开关电源原理与设计(6)word文档
开关电源原理与设计

开关电源原理与设计
开关电源是一种将输入电源通过开关器件进行周期性开关,从而实现电压转换的电源设计。
它具有高效率、小体积和轻负载下稳定输出电压等优点,因此被广泛应用于各类电子设备中。
开关电源的设计主要包括输入滤波、整流、滤波、功率调节电路和输出调整电路等。
其中,输入滤波电路用于消除输入电源中的高频噪声,以保证开关器件正常工作;整流电路将交流输入转化为直流;滤波电路进一步消除输出中的纹波;功率调节电路根据控制信号调节开关器件的导通和截止,控制输出电压的大小;输出调整电路用于稳压稳流,保证输出电压和电流的稳定性。
在开关电源中,最常见的开关器件是MOSFET或IGBT。
它们通过驱动电路控制开关频率和占空比,从而使开关电源输出的直流电压能够稳定在预定值。
开关频率通常在几十千赫至几百千赫之间,高频率可以减小电路尺寸和重量。
开关电源的设计需要考虑功率损耗、效率、稳定性和可靠性等因素。
为了提高效率,可以采用同步整流技术,将开关管的导通损耗降到最低;为了增加稳定性,可以对开关器件进行过热保护、电压反向保护和短路保护等设计。
总之,开关电源的设计需要充分考虑各类电路元件的选择和匹配,以及各种保护电路的设计,才能获得高效率、稳定性好的电源输出。
《开关电源设计》word版

开关电源设计技巧一:开关电源的基本工作原理1-1.几种基本类型的开关电源顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。
开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。
前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。
另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。
同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。
根据开关器件在电路中连接的方式,目前比较广泛使用的开关电源,大体上可分为:串联式开关电源、并联式开关电源、变压器式开关电源等三大类。
其中,变压器式开关电源(后面简称变压器开关电源)还可以进一步分成:推挽式、半桥式、全桥式等多种;根据变压器的激励和输出电压的相位,又可以分成:正激式、反激式、单激式和双激式等多种;如果从用途上来分,还可以分成更多种类。
下面我们先对串联式、并联式、变压器式等三种最基本的开关电源工作原理进行简单介绍,其它种类的开关电源也将逐步进行详细分析。
1-2.串联式开关电源1-2-1.串联式开关电源的工作原理图1-1-a是串联式开关电源的最简单工作原理图,图1-1-a中Ui是开关电源的工作电压,即:直流输入电压;K是控制开关,R是负载。
当控制开关K接通的时候,开关电源就向负载R输出一个脉冲宽度为Ton,幅度为Ui的脉冲电压Up;当控制开关K关断的时候,又相当于开关电源向负载R输出一个脉冲宽度为Toff,幅度为0的脉冲电压。
这样,控制开关K不停地“接通”和“关断”,在负载两端就可以得到一个脉冲调制的输出电压uo 。
开关电源的原理与设计

开关电源的原理与设计一、引言开关电源是一种将交流电转换为直流电的电子设备,广泛应用于各种电子设备中。
本文将介绍开关电源的原理与设计。
二、开关电源的原理开关电源的基本原理是利用开关管(MOS管)的导通和截止来控制电源输出。
其主要由输入滤波电路、整流电路、变换电路、输出电路和控制电路等组成。
1. 输入滤波电路输入滤波电路的作用是将交流电转换为稳定的直流电。
它由电容和电感构成,通过对电流的整流和滤波作用,使得输出电压平稳。
2. 整流电路整流电路主要由二极管桥整流电路组成,将交流电转换为脉冲直流电。
二极管桥整流电路具有整流和滤波功能,可以将交流电转换为脉动较小的直流电。
3. 变换电路变换电路是开关电源的核心部分,主要由开关管、变压器和输出电感组成。
开关管的导通和截止控制了电源的输出电压,变压器用于提高或降低电压。
通过开关管的开关动作,可以实现高效率的电能转换。
4. 输出电路输出电路由输出电容和负载组成,用于稳定输出电压并提供给负载使用。
输出电容的作用是存储能量,平稳输出直流电压。
5. 控制电路控制电路主要由控制芯片和反馈电路组成,用于监测和控制输出电压。
控制芯片通过反馈电路不断调整开关管的导通和截止,以保持输出电压的稳定。
三、开关电源的设计开关电源的设计需要考虑输入电压、输出电压、输出功率、效率和稳定性等因素。
1. 输入电压根据应用场景的不同,可以选择不同的输入电压范围。
常见的输入电压有220V交流电和110V交流电。
2. 输出电压输出电压是开关电源设计的关键参数之一,需根据实际需求确定。
常见的输出电压有5V、12V、24V等。
3. 输出功率输出功率是开关电源能够提供的最大功率,需根据负载的功率需求确定。
需要注意的是,输出功率不能超过开关电源的额定功率。
4. 效率开关电源的效率是指输出功率与输入功率的比值,通常以百分比表示。
较高的效率意味着更少的能量损耗,可提高整个系统的能量利用率。
5. 稳定性开关电源的稳定性是指输出电压的稳定性,即在负载变化或输入电压波动时,输出电压的变化情况。
开关电源原理、设计及实例[陈纯锴][电子教案(PPT版本)]第6章
![开关电源原理、设计及实例[陈纯锴][电子教案(PPT版本)]第6章](https://img.taocdn.com/s3/m/8526e34f804d2b160b4ec01a.png)
6.1 输出整流管及稳压管
6.1.1二极管的性能参数和计算
(7)关断损耗PiD 随着工作频率的提高,反向恢复时间在周期中占有的比例 亦随之增大,关断损耗亦增大,因而,反向恢复时间在一定程度 上限制了电路工作频率的提高。关断损耗平均值可以由下面公式 近似计算: trr 1
PiD
其中IRM为反向峰值电流,VR为稳态时施加的反向电压,trr 为反向恢复时间,T为周期。 开关电源用开关整流二极管不仅应有短的反向恢复时间和 小的反向恢复电流,而且反向电流的恢复以缓慢为好,即所谓软 恢复,以降低噪声。
6.1 输出整流管及稳压管
6.1.1二极管的性能参数和计算
(5)反向恢复时间 反向恢复时间是衡量高频整流及续流器件性能的重要技 术指标。 图6-3给出二极管从导通 到完全关断的过渡过程中 电流iD、电压VD变化曲线。 其中t1≤t≤t3为二极管的反 向恢复过程。图中,IF为 正向电流,IRm为最大反 向恢复电流,Irr为反向恢 复电流。
6.1 输出整流管及稳压管
2.超快恢复二极管 超快恢复二极管(Ultra-Fast Recovery Diode,缩写为 UFRD)则是在快恢复二极管基础上发展而成的, 其反向恢复电 荷进一步减小,反向恢复时间更短,trr值可低至几十ns。UFRD 的优点是正向导通损耗小,结电容小,运行温度可较高,允许的 结温在175℃左右。UFRD一般用于开关频率在50kHz以上的整 流模块的输出整流。 用在开关电源中输出整流的快速及超快速恢复整流二极管, 是否需要加装散热器,要根据电路的最大输出功率来决定。 型 号为1N6620-1N663l的高电压超快恢复二极管(PIN≈l000v)trr为 35或50ns,并且在高温下反向电流小、正向恢复电压低,适用 于高电压输出(要求PIV为600v)的开关变换器。型号为1N58021N5816,1N6304-1N6306的UFRD,其PIV≤400V,可用于24V 或48V输出(要求二极管的反向额定电压分别为150V和400V)的 开关变换器。
(完整word版)开关电源工作原理超详细解析

开关电源工作原理超详细解析第1页:前言:PC电源知多少个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。
本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。
●线性电源知多少目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。
线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC 直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。
最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”)配图1:标准的线性电源设计图配图2:线性电源的波形尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。
对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。
由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。
此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。
由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。
开关电源基本原理与设计介绍幻灯片-文档资料64页文档

11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
拉
60、生活的道路一旦选定,就要勇敢地 走在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
开关电源工作原理与设计

开关电源工作原理与设计1. 概述开关电源是一种将电能从一种形式转换成另一种形式的电源装置。
它通过开关器件(如晶体管、MOSFET等)来精确控制电路的通断,从而实现对电能的高效调节和转换。
本文将详细介绍开关电源的工作原理和设计。
2. 开关电源工作原理2.1 输入电路开关电源的输入电路通常包括输入滤波电路、整流电路和功率因数校正电路。
-输入滤波电路用于去除输入电源中的高频噪声和杂散信号。
- 整流电路将交流输入转换为直流信号,常见的整流方式有单相整流桥和三相整流桥。
- 功率因数校正电路主要用于改善电源对电网的功率因数,提高电能的利用率。
2.2 PFC控制电路功率因数校正(PFC)是开关电源中的一个重要环节,通过控制输入电流和输入电压之间的相位关系,提高整体效率和功率因数。
常见的PFC控制技术有边界模式控制和谐振模式控制。
2.3 DC-DC变换器DC-DC变换器是开关电源的核心部分,它将输入的直流电压转换为需要的输出电压。
常见的DC-DC变换器包括降压、升压、降压升压和反激式变换器。
2.4 控制电路开关电源中的控制电路主要负责检测输出电压和输出电流,并通过反馈回路对开关器件的导通和断开进行精确控制。
常见的控制技术有电压模式控制和电流模式控制。
3. 开关电源的设计要点3.1 选型与设计在开关电源的设计过程中,需要根据实际需求选择合适的开关器件、电容和电感等元件,并进行适当的参数计算和仿真分析,以保证整体性能和稳定性。
3.2 效率和功率因数开关电源的效率和功率因数是评估其性能的重要指标。
通过合理的拓扑结构设计、优化控制算法和合适的滤波电路,可以提高开关电源的效率和功率因数。
3.3 温度管理由于开关电源中包含许多功率器件,温度管理是开关电源设计中需要重点考虑的问题。
合理的散热设计和温度保护措施可以提高开关电源的可靠性和寿命。
3.4 EMI/EMC设计开关电源可能会产生电磁干扰和接收外部干扰,因此应进行合适的EMI/EMC设计,包括滤波、屏蔽和接地等,以满足相关标准和要求。
开关电源工作原理与设计

开关电源工作原理与设计开关电源是一种电源转换器,将电源输入的交流电转换成需要的直流电,其工作原理是将输入的交流电先经过整流后变成高压直流电,再通过高频开关管进行开关操作,最后通过输出变压器降压输出直流电。
开关电源具有高效、体积小、重量轻、稳定性好等优点,在现代电子设备中得到广泛应用。
开关电源的设计需要考虑多个因素,以下从几个方面进行阐述:1. 整流电路设计整流电路是将输入的交流电转换成直流电的过程,一般采用桥式整流电路,在设计时需要考虑电容和电阻的选取以及大电流和高功率元器件的选择。
整流电路的设计对开关电源的效率和输出稳定性都有重要影响。
2. 高频开关电路设计高频开关电路是开关电源的关键组成部分,其工作原理是通过高频开关管进行开关操作来控制输出变压器的输入电压,从而输出所需的直流电。
在设计时需要考虑开关管的耐压和开关频率等因素,同时还需要考虑开关管的损耗问题来保证开关电源的效率和稳定性。
3. 输出变压器设计输出变压器是开关电源的输出部分,其设计需要考虑输出电压、输出电流和稳定性等因素,同时还需要选用合适的核心材料和绕线方式来减小损耗和电磁干扰,以保证开关电源的效率和稳定性。
4. 控制电路设计控制电路是开关电源的控制系统,其设计需要考虑开关电源的输出电压、电流等参数的控制,以及过流、过压等保护功能的实现。
在设计时需要考虑控制精度、响应时间等因素,以保证开关电源的安全性和稳定性。
总之,开关电源的设计需要综合考虑整个系统的各个部分,从而实现高效、稳定、安全的输出直流电。
随着电子技术的不断发展,开关电源将继续发挥更加重要的作用,为各类电子产品的稳定运行提供坚实的保障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源原理与设计(连载九)并联式开关电源输出电压滤
波电路
时间:2013-11-01 来源:作者:
1-4-2.并联式开关电源输出电压滤波电路
上面已经知道,当并联式开关电源不带输出电压滤波电路时,输出脉冲电压的幅度将非常高。
但在应用中,大多数并联式开关电源输出电压还是经过整流滤波后的直流电压,因此,一般开关电源的输出电路都带有整流滤波电路。
图1-12是带有整流滤波功能的并联式开关电源工作原理图。
图1-12中,Ui
是开关电源的工作电压,L是储能电感,eL为电流iL在储能电感两端产生的反电动势,K是控制开关,R是负载。
而图1-13、图1-14、图1-15分别是并联式开关电源控制开关K工作于占空比为0.5、< 0.5、> 0.5时,图1-12电路中各点的电压、电流波形。
图图1-13、图1-14、图1-15中Ui是开关电源的输入电压,uo是控制开关K两端的输出电压,uc是滤波电容两端的输出电压,Up是开关电源输出的峰值电压,Uo是开关电源输出电压(平均值),Ua是开关电源输出的平均电压,
iL是流过储能电感L的电流,iLm是流过储能电感L电流的最大值,Io是流过负载R的电流(平均值)。
当控制开关K接通时,输入电源Ui开始对储能电感L加电,流过储能电感L 的电流iL开始增加,同时电流在储能电感中也要产生反电动势eL;当控制开关K由接通转为关断的时候,储能电感也会产生反电动势eL。
eL反电动势的方向与开关K 关断前的方向相反,但与电流的方向相同,因此,在控制开关K两端的输出电压uo 等于输入电压Ui与反电动势eL之和。
因此,在Ton期间:
eL = Ldi/dt = Ui —— K接通期间 (1-43)
0.5">
对上式进行积分,可求得流过储能电感L的电流为:
(1-44)式中iL为流过储能电感L电流的瞬时值,t为时间变量;i(0)为的初始电流,即:控制开关K接通瞬间之前,流过储能电感L中的电流。
当开关电源工作于临界连续电流状态时,i(0) = 0 ,由此可以求得流过储能电感L的最大电流为:
iLm =Ui*Ton/L —— K关断前瞬间 (1-45)
在开关关断Toff期间,控制开关K关断,储能电感L把电流iLm转化成反电动势,与输入电压Ui串联迭加,通过整流二极管D继续向负载R提供能量,在此期间储能电感L两端的电压eL为:
eL = -Ldi/dt = Uo-Ui —— K关断期间 (1-46)
式中负号表示反电动势eL的极性与(1-43)式相反,即:K接通与关断时电感的反电动势的极性正好相反。
对(1-46)式进行积分得:
式中i(Ton+)为控制开关K从Ton转换到Toff的瞬间之前流过电感的电流,i(Ton+)也可以写为i(Toff-),即:控制开关K关断或接通瞬间,之前和之后流过电感L的电流相等。
实际上(1-47)式中的i(Ton+)就是(1-45)式中的iLm,因此,(1-9)式可以改写为:
当开关电源工作于临界连续电流状态时,流过储能电感的初始电流i(0)等于0(参看图1-13),即:(1-49)式中流过储能电感电流的最小值iLX等于0。
因此,由(1-45)和(1-49)式,可求得反转式串联开关电源输出电压Uo为:
一般,并联式开关电源的输出电压Uo都是取自输出电压uo脉冲电压的幅值Up ,经整流滤波以后储能滤波电容C两端的输出电压基本就是Up ,即:
Up = Uo ——并联式开关电源 (1-51)
这里特别指出:(1-50)和(1-51)式的结果,虽然是以开关电源工作于临界连续电流状态的条件求得,但对于开关电源工作于连续电流状态或断流状态同样成立,因为,输出电压Uo只取其峰值电压Up,而不是取其平均值。
另外,并联式开关电源输出电压uo的平均值Ua与输入电压的大小相等,即:
Ua = Ui ——并联式开关电源 (1-52)
由于其输出电压uo的幅值等于输入电压Ui与储能电感L产生反电动势eL之和,因此,并联式开关电源一般都是取其输出电压uo的幅值Up作为输出(电压幅值的提取方法留待后面详细讨论)。
所以,并联式开关电源属于升压型开关电源。
虽然并联式开关电源输出电压的幅度比输入电压可以提高,但其输出电压的平均值Ua与控制开关K的占空比D的大小无关,即:并联式开关电源输出电压的平均值Ua永远等于输入电压Ui 。
(注:素材和资料部分来自网络,供参考。
请预览后才下载,期待你的好评与关注!)。