集成运算放大器(1)
运算放大器论文(1)

这就要求运放有好的共模抑制能力。
若将反馈电阻 Rf 和 R1 电阻去掉,就成为图 6-23b 所示的电路,该电路的输 出全部反馈到输入端,是电压串联负反馈。有 R1=∞、Rf=0 可知 vo=vi ,就是输 出电压跟随输入电压的变化,简称电压跟随器。
由以上分析,在分析运算关系时,应该充分利用“虚断”“虚短”概念,首
由于同相端接地,故反相端为“虚地”。上式可写为
因此,输出电压 uO 与输入电压 uI1、uI2、uI3 之间的关系为
即电路可完成下列数学运算
y=-(a1x1+a2x2+a3x3)
从同相端与反相端外接电阻必须平衡的条件出发,同相输入端电阻 的阻值应 为
(2).同相输入加法电路
=R1//R2//R3//RF
、失调电流温漂
2、运放的线性应用 运放的应用首先是构成各种运算电路,在运算电路中,以输入电压自变量,
以输出电压作为函数,当输入电压发生变化时,输出电压反映输入电压某种运算 的结果,因此,运放必须工作在线性区,在深度负反馈条件下,利用反馈网络可 以实现各种数学运算。
本节中的运放都是理想运放,就是说在分析时,注意使用“虚断”“虚短” 概念。
(5-1-18) 该电路有很高的输入电阻。为了提高抑制共模信号的能力,要求运放具有较 高的共模抑制比。此外,应严格选配电阻。
11
(2).利用差分输入的减法电路
电路如图 5-1-12 所示,利用叠加定理即可以很方便的求出输出与输入间的 关系。
图 5-1-12 令同相端输入信号为零,得
差分输入减法电路
可以看出同相输入加法电路是同相比例运算电路的扩展。由同相比例运 算电路式(5-1-5)可得出
8
利用叠加定理,可求出 u+与 uI1、uI2、uI3 之间的关系 则输出电压为
集成 放大器

第一节 心脏除颤仪
再次观察除颤效果,是否恢复窦性心律, 以及神志、生命体征、皮肤情况,若恢复 窦性心律, 给予持续心电监护。
8. 协助病人取适宜体位,清洁皮肤,安慰 病人,整理床单位。
9. 关闭电源,开关置OFF位置,清洁电极 板和仪器,充电备用。洗手、记录。
上一页 返回
9.2 放大电路中的负反馈
9. 2. 1反馈的基本概念
1.反馈的概念 前面各章讨论放大电路的输人信号与输出信号间的关系时.只
涉及输人信号对输出信号的控制作用.这称做放大电路的正向 传输作用。然而.放大电路的输出信号也可能对输人信号产生 反作用。简单地说.这种反作用就叫做反馈。 引入反馈的放大电路称为反馈放大电路.它由基本放大电路、 反馈网络、输出取样、输人求和四部分组成一个闭合环路.称 为反馈环路只有一个反馈环路组成的放大电路.称为单环反馈 放大电路.如图9-4所示。其中.x1是输人信号;x0是输出信 号;xF是反馈信号;xID是净输人信号。这些电量可以是电压. 也可以是电流。
R波无关,放电由人工控制,可发生在心
动周期的任何时期,按下放电开关即可放
电。心脏除颤仪开机后自动默认为非同步
状态,室颤、室扑急救时切记采用非同步
模式。
上一页 下一页 返回
第一节 心脏除颤仪
心搏骤停(sudden cardiac arrest, SCA)是临床急救医学中最紧急、最严重 的心脏急症,就心搏骤停时的ECG表现形 式而言,72%~80%以上为心室颤动。电 除颤是抢救因室颤而致心搏骤停病人最有 效的方法。而电除颤的时机是治疗心室颤 动的关键,每延迟除颤时间1min,复苏 的成功率将下降7%~10%。在心搏骤停 发生1min、5min、7min、9min、 12min分钟内行电除颤,病人存活率分别 为90%、50%、30%、10%和上一2页%下~一5页%。返回
第六章集成运算放大器习题及答案

第六章集成运算放大器习题及答案1、由于 ,集成电路常采用直接耦合,因此低频性能好,但存在 。
2、共模抑制比K CMR 是 ,因此K CMR 越大,表明电路的 。
3、电流源不但可以为差分放大器等放大电路 ,而且可以作为放大电路的 来提高放大电路的电压增益,还可以将差分放大电路双端输出 。
4、一般情况下,差动电路的共模电压放大倍数越大越好,而差模电压放大倍数越小越好。
( )5、在输入信号作用下,偏置电路改变了各放大管的动态电流。
( )6、有源负载可以增大放大电路的输出电流。
( )7、用恒流源取代长尾式差分放大电路中的发射极电阻Re ,将使电路的 ( ) A.差模放大倍数数值增大 B.抑制共模信号能力增强 C.差模输入电阻增大8、在差动电路中,若单端输入的差模输入电压为20V ,则其共模输入电压为( )。
A. 40VB. 20VC. 10VD. 5V 9、电流源的特点是( )。
A 交流电阻小,直流电阻大;B 交流电阻大,直流电阻小; C. 交流电阻大,直流电阻大; D. 交流电阻小,直流电阻小。
10、关于理想运算放大器的错误叙述是( )。
A .输入阻抗为零,输出阻抗也为零;B .输入信号为零时,输出处于零电位;C .频带宽度从零到无穷大;D .开环电压放大倍数无穷大 11、(1)通用型集成运放一般由哪几部分电路组成?每一部分常采用哪种基本电路?对每一部分性能的要求分别是什么?(2)零点漂移产生的原因是什么?抑制零点漂移的方法是什么?12、已知一个集成运放的开环差模增益A id 为100dB ,最大输出电压峰-峰值U opp =±10V,计算差模输入电压u i (即u +-u -)为10μV,0.5mV ,-200μV 时的输出电压u 0。
13、如图所示电路参数理想对称,晶体管的β均为50 ,r bb ′=100Ω,U BEQ = 0.7。
试计算R W 滑动端在中点时VT 1管和VT 2管的发射极静态电流I EQ ,以及动态参数A d 和R i 。
集成运放

(2) 同相比例运算放大器
iF if
ib+ =0
RF
u-= u+= ui
ib- =0
ui
Rf
_ + +
Au=1+
uo
iF=if
uo ui R 2F ui R 1f
RP
RP=Rf//RF
RF
Rf
R2 F u o (1 )u i ) R 1f
– +u + A1 o1
-
-
R
– + + A2
uo
RL
试判别下图放大电路中从运算放大器A2输出 例2: 并联电流负反馈 端引至A1输入端的是何种类型的反馈电路。 – +u + A1 o1
–
ui
i1
id if
R
+ A2
+
uo
解: 因反馈电路是从运算放大器A2的负载电阻RL 的靠近“地”端引出的,所以是电流反馈; 因输入信号和反馈信号均加在同相输入端上, 所以是并联反馈; 因净输入电流 id 等于输入电流和反馈电流 之差,所以是负反馈。
Ao
1+ AoF
Ao F
Xo
Xf
Xf
Xd
Ao F 0
Xo
Xd
Xf 、 d X
同相,所以
则有: F|<|Ao| |A
负反馈使放大倍数下降。
集成运算放大器全篇

习题判16
七、 微分器
iF R
i1 C ui
R2
– +
+
u–= u+= 0
uo
若输入: ui sin t
ui
则:uo RC cost RC sin(t 90 ) 0 uo
0
iF
uo R
i1
C
dui dt
i1 iF
uo
RC
dui dt
t t 习题判19
微分是积分的逆运算。因此,只要将积分运算电路 中R和C的位置互换,就能形成微分器基本电路。如果 说,积分电路能够延缓信号的传输,那么微分电路则能 加快信号的传输过程,微分器又称D调节器。
(2)无调零引出端的运放调零。有些运放是不设调零引出端 的,特别是四运放或双运放等因引脚有限,一般都省掉调零端。 用作电压比较器的运放,无需调零;用作弱信号处理的线性电 路,需要通过一个附加电路,引入一个补偿电压,抵消失调参 数的影响,几种附加的调零电路如图1-14所示。 调零电路的接人对信号的传输关系应无影响,故图l-14a和图l14b加入了限流电阻R3,R3的阻值要求比R1大数十倍,若R1 =10 kΩ, R3可取200 kΩ。图l-14c和图l-14d为不用调零电源 (+U和-U)的调零电路,通过调节电位器RP,可以改变输入偏置 电流的大小,以调整电消振措施 1)区分内外补偿。从产品手册或产品说明书上可查到补偿方法, 如F007型运放往往把消振用的RC元件制作在运放内部。大部分 没有外接相位补偿(校正)端子的运放,均列出补偿用RC元件 的参考数值,按厂家提供的参数,一般均能消除自激。 2)补偿电容与带宽的关系。有时按厂家提供的RC参数不能完全 消除自激。此时若加大补偿电容的容量,可以消除自激。对于 交流放大器,则必须注意补偿元件对频带的影响,不应取过大 的电容值,要选取适当的电容值,使之既能消除振荡,又能保 持一定的频带宽度。此外,对应不同的闭环增益,所需的补偿 电容和补偿电阻也不同。在选取补偿元件时,可以按以下原则 掌握:在消除自激的前提下,尽可能使用容量小的补偿电容和 阻值大的补偿电阻。
集成运算放大器_电子电路

集成运放:是一种高放大倍数的直接耦合 多级放大器。 直接耦合存在的最主要问题是:温漂问题 解决的办法:采用差动式放大电路
一.基本差动放大电路
(一)工作原理: 各元件相同:即T1,T2管对称 RS1=RS2=RS Rb1=Rb2=Rb Rc1=Rc2=Rc(两边严格对称)
优点:结构简单,符合集成电路特点
缺点:I。受Vcc、R、VBE影响,要使I。得到小电流, R必须很大,集成电路制作难。
二、微电流源电路
Io小电流,R值不太大,应使I。<IR
从PN结中伏安特性方程:
IE=Is(eUbe/UT-1),当Ube》UT时,
第三节
一、 镜像电流源电路 VB1=VB2→IB1=IB2=IB
电流源电路
集成运算放大中,常用电流源提供偏置电路作为有源负载。
(Ic1=Ic2=Ic0)→IR=Ic1+2IB=Ic1(1+2/) =I0(1+2/β)或I0=IR/(1+2/β) 当 β 》2,Vcc》VBE I。=IR=(Vcc-VBE)/R≈Vcc/R 当Ir 大小固定时,电流源输出I。也相应恒定,故称镜像电流
当静态工作时:Ic1Q=Ic2 Q
温度升高:Ic1升,Uc1降(对称性)Uc1Q=Uc2Q, U。=Uc1Q-Uc2Q=0 Ic2升,Uc2降 克服温度变化而引起的零点漂移现象
(二) 放大倍数
1、 差模放大倍数Ad: 当输入信号Ui1及Ui2时(幅度相同; 极性相反)(Ui1=-Ui2)或Ui1=Ui/2,Ui2=-Ui/2 Ui1:T1放大,UC1与Ui2反相;Ui2:T2放大,Uc2与Ui2反相 (U。=UC1-UC2) (差动或) 设单管放大倍数为A1,则:UC1= Ui1 A1=1/2 UiA1 U。=UC1-UC2= UiA1
集成运算放大器

A/D转换方法
– 计数法 速度慢 – 双积分式A/D转换器 精度高、干扰小 速度慢 – 逐次逼近式A/D转换器 原理同计数式相似,只是从最高位开始,通过试探值来计数。
例1:ADC0804 (8位,100us,转换精度 ±1LSB,内带可控三态门)。
例2:ADC570 (输入电压:0~10V 或 -5V~+5V)
例3. 8位以上A/D转换器和系统连接。 ADC1210:12位,100us,启动端SC,结束转换CC。
例4. ADC0809: 逐次逼近式8通道8位ADC。
同时有模拟电路和数字电路的系统中地 线的连接
模拟电路 ADC DAC 数字电路
模拟电路 AGND
数字电路 DGND
模拟地
公共接地点
if RF
R1 R2
R3 RP
- +
u0
ui 1 ui 2 ui 3 uo R1 R2 R3 Rf 可得: uo R f ( ui 1 ui 2 ui 3 ) R1 R2 R3 若R1=R2=R3=R,则 u R f ( u u u ) o i1 i2 i3 R
集成运算放大器
1.集成运算放大器概述
集成运算放大器是一种高电压增益、高输入电阻和低输出 电阻的多级直接耦合放大电路,一般由四部分组成:
输入级:一般是差动放大 器,利用其对称特性可以 提高整个电路的共模抑制 比和电路性能,输入级有 反相输入端“-”、同相 输入端“+”两个输入端; 中间级:的主要作用是
3、差动比例运算电路
R1=R2,R’=RF Uo=-RF/R1(Ui1-Ui2)
差动比例运算电路 又称减法运算电路
集成运算放大器

1 集成运算放大器
1.1 理想运算放大器的功能与特性 1.2 运算放大器的反相输入分析 1.3 运算放大器的同相输入分析 1.4 运算放大器的差分输入分析 1.5 仪表放大器 1.6 积分器与微分器 1.7 运算放大器的电源供电
1.1理想运算放大器的功能与特性 . 理想运算放大器的功能与特性
1.1.1电路符号与端口
i2 i1
Vsm
vs
t
R2
1 2 ∞ A 3
o
vs
Ri
R1
vo Ro
vo R2 Vsm R1
o (b)
t
(a)
对于正弦波输入时,其输入、 对于正弦波输入时,其输入、输出波形如上右图所示
1.2 运算放大器的反相输入分析 .
1.2.2输入、输出阻抗 输入、
输入阻抗R 输入阻抗 i: 因此有: Ri = vs = vs = R1 因此有: i1 vs R1 即为端口1与信号源之间的外接电阻。 即为端口1与信号源之间的外接电阻。
RF 为权重系数 Ri
R R R F v1 + F v2 +⋯+ F vn vo = −iF RF = − R2 Rn R1
利用运算放大器设计一个实现如下算法的电路。 例2 :利用运算放大器设计一个实现如下算法的电路。
v o = v1 + 2v 2 − 4v 3
要求运算放大器必须采用反相输入方式,并且要求对应输入信号v 要求运算放大器必须采用反相输入方式,并且要求对应输入信号 1 的 输入阻抗为10 10K 对应输入信号v 的输入阻抗为5 输入阻抗为10K,对应输入信号 3的输入阻抗为5K。试设计该电路并确 定电路中的各电阻取值。 定电路中的各电阻取值。 分析:当需要相反符号的信号进行加法时, 分析:当需要相反符号的信号进行加法时,可利用两级反相放大器的 级联来实现。 级联来实现。 因为 v o = v1 + 2v 2 − 4v 3 = −[− (v1 + 2v 2 )] − 4v 3 令 v o1 = − (v1 + 2v 2 ) 则有 v o = − (v o1 + 4v 3 ) 可见,该电路是由两级的加权电阻组成,电路结构如图 所示。 可见,该电路是由两级的加权电阻组成,电路结构如图1-2-7所示。 所示