sand content (particularly the fine sand which needs much water) must be reduced so far as possible. The fact that the sand “drinks” large quantities of water can easily be established by mixing several batches of x kg of cement with y kg of stone and the same amount of water but increasing amounts of sand. However if there is no sand the concrete will be so stiff that it will be unworkable thereforw porous and weak. The same will be true if the sand is too coarse. Therefore for each set of aggregates, the correct mix must not be changed without good reason. This applied particularly to the water content.Any drinkable and many undrinkable waters can be used for making concrete, including most clear waters from the sea or rivers. It is important that clay should be kept out of the concrete. The cement if fresh can usually be chosen on the basis of the maker’s certificates of tensile or crushing tests, but these are always made with fresh cement. Where strength is important , and the cement at the site is old, it should be tested.This stress , causing breakage,will be a tension since concretes are from 9 to 11times as strong in compression as in tension, This stress, the modulus of rupture, will be roughly double the direct tensile breaking stress obtained in a tensile testing machine,so a very rough guess at the conpressive strength can be made by multiplying the modulus of rupture by 4.5. The method can be used in combination with the strength results of machine-crushed cubes or cylinders or tensile test pieces but cannot otherwise be regarded as reliable. With these comparisons, however, it is suitable for comparing concretes on the same site made from the same aggregates and cement, with beams cast and tested in the same way.Extreme care is necessary for preparation,transport,plating and finish of concrete in construction works.It is important to note that only a bit of care and supervision make a great difference between good and bad concrete.The following factors may be kept in mind in concreting works.MixingThe mixing of ingredients shall be done in a mixer as specified in the contract.Handling and ConveyingThe handling&conveying of concrete from the mixer to the place of final deposit shall be done as rapidly as practicable and without any objectionable separation or loss of ingredients.Whenever the length of haul from the mixing plant to the place of deposit is such that the concrete unduly compacts or segregates,suitable agitators shall be installed in the conveying system.Where concrete is being conveyed on chutes or on belts,the free fall or drop shall be limited to 5ft.(or 150cm.) unless otherwise permitted.The concrete shall be placed in position within 30 minutes of its removal from the mixer.Placing ConcreteNo concrete shall be placed until the place of deposit has been thoroughly inspected and approved,all reinforcement,inserts and embedded metal properly security in position and checked,and forms thoroughly wetted(expect in freezing weather)or oiled.Placing shall be continued without avoidable interruption while the section is completed or satisfactory construction joint made.Within FormsConcrete shall be systematically deposited in shallow layers and at such rate as to maintain,until the completion of the unit,a plastic surface approximately horizontal throughout.Each layer shall be thoroughly compacted before placing the succeeding layer.CompactingMethod. Concrete shall be thoroughly compacted by means of suitable tools during and immediately after depositing.The concrete shall be worked around all reinforcement,embedded fixtures,and into the comers of the forms.Every precaution shall be taken to keep the reinforcement and embedded metal in proper position and to prevent distortion.Vibrating. Wherever practicable,concrete shall be internally vibrated within the forms,or in the mass,in order to increase the plasticity as to compact effectively to improve the surface texture and appearance,and to facilitate placing of the concrete.Vibration shall be continued the entire batch melts to a uniform appearance and the surface just starts to glisten.A minute film of cement paste shall be discernible between the concrete and the form and around the reinforcement.Over vibration causing segregation,unnecessary bleeding or formation of laitance shall be avoided.The effect spent on careful grading, mixing and compaction of concrete will be largely wasted if the concrete is badly cured. Curing means keeping the concretethoroughly damp for some time, usually a week, until it has reached the desired strength. So long as concrete is kept wet it will continue to gain strength, though more slowly as it grows older.Admixtures or additives to concrete are materials are materials which are added to it or to the cement so as to improve one or more of the properties of the concrete. The main types are:1. Accelerators of set or hardening,2. Retarders of set or hardening,3. Air-entraining agents, including frothing or foaming agents,4. Gassing agents,5. Pozzolanas, blast-furnace slag cement, pulverized coal ash,6. Inhibitors of the chemical reaction between cement and aggregate, which might cause the aggregate to expand7. Agents for damp-proofing a concrete or reducing its permeability to water,8. Workability agents, often called plasticizers,9. Grouting agents and expanding cements.Wherever possible, admixtures should be avouded, particularly those that are added on site. Small variations in the quantity added may greatly affect the concrete properties in an undesiraale way. An accelerator can often be avoided by using a rapid-hardening cement or a richer mix with ordinary cement, or for very rapid gain of strength, high-alumina cement, though this is very much more expensive, in Britain about three times as costly as ordinary Portland cement. But in twenty-four hours its strength is equal to that reached with ordinary Portland cement in thirty days.A retarder may have to be used in warm weather when a large quantity of concrete has to be cast in one piece of formwork, and it is important that the concrete cast early in the day does not set before the last concrete. This occurs with bridges when they are cast in place, and the formwork necessarily bends under the heavy load of the wet concrete. Some retarders permanently weaken the concrete and should not be used without good technical advice.A somewhat similar effect,milder than that of retarders, is obtained with low-heat cement. These may be sold by the cement maker or mixed by the civil engineering contractor. They give out less heat on setting and hardening, partly because they harden more slowly, and they are used in large casts such as gravity dams, where the concrete may take years to cool down to the temperature of the surrounding air. In countries like Britain or France, where pulverized coal is burnt in the power stations, the ash, which is very fine, has been mixed with cement to reduce its production of heat and its cost without reducing its long-term strength. Up to about 20 per cent ash by weight of the cement has been successfully used, with considerable savings in cement costs.In countries where air-entraining cement cement can be bought from the cement maker, no air-entraining agent needs to be mixed in .When air-entraining agents draw into the wet cement and concrete some 3-8 percent of air in the form of very small bubbles, they plasticize the concrete, making it more easily workable and therefore enable the water |cement ratio to be reduced. They reduce the strength of the concrete slightly but so little that in the United States their use is now standard practice in road-building where heavy frost occur. They greatly improve the frost resistance of the concrete.Pozzolane is a volcanic ash found near the Italian town of Puzzuoli, which is a natural cement. The name has been given to all natural mineral cements, as well as to the ash from coal or the slag from blast furnaces, both of which may become cements when ground and mixed with water. Pozzolanas of either the industrial or the mineral type are important to civil engineers because they have been added to oridinary Portland cement in proportions up to about 20 percent without loss of strength in the cement and with great savings in cement cost. Their main interest is in large dams, where they may reduce the heat given out by the cement during hardening. Some pozzolanas have been known to prevent the action between cement and certain aggregates which causes the aggregate to expand, and weaken or burst the concrete.The best way of waterproof a concrete is to reduce its permeability by careful mix design and manufacture of the concrete, with correct placing and tighr compaction in strong formwork ar a low water|cement ratio. Even an air-entraining agent can be used because the minute pores are discontinuous. Slow, careful curing of the concrete improves the hydration of the cement, which helps to block the capillary passages through the concrete mass. An asphalt or other waterproofing means the waterproofing of concrete by any method concerned with the quality of the concrete but not by a waterproof skin.Workability agents, water-reducing agents and plasticizers are three names for the same thing, mentioned under air-entraining agents. Their use can sometimes be avoided by adding more cement or fine sand, or even water, but of course only with great care.The rapid growth from 1945 onwards in the prestressing of concrete shows that there was a real need for this high-quality structural material. The quality must be high because the worst conditions of loading normally occur at the beginning of the life of the member, at the transfer of stress from the steel to the concrete. Failure is therefore more likely then than later, when the concrete has become stronger and the stress in the steel has decreased because of creep in the steel and concrete, and shrinkage of the concrete. Faulty members are therefore observed and thrown out early, before they enter the structure, or at least before it The main advantages of prestressed concrete in comparison with reinforced concrete are :①The whole concrete cross-section resists load. In reinforced concrete about half the section, the cracked area below the neutral axis, does no useful work. Working deflections are smaller.②High working stresses are possible. In reinforced concrete they are not usually possible because they result in severe cracking which is always ugly and may be dangerous if it causes rusting of the steel.③Cracking is almost completely avoided in prestressed concrete.The main disadvantage of prestressed concrete is that much more care is needed to make it than reinforced concrete and it is therefore more expensive, but because it is of higher quality less of it needs to be needs to be used. It can therefore happen that a solution of a structural problem may be cheaper in prestressed concrete than in reinforced concrete, and it does often happen that a solution is possible with prestressing but impossible without it.Prestressing of the concrete means that it is placed under compression before it carries any working load. This means that the section can be designed so that it takes no tension or very little under the full design load. It therefore has theoretically no cracks and in practice very few. The prestress is usually applied by tensioning the steel before the concrete in which it is embedded has hardened. After the concrete has hardened enough to take the stress from the steel to the concrete. In a bridge with abutments able to resist thrust, the prestress can be applied without steel in the concrete. It is applied by jacks forcing the bridge inwards from the abutments. This methods has the advantage that the jacking force, or prestress, can be varied during the life of the structure as required.In the ten years from 1950 to 1960 prestressed concrete ceased to be an experinmental material and engineers won confidence in its use. With this confidence came an increase in the use of precast prestressed concrete particularly for long-span floors or the decks of motorways. Whereever the quantity to be made was large enough, for example in a motorway bridge 500 m kong , provided that most of the spans could be made the same and not much longer than 18m, it became economical to usefactory-precast prestressed beams, at least in industrial areas near a precasting factory prestressed beams, at least in industrial areas near a precasting factory. Most of these beams are heat-cured so as to free the forms quickly for re-use.In this period also, in the United States, precast prestressed roof beams and floor beams were used in many school buildings, occasionally 32 m long or more. Such long beams over a single span could not possibly be successful in reinforced concrete unless they were cast on site because they would have to be much deeper and much heavier than prestressed concrete beams. They would certainlly be less pleasing to the eye and often more expensive than the prestressed concrete beams. These school buildings have a strong, simple architectural appeal and will be a pleasure to look at for many years.The most important parts of a precast prestressed concrete beam are the tendons and the concrete. The tendons, as the name implies, are the cables, rods or wires of steel which are under tension in the concrete.Before the concrete has hardened (before transfer of stress), the tendons are either unstressed (post-tensioned prestressing) or are stressed and held by abutments outside the concrete ( pre-tensioned prestressing). While the concrete is hardening it grips each tendon more and more tightly by bond along its full length. End anchorages consisting of plates or blocks are placed on the ends of the tendons of post-tensioned prestressed units, and such tendons are stressed up at the time of transfer, when the concrete has hardened sufficiently. In the other type of pretressing, with pre-tensioned tendons, the tendons are released from external abutments at the moment of transfer, and act on the concrete through bond or archorage or both, shortening it by compression, and themselves also shortening and losing some tension.Further shortening of the concrete (and therefore of the steel) takes place with time. The concrete is said to creep. This means that it shortens permanently under load and spreads the stresses more uniformly and thus more safely across its section. Steel also creeps, but rather less. The result of these two effects ( and of the concrete shrinking when it dries ) is that prestressed concrete beams are never more highly stressed than at the moment of transfer.The factory precasting of long prestressed concrete beams is likely to become more and more popular in the future, but one difficulty will be road transport. As the length of the beam increases, the lorry becomes less and less manoeuvrable until eventually the only suitable time for it to travel is in the middle of the night when traffic in the district and the route, whether the roads are straight or curved. Precasting at the site avoids these difficulties; it may be expensive, but it has often been used for large bridge beams.混凝土工艺及发展波特兰水泥混凝土在当今世界已成为建造数量繁多、种类复杂结构的首选材料。

房建外文资料翻译

房建外文资料翻译

毕业设计外文资料翻译系(院):专业:土木工程(房屋建筑方向)姓名:学号:外文出处:Applied Composite Materials(用外文写)附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文关于高分子复合材料加强体系下的混凝土柱的研究摘要:一项研究试验用来调查用不同的纤维(玻璃和碳)、树脂(醋酸乙烯酯和环氧树脂)包裹混凝土柱组成的各种复合包裹系统加强结构的效果。

成本评估后以辨别每一个独立体系下的费用效率。

结果表明,在钢筋混凝土的外围使用无碱玻璃纤维和醋酸乙烯酯能有效的降低材料成本。

以环氧树脂为基础的系统,在承载力上并没有得到多少改善。

R/T比值小(包裹层的厚度/混凝土柱的半径)会导致加强效率的降低。

用玻璃纤维层和碳纤维层组成的复合材料,能获得很好的力学性能,还可以增加包裹层的厚度。

强化效率在很大程度上取决与复合材料的结构。

在环箍方向的加固纤维能对混凝土柱产生一个高围效率。

然而对于长而细的柱子,在轴线方向仍然需用一定量的纤维来作为高分子材料。

关键词:混凝土柱、包装技术、高分子复合材料、强化工作效率、基础设施1.导言全球基础设施的损耗是由各种因素造成的,包括源于海洋污染、高氯含量的空气和盐碱溶质的使用。

此外,由于氯离子的渗入,混凝土柱的开裂和剥落往往伴随着内部钢筋的锈蚀。

胶凝材料的损失,以及由腐蚀所致的保护层处钢筋减少,导致了柱状支撑构件结构完整性很承载能力的大幅度降低。

对地震破坏意识的增加已引起了人们对柱子和其他支撑结构改进的迫切需要,前提是不增加结构的总体质量。

然而,在许多情况下,改进和修理一般来说都是非常昂贵和困难的。

直到最近,最常用的方法是安装加固钢套。

使用一种钢装箱来为在压缩中的混凝土提供侧向限制,这一方法得到了广泛的研究。

这一措施能显著提高柱子的受压承载力和变形能力。

然而,使用钢套的最主要缺点是耐腐蚀性差、高成本和自重大。

旨在加强土木工程结构而对纤维增强复合材料的研究和使用早在20世纪60年代初就开始了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CONCRETE AND MORTAR1. Early History of Cement and ConcreteShelter from the very beginning of man/ existence, has demanded the application Of the best , available technology of the contemporary era. In the earliest ages, structures consisted of rammed earth, or stone blocks laid one on another without benefit of any bonding or cementing medium. Stability of the stone structures depended on the regular setting of the heavy stones , The earliest masonry probably consisted of sun-dried clay bricks, set in regular courses in thin layers of moist mud. When the moist mud dried, a solid clay wall resulted. Construction: of this kind was common in the dry desert areas of the world.Burnt gypsum as a cementing material was developed early in the Egyptian period and was apparently used in construction of some of the pyramids. Later the Greeks and Romans discovered methods of burning limestone to produce quicklime which was subsequently slaked for use in making mortar. Both the Greeks and the Romans learned that certain fine soil or earth, when mixed with the lime and the sand, produced a superior cementing material. The Greek material, a volcanic tuff from the island of Santorin , is still used in that part Of the world. The best of the materials used by the Romans was a tuff or ash from the vicinity of Pozzuoli near Mt. Vesuvius, hence the name “pozzolan”used to identify a certain type of mineral admixture used in concrete today.The cement produced by the Romans was a hydraulic cement, that is, it had the capability of hardening under water. Many of the Roman structures were constructed of a form of concrete, using these materials, and stone masonry was bonded with a mortar similarly composed.During the Middle Ages of history, the art of making good mortar was nearly lost, the low point having been reached in about the llth century, when much inferior material was used. Quality of the lime started to improve at this time and in the 14th century or later the use of pozzolans was again practised.One of the most famous projects of the comparatively recent period was theconstruction of the new Eddystone Lighthouse off the coast of England in 1757--59. John Smeaton, the engineer and designer of the structure, investigated many materials and methods of bonding the stones for the building.Engineering and scientific development was beginning to move rapidly at this time, and many researchers in several countries were investigating cementing agents made from gypsum, limestone and other natural materials. One discovery was a method of making a cement by burning a naturally occurring mixture of lime and clay. properties of the natural cement were very erratic because of variations in the proportions in the natural material, although use of this natural cement continued for many years.In 1824 Joseph Aspdin , a brickmason of Leeds, England, took out a patent on a material he called Portland cement, so called because concrete made with it was supposed to resemble the limestone quarried near Portland, England. Aspdin is generally credited with inventing a method of proportioning limestone and clay, burning the mixture at high temperature to produce clinkers, then grinding the clinkers to produce a hydraulic cement. His small kiln, producing about 16 tons of clinker at a time, required several days/or each burn. Expansion and development of cement manufacturing was slow for a number of years. About 1850, however, the industry had become well established not only in England, but also in Germany and Belgium.Shipments to the United States were started in 1868 and reached a peak about 1895, at which time production was well under way in the United States.Meanwhile the United States production of natural cement had been started early in the 19th century as a result of the demand for cement for construction of the Erie Canal and related works. Subsequent development of the rotary kiln led to large scale production of cement throughout the world.The use of concrete was expanded by the construction of railroads, bridges ,buildings and street pavements. Research in reinforcing concrete with steel rods had been started in France, and the year 1875 saw first use of reinforced concrete in the United States. Much'of the concrete at this time contained barely enough waterto enable the concrete to be rammed into place by the application of much hand labor. There then ensued a period of wet concrete in which the concrete was flowed into place. Many users of concrete, however, realized the folly of wet mixes, and about 1920 Duff Abrams revealed the results of his research and observations. He stated that the quality of concrete was directly affected by the amount of water in relation to the amount of cement ; within reasonable limits, the quality of the concrete decreases as the water-cement ratio goes up. This has become one of the basic laws of concrete technology.2. Advantages and Disadvantages of Concrete and Its Water-Cement RatioConcrete is a mixture of Portland cement, water, sand, and crushed gravel or stone. The water and cement form a cement paste in which the sand and stone or gravel are mixed. The sand and stone or gravel together make up the aggregate of a concrete mixture. The aggregate serves no structural function. It is merely ,a filler that adds low-cost bulk to the cement paste; it usually makes up about 75 percent of a given mass of concrete, by volume, although a poor aggregate can reduce the strength of a batch of concrete considerably, good aggregate adds only slightly to the strength of the cement.The two principal advantages of concrete as a construction material are its relative cheapness and the ease with which it can be handled and placed while it is in the plastic state.The principal structural advantages of concrete are its great compressive strength and its durability , Concrete can withstand very high compressive loads. This is what makes concrete so suitable for the foundations, walls, and columns of buildings, and for driveways and walks as well.The principal structural disadvantage of concrete is its poor tensile strength. That is, it cannot withstand pulling or bending loads without cracking or breaking. For this reason, steel rods, or reinforcement steel, are often embedded in concrete, the reinforcement steel providing the tensile strength the concrete lacks. Concrete withreinforcement steel embedded in it is reinforced concrete.In addition to its poor tensile strength, concrete, like most construction materials, expands in hot weather and when wet and contracts in cold weather and as it dries out. Unless these movements are allowed for during construction, the concrete will crack.And, contrary to common belief, solid concrete is not impervious to water. Some moisture will migrate into the best-made concrete. But if the concrete should be excessively porous ,which can happen if too much water has been used in mixing it, moisture can easily enter the concrete after it has cured. If this moisture should be present within the concrete when cold weather comes, the moisture may freeze, which may result in serious frost damage to the structure.Despite these limitations, concrete is an inherently strong and durable construction material. If the proportions of water, cement, and aggregate are carefully calculated and if the concrete is placed and allowed to cure according to simple but definite rules, it is possible to obtain from the concrete all the strength and durability that is inherent in it.The ratio of water to cement in a batch of concrete is the principal determinant of the concrete's final strength. At one time the instructions for preparing a batch of concrete would have contained proportions such as 1:2:4, indicating that 1 part of Portland cement to 2 parts of sand to 4 parts of gravel by volume were to be mixed together, after which sufficient water was to be added to obtain a workable mixture. This procedure ignored entirely the importance of the water-cement ratio. It also resulted very often in the preparation or a very weak concrete, since the natural tendency is to add enough water to make placement of the concrete as easy as possible-the sloppier the better, as far as the workmen are concerned. This manner of specifying the proportions of concrete is obsolete and should never be followed.In theory, it takes only 3 gal of water to hydrate completely 1 cu ft of cement. (A sack of cement contains 1 cu ft exactly, and the sack weighs 94 lb). But this water-cement ratio produces a mixture that is too stiff to be worked. In practice, therefore, additional water, between 4 and 8 gal per sack of cement, is used to obtain a workable mixture.But the greater the proportion of water in a water-cement ratio, the weaker the final concrete will be. The additional water that is necessary to achieve a workable batch will only evaporate from the concrete as the concrete sets, and it will leave behind in the concrete innumerable voids. This is the reason there will always be some porosity in concrete. When an excessive amount of water has been used, there will be an excessive number of voids, which may cause the concrete to leak badly. If these voids should be filled with moisture when cold weather comes, they will cause the frost damage alluded to above.As a general rule, therefore, 6 gal of water per sack of cement should be the maximum amount used for making concrete; and the less the amount of water that is used, the stronger the concrete will be. Also included in the 6 gal is whatever surface moisture is contained in the sand that is part of the aggregate.3.MortarMortar is a mixture of a cementitious material (which may be portland cement or lime or both) and sand. When water is added to these ingredients, the result is a plastic substance that is used to bind together bricks, tiles, concrete blocks, and other kinds of masonry units. After the mortar has set, the masonry units are bound together by the ,mortar in such a way that they form a single structural unit.Mortar is closely related to other cementitious materials such as concrete, plaster, and stucco, but it would be a mistake to confuse mortar with these other materials or attempt to use them as a substitute for mortar; the properties required of each are distinctive and differ from the others.By a mistaken analogy with a chain and its weakest link, it is a common belief that for any masonry construction to be strong, the mortar must be strong also. Very often, for example, a person who is familiar with concrete will infer that mortar, being a cementitious material like concrete, should have properties similar to those of concrete and be mixed and used in much the same way. w Since, for example, concrete has, or should have, a high compressive strength, mortar should have a high compressive strength also. But the primary function of mortar is to bind the masonryunits together, not to resist compressive loads or add to the strength of the masonry units.A great many tests have been made of brick walls built with mortars having a wide range of strength characteristics. ~ These tests show uniformly that a brick wall is strongest when the mortar used to bind the brick is weaker than the brick. Indeed, the mortar can be substantially weaker than the brick Without much affecting the overall strength of the construction. As long as the mortar is strong enough to resist the erosive effects of the weather and of freezing water, it is strong enough for use in the ordinary exterior wall.But suppose for the sake of argument that a brick wall has been built using a mortar that does have a compressive strength greater than that of the brick. ~Any stress this wall may be subjected to-the result of the settlement of the soil under the wall, say-will cause the brick to fracture along the line of greatest stress. This fracture will run in a single jagged crack right through the brick, from the top of the wall to the bottom.But when the mortar is weaker than the brick, as it should be, any stresses in the construction will be absorbed entirely by the mortar. The mortar will absorb these stresses in the form of a multitude of minute cracks invisible to the eye that leaves the basic strength of the construction unimpaired. The overall appearance of the wall and its structural integrity will be unchanged.Masonry constructions can, however, suffer from another type of failure. Sometimes stresses are relieved by a separation of the mortar from the brick. The result is a zig-zag crack through the mortar that follows the brick pattern. What has happened here is that the bond between the brick and the mortar was too weak, a consequence either of ignorance or poor workmanship, or both, since the last thing that should happen in a well-made masonry wall is for there to be a poor bond between the masonry units and the mortar. Either the mortar was incorrectly proportioned and mixed or it was improperly applied to the brick, or both, Freshly prepared mortar in which the cement, lime, and sand are accurately proportioned and mixed with the requited amount of water has a quality calledworkability or, sometimes, plasticity. Workability is as difficult to describe in words as the consistency of pancake batter or soft butter, but fresh mortar that doesn't have this quality will be incapable of bonding masonry units together as tightly as they should be, A workable mortar can be spread with a trowel smoothly, evenly, and without effort. The mortar has a cohesive quality that enables it to hold its shape and keeps it from falling of its own weight when it is troweled onto the side of a brick. A workable mortar has a give to it that enables a bricklayer to bed masonry units solidly into place. One can say that on a microscopic scale a workable mortar makes such intimate contact with the surface of a masonry unit that the bond between the mortar and the masonry unit is as strong as possible.建筑材料—混凝土与砂浆一、水泥与混凝土的早期历史自从人类开始存在时起,人的住处一直要求应用每个时代所能提供的最好的技术。

相关文档
最新文档