日照实验高中高二下学期期末复习数学练习二十二(选修2-2和2-3)

合集下载

高二数学下期期末考试题(选修2-2_选修2-3_)3

高二数学下期期末考试题(选修2-2_选修2-3_)3

高二数学下期期末考试题(选修2-2,选修2-3 )一.选择题(10小题,每小题5分,共50分)1.设复数z=1+i ,则复数2z+z 2的共轭复数为( )A 、1-iB 、1+iC 、-1+iD 、-1-i 2.342(1)(1)(1)n x x x +++++++的展开式中2x 的系数是( )A.33n C +B.32n C + C.321n C +-D.331n C +-3.函数2sin(2)y x x =+导数是( )A.2cos(2)x x +B.22sin(2)x x x +C.2(41)cos(2)x x x ++D.24cos(2)x x + 4.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊂/平面α,直线a ⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误5.已知函数f(x)的导函数f '(x )=ax 2+bx+c 的图像如图所示,则f(x)的图像可能是( )6.某个命题与正整数有关,若当)(*N k k n ∈=时该命题成立,那么可推得当=n 1+k 时该命题也成立,现已知当5=n 时该命题不成立,那么可推得( ) (A )当6=n 时,该命题不成立 (B )当6=n 时,该命题成立 (C )当4=n 时,该命题成立 (D)当4=n 时,该命题不成立A7.正态总体的概率密度函数为2()8()x x f x e-∈=R ,则总体的平均数和标准差分别为( ) A.0,8B .0,4C.0,2 D.0,28.从甲袋中摸出1个红球的概率为13,从乙袋中摸出1个红球的概率为12,从两袋中各摸出一个球,则23等于( ) (A )2个球都不是红球的概率 (B )2个球都是红球的概率 (C )至少有1个红球的概率 (D )2个球中恰有1个红球的概率 9.若随机变量η的分布列如下:则当()0.8P x η<=时,实数x 的取值范围是( ) A.x ≤2B.1≤x ≤2C.1<x ≤2D.1<x <210.给出以下命题: ⑴若()0b af x dx >⎰,则f (x )>0;⑵20sin 4xdx =⎰π;⑶f (x )的原函数为F (x ),且F (x )是以T 为周期的函数,则0()()a a T Tf x dx f x dx +=⎰⎰;其中正确命题的个数为( )(A)1 (B)2 (C)3 (D)0 二.填空题(5小题,每小题5分,共25分) 11.若x <y <0且xy -(x2+y 2)i =2-5i ,则x =_____,y =______.12.任意地向(0,1)上投掷一个点,用x 表示该点坐标,且1A=0,2x x ⎧⎫<<⎨⎬⎩⎭()1B=1,P B 4x x A ⎧⎫<<=⎨⎬⎩⎭则_____。

日照实验高中高二下学期期末复习数学练习二十三(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习二十三(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习二十三(选修2-2和2-3)1.设复数z 的共轭复数为z ,若3(1)2,i z i -=-则复数z =A .iB .i -C .1i -+D .1i --2.某运动员投篮命中率为0.6,他重复投篮5次,若他命中一次得10分,没命中不得分,命中次数为X ,得分为Y , 则,EX DY 分别为A .0.6,60B .3,12C .3,120D .3, 1.23.在n的展开式中,只有第13项的二项式系数最大,那么x 的指数是整数的项共有 A . 3项 B . 4项 C . 5项 D .6项4.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是A.14B.13C.12D.35 5.已知直线1y x =+与曲线ln(1)y x a =++相切,则实数a 的值为A 1B 0C -1D 26.已知函数()f x 是定义在(0,)+∞上的单调函数,且(0,)x ∀∈+∞,[()ln ]1f f x x -=,则方程2/()2()7f x x f x +=的解所在的区间为 A (0,1) B (1,2) C (2,3) D (3,4)7.设a 、b 、β为整数(β>0),若a 和b 被β除得的余数相同,则称a 和b 对β同余,记为(mod βa b =),已知12322019202020201222,(mod10)a C C C C b a =++⋅+⋅++⋅=,则b 的值可以是A .2010B .2011C .2008D .2009 8.已知函数f (x )=1a x x ⎛⎫-⎪⎝⎭-2lnx (a ∈R ),g (x )=a x -,若至少存在一个x 0∈[1,e ],使得f (x 0)>g (x 0)成立,则实数a 的范 围为 A .[1,+∞) B .(1,+∞) C .[0,+∞) D .(0,+∞)9.现有12件商品摆放在货架上,摆成上层4件下层8件,现要从下层8件中取2件调整到上层,若其他商品的相对顺序不变,则不同调整方法的种数是 A .420 B .560 C .840 D .2280 10.函数)(x f 的导函数为)(x f ',对任意的R x ∈都有)()(2x f x f >'成立,则A .)3ln 2(2)2ln 2(3f f >B .)3ln 2(2)2ln 2(3f f <C .)3ln 2(2)2ln 2(3f f =D .)2ln 2(3f 与)3ln 2(2f 的大小不确定11.设321x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为a ,则直线y ax =与曲线2y x =围成图形的面积为12.已知随机变量ξ服从正态分布2(1,),N σ且(2)(6)0.1998,P P ξξ<-+>=则(44)P ξ-<<=___________13.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .14.将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 .第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1…… ………………………………………15.用1,2,3,4,5,6组成数字不重复的六位数,满足1不在左右两端,2,4,6三个偶数中有且只有两个偶数相邻, 则这样的六位数的个数为____________16.某学科竞赛的预赛考试分为一试和加试两部分测试,且规定只有一试考试达标着才可以进入加试考试,一试考试和 加试考试都达标才算优胜者,从而进入决赛,一试试卷包括三个独立的必做题目,加试包括两个独立的必做题目,若 一试考试至少答对两个问题就认定为达标,加试需两个题目都答对才算达标,假设甲同学一试考试中答对每个题的概 率均为23,加试考试中答对每个题的概率都为12,且各题答题情况均互不影响. (1)求甲同学成为优胜者,顺利进入决赛的概率; (2)设甲同学解答的题目的个数为X ,求X 的分布列和期望.17.某学生参加某高校的自主招生考试,须依次参加A 、B 、C 、D 、E 五项考试,如果前四项中有两项不合格或第五项 不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试。

最新期末高二数学选修2-2、2-3测试题(含答案)

最新期末高二数学选修2-2、2-3测试题(含答案)

高二数学选修2-2、2-3期末检测试题命题:伊宏斌 命题人:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题,共50分)一.选择题(本大题共10小题,每小题5分,共50分)1.过函数x y sin =图象上点O (0,0),作切线,则切线方程为 ( ) A .x y = B .0=y C .1+=x y D .1+-=x y 2.设()121222104321x a x a x a a x x x ++++=+++ ,则=0a ( )A .256B .0C .1-D .13.定义运算a cad bc b d =-,则ii 12(i 是虚数单位)为 ( ) A .3 B .3- C .12-i D .22+i4.任何进制数均可转换为十进制数,如八进制()8507413转换成十进制数,是这样转换的:()1676913818487808550741323458=+⨯+⨯+⨯+⨯+⨯=,十六进制数1444706165164163162)6,5,4,3,2(23416=+⨯+⨯+⨯+⨯=,那么将二进制数()21101转换成十进制数,这个十进制数是 ( )A .12B .13C .14D .155.用数学归纳法证明:“两两相交且不共点的n 条直线把平面分为)(n f 部分,则2)1(1)(++=n n n f 。

”在证明第二步归纳递推的过程中,用到)()1(k f k f =++ 。

( ) A .1-k B .k C .1+k D .2)1(+k k6.记函数)()2(x fy =表示对函数)(x f y =连续两次求导,即先对)(x f y =求导得)('x f y =,再对)('x f y =求导得)()2(x fy =,下列函数中满足)()()2(x f x f=的是( )A.x x f =)(B.x x f sin )(=C.xe xf =)( D.x x f ln )(=7.甲、乙速度v 与时间t 的关系如下图,)(b a 是b t =时的加速度,)(b S 是从0=t 到b t =的路程,则)(b a 甲与)(b a 乙,)(b S 甲与)(b S 乙的大小关系是 ( )A .)()(b a b a 乙甲>,)()(b S b S 乙甲>B .)()(b a b a 乙甲<,)()(b S b S 乙甲<C .)()(b a b a 乙甲<,)()(b S b S 乙甲>D .)()(b a b a 乙甲<,)()(b S b S 乙甲< 8.如图,蚂蚁从A 沿着长方体的棱以 的方向行走至B ,不同的行走路线有( )A .6条B .7条C .8条D .9条9、等比数列{a }n 中,120143,9a a ==,122014(x)(x a )(x a )....(x )f x a =---,'(x)f 为函数(x)f 的导函数,则'(0)f =( )A 0B 10073C 20163D 3021310.设{}10,9,8,7,6,5,4,3,2,1=M ,由M 到M 上的一一映射中,有7个数字和自身对应的映射个数是 ( )A .120B .240C .710 D .360B第8题图第Ⅱ卷(非选择题 共100分)二.填空题(本大题4个小题,每小题5分,共25分) 11(15)如果5025001250(12)(1)(1)(1)x a a x a x a x +=+-+-++-,那么1349a a a +++= .12.设复数z 满足条件1z =,那么z i 取最大值时的复数z 为 . 13,02321=+-a a a 0334321=-+-a a a a类似上三行,第四行的结论为__________________________。

日照实验高中高二下学期期末复习数学练习二(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习二(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习二(选修2-2和2-3)1.已知i i Z+=+-21,则复数Z=A 、i 31+-B 、i 31-C 、i +3D 、i -32.大熊猫活到十岁的概率是0.8,活到十五岁的概率是0.6,若现有一只大熊猫已经十岁了,则他活到十五岁的概率是 A .0.8 B .0.75 C .0.6 D .0.483.若5250125(1)(1)(1)(1)x a a x a x a x +=+-+-+⋅⋅⋅+-,则0a =BA.1B.32C.-1D.-324.已知随机变量ξ服从正态分布()22N ,a ,且P(ξ<4)=0.8,则P(0<ξ<2)=A.0.6 B.0.4 C.0.3 D.0.25.有A 、B 两个口袋,A 袋装有4个白球,2个黑球;B 袋装有3个白球,4个黑球,从A 袋、B 袋各取2个球交换之后,则A 袋中装有4个白球的概率为(A )352(B )10532(C )1052(D )2186.设函数,)21()(10x x f -=则导函数)(x f '的展开式中2x 项的系数为 A .1440 B.-1440 C.2880 D.-28807.已知函数f(x)=x 2-ax +3在(0,1)上为减函数,函数g(x)=x 2-aln x 在(1,2)上为增函数,则a 的值等于 A .1 B .2 C .0 D. 2则根据表中的数据,计算随机变量2K 的值,并参考有关公式,你认为性别与是否喜爱打篮球之间有关系的把握有 A .97.5% B.99% C . 99.5% D.99.9%9.已知函数f(x)在R 上满足f(x)=2f(2-x)-x 2+8x -8,则曲线y =f(x)在点(1,f(1))处的切线方程是 A .y =2x -1 B .y =x C .y =3x -2 D .y =-2x +310.某人制定了一项旅游计划,从7个旅游城市中选择5个进行游览。

日照实验高中高二下学期期末复习数学练习十三(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习十三(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习十三(选修2-2和2-3)1.已知i 为虚数单位,)21(i i Z +⋅=,则复数Z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.数10080除以9所得余数是( )A . 0B .8C .-1D .13.从黄瓜、白菜、油菜、扁豆4个蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,则不同的种植方法种数为A .6种B .12种C .18种D .24种4. 某次市教学质量检测,甲、乙、丙三科考试成绩的直方图如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由图中曲线可得下列说法中正确的一个是A. 甲科总体的标准差最小B. 乙科总体的标准差及平均数都居中C. 丙科总体的平均数最小D. 甲、乙、丙的总体的平均数不相同 5.抛掷一颗骰子两次,定义随机变量⎪⎩⎪⎨⎧=次的点数)次的点数等于第第次的点数)次的点数不等于第第21(121(0X ,随机变量X 的方差=)(X D A.61 B.185 C.365 D.656.三位数中,如果十位上的数字比百位上的数字和个位上的数字都大,则称这个数为凸数,如254, 674等都是凸数,那么,各个数位上无重复数字的三位凸数有A.120个 B.204个C.240个 D.360个7.()1nax by -+展开式中不含x 的项的系数绝对值的和为243,不含y 的项的系数绝对值的和为32,则,,a b n 的值可能为A .2,1,5a b n ==-=B .1,2,5a b n =-==C .1,2,6a b n =-==D .2,1,6a b n =-=-= 8.定义在区间[0,a ]上的函数ƒ(x)的图像如右图所示,记以A(0,ƒ(0)),B(a ,)(a f ),C(x ,ƒ(x))为顶点的三角形面积为S(x),则函数S(x)的导函数S ′ (x)的图像大致是9.函数()f x 的定义域为D ,若存在闭区间[,]a b D ⊆,使得函数()f x 满足:①()f x 在[,]a b 内是单调函数;②()f x 在[,]a b 上的值域为[2,2]a b ,则称区间[,]a b 为()y f x =的“倍值区间”.下列函数中存在“倍值区间”的有( )①)0()(2≥=x x x f ;②()()x f x e x =∈R ;③)0(14)(2≥+=x x x x f ; ④)1,0)(81(log )(≠>-=a a a x f xa A .①②③④ B .①②④ C .①③④ D .①③10.如图所示的三角形数阵叫“莱布尼兹调和三角形“,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),其余每个数是它下一行左右相邻两个数的和,如:11=12+12,12=13+16,13=14+112,......,则第7行第4个数(从左往右数)为( ) A 、1140 B 、1105 C 、160 D 、14211. 函数()()()⎪⎩⎪⎨⎧≤≤-<≤=21,210,2x x x x x f 的图象与x 轴所围成的封闭图形的面积等于 ______________.12. 设由0、1组成的三位数组中,若用A 表示“第二位数字为0的事件”,用B 表示 “第一位数字为0的事件”,则(|)P A B = . 13.已知函数ax xy +=2的图象在0=x 和3=x 处的切线互相平行,则实数=a __________ 14. 计算12323nn n n n C C C nC ++++,可以采用以下方法: 构造恒等式0122(1)n nn n n n n C C x C x C x x ++++=+,两边对x 求导,得12321123(1)n n n n n n n C C x C x nC x n x --++++=+,在上式中令1x =,得1231232nn n n n n C C C nC n -++++=⋅.类比上述计算方法,计算12223223nnn n n C C C n C ++++=.15.(1)由“若,,a b c R ∈则()()ab c a bc =”类比“若a,b,c 为三个向量则(⋅⋅⋅⋅(a b)c =a b c)” (2)在数列{}n a 中,110,22n n a a a +==+猜想22n n a =-(3)在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积 (4)231dx x--=⎰2ln 3上述四个推理中,得出的结论正确的是______________.(写出所有正确结论的序号)16.甲、乙两颗卫星同时独立的监测某一台风,在同一时段内,甲、乙预报台风准确的概率分别为54、43,在该时段内,求:(I )甲、乙同时预报台风准确的概率;(II )至少有一颗卫星预报台风准确的概率;(III )若甲独立预报4次,恰有3次预报准确的概率.17.已知二项式nxx )2(-展开式中所有二项式系数之和为1024. (Ⅰ)求n 的值;(Ⅱ)求展开式中4x 项的系数。

高二数学下期期末考试题(选修2-2,选修2-3 )

高二数学下期期末考试题(选修2-2,选修2-3 )

高二数学下期期末考试题(选修2-2,选修2-3 )一、选择题(本大题共10小题,每小题5分,共50分)1、i 是虚数单位,复数1-2i 的共轭复数的虚部为( )A -2iB -2C 2iD 22、一点沿直线运动,如果由始点起经过t 秒后的位移是4321394S t t t =-+,那么速度为0的时刻是( )A 0秒,6秒B 0秒,3秒C 3秒,6秒D 0秒,3秒,6秒3、有一段演绎推理是这样的,“直线平行于平面,则平行于平面内所有直线,已知直线b //平面α,直线a ⊂平面α,则直线b//a ”的结论显然是错误的,这是因为( )A 大前提错误B 小前提错误C 推理形式错误D 非以上错误 X 的方差D (X )为( )A 2 B45 C 35 D 5、2532()x x-的展开式中的常数项为( ) A 80 B -80 C 40 D -406、设随机变量X 服从正态分布N (4,9)若p (x 2c 1)p (x 21)c >+=<-,则c 等于( )A 9B 4C 3D 27、若甲、乙、丙随机的站成一排,则甲在乙的左侧(甲、乙可不相邻)的站法有( )种A 2B 3C 4D 68、对于R 上可导的任意函数(x)f ,若满足'10(x)x f -≤,则必有( ) A (0)(2)(1)f f f +> B (0)(2)(1)f f f +≤C (0)(2)(1)f f f +<D (0)(2)(1)f f f +≥9、等比数列{a }n 中,120143,9a a ==,122014(x)(x a )(x a )....(x )f x a =---,'(x)f 为函数(x)f 的导函数,则'(0)f =( ) A 0 B 10073 C 20163 D 3021310、将正整数从小到大排成一个数列,按如下规则删除一些项,先删除1,再删除1后面的最邻近的2个连续偶数2,4,再删除4后面最邻近的3个连续奇数5、7、9,再删除9后面最邻近的4个连续偶数10,12,14,16,再删除16后面最邻近的5个连续奇数17,19,21,23,25,…….按此规则一直删除下去,将得到一个新的数列3,6,8,11,13,15,…….则此新数列的第65项是( )A 141B 142C 143D 144二、填空题(本大题共5小题,每小题5分,共25分)11、函数32y x x x a =--+的单调递增区间为 。

日照实验高中高二下学期期末复习数学练习三(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习三(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习三(选修2-2和2-3)1)复数i ii i --+1)1(23等于 A .1B .-1C .i D . i -2) 观察按下列顺序排列的等式:9011⨯+=,91211⨯+=,92321⨯+=,93431⨯+=,…,猜想第()n n +∈N 个等式应为A .9(1)109n n n ++=+B .9(1)109n n n -+=-C .9(1)101n n n +-=-D .9(1)(1)1010n n n -+-=- 3)如果物体做2)1(2)(t t S -=的直线运动,则其在s t 4=时的瞬时速度为: A . 12 B 。

12- C. 4 D. 4- 4).函数))0(,0(cos sin )(f x x x f 在点+=处的切线方程为A .01=+-y xB .01=--y xC .01=-+y xD .01=++y x5).两曲线22y x x =-+,224y x x =-所围成图形的面积S 等于A.4-B.0C.2D.46)随机变量X 的概率分布列为)1()(+==n n an X P ,(1,2,3,4n =) 其中a 为常数,则)2521(<<X P 的值为( )A :23 B :34 C :45 D :567)二项式3032a a ⎛⎫- ⎪⎝⎭的展开式的常数项为第( )项 A : 17 B :18 C :19 D :208)某学习小组男女生共8人,现从男生中选2人,女生中选1人,分别去做3种不同的工作,共有90种不同的选法, 则男女生人数为( )A : 2,6B :3,5C :5,3D :6,2 9)已知函数()()()()f x x a x b x c =---,且()()1f a f b ''==,则()f c '等于A .12-B .12C .1-D .110)某机械加工零件由两道工序组成,第一道的废品率为a ,第二道的废品率为b ,假定这道工序出废品是彼此无关的,那么产品的合格率为( )A : ab-a-b+1B :1-a-bC :1-abD :1-2ab 11)若复数(a 2-3a +2)+(a-1)i 是纯虚数,则实数a 的值为_______. 12)设随机变量X ~),2(p B ,Y ~),3(p B ,若43)1(=≥X P ,则=≥)1(Y P13)若函数24()1xf x x =+在区间(21)m m +,上是单调递增函数,则实数m 的取值范围是 .14)在10个球中有6个红球,4个白球(各不相同),不放回的依次摸出2个球,在第一次摸出红球的条件下,第2次也摸出红球的概率是_________.15)一袋中装有5个白球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现2次停止,用X 表示取球的次数,则==)3(X P ___________.16)若复数1i z =+,求实数a b ,使2)2(2z a z b az +=+成立.(其中z 为z 的共轭复数) 17)已知函数322()1f x x mx m x =+-+(m 为常数,且m >0)有极大值9. (1)求m 的值;(2)若斜率为-5的直线是曲线()y f x =的切线,求此直线方程. 18)在数列{}n a 中,113a =,且前n 项的算术平均数等于第n 项的21n -倍()n +∈N . (1)写出此数列的前5项;(2)归纳猜想{}n a 的通项公式,并用数学归纳法证明.19)某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a 件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为x ()01x <<,那么月平均销售量减少的百分率为2x .记改进工艺后,旅游部门销售该纪念品的月平均利润是y (元). (1)写出y 与x 的函数关系式;(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.20)射击比赛中,每位射手射击队10次,每次一发,击中目标得3分,未击中目标得0分,每射击一次,凡参赛者加2分,已知小李击中目标的概率为0.8.(1)设X 为小李击中目标的次数,求X 的概率分布; (2)求小李在比赛中的得分的数学期望与方差. 21)已知函数23()ln(23)2f x x x =+-. (1)求()f x 在[0,1]上的极值;(2)若对任意11[,],63x ∈不等式ln ln[()3]0x f x x a '-+-<恒成立,求实数a 的取值范围; (3)若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个零点,求实数b 的取值范围.日照实验高中高二下学期期末复习数学练习三(选修2-2和2-3)ABAAD DCBAA 11) 2 12) 8713) 01≤<-m 14) 95 15) 2564516:42a b =-⎧⎨=⎩,,或21.a b =-⎧⎨=-⎩,17:解:(Ⅰ) f’(x )=3x 2+2mx -m 2=(x +m )(3x -m )=0,则x =-m 或x =31m , 当x 变化时,f’(x )与f (x )的变化情况如下表:x (-∞,-m )-m (-m,m 31) m 31 (m 31,+∞) f’(x ) + 0 - 0 + f (x )极大值极小值从而可知,当x =-m 时,函数f (x )取得极大值9, 即f (-m )=-m 3+m 3+m 3+1=9,∴m =2. (Ⅱ)由(Ⅰ)知,f (x )=x 3+2x 2-4x +1, 依题意知f’(x )=3x 2+4x -4=-5,∴x =-1或x =-31. 又f (-1)=6,f (-31)=2768, 所以切线方程为y -6=-5(x +1),或y -2768=-5(x +31), 即5x +y -1=0,或135x +27y -23=0.18:解:(1)由已知113a =,123n a a a a n ++++(21)n n a =-,分别取2345n =,,,,得2111153515a a ===⨯,312111()145735a a a =+==⨯,4123111()277963a a a a =++==⨯,51234111()4491199a a a a a =+++==⨯;所以数列的前5项是:113a =,215a =,3135a =,4163a =,5199a =;(2)由(1)中的分析可以猜想1(21)(21)n a n n =-+.下面用数学归纳法证明:①当1n =时,猜想显然成立. ②假设当n k =时猜想成立,即1(21)(21)k a k k =-+.那么由已知,得12311(21)1k k k a a a a a k a k +++++++=++,即21231(23)k k a a a a k k a +++++=+.所以221(2)(23)k k k k a k k a +-=+,即21(21)(23)k k k a k a +-=+,又由归纳假设,得11(21)(23)(21)(21)k k k a k k +-=+-+,所以11(21)(23)k a k k +=++,即当1n k =+时,公式也成立.当①和②知,对一切n +∈N ,都有1(21)(21)n a n n =-+成立.19:解: (Ⅰ)改进工艺后,每件产品的销售价为()201x +,月平均销售量为()21a x -件,则月平均利润()()2120115y a x x =-⋅+-⎡⎤⎣⎦(元), ∴y 与x 的函数关系式为()235144y a x x x =+-- ()01x << . (Ⅱ)由()2542120y a x x '=--=得112x =,23x =-(舍), 当102x <<时0y '>;112x <<时0y '<, ∴函数()235144y a x x x =+-- ()01x <<在12x =取得最大值. 故改进工艺后,产品的销售价为12012⎛⎫+ ⎪⎝⎭30=元时,旅游部门销售该纪念品的月平均利润最大.20:(1)X 的概率分布为X O 1…10 P0.21019100.20.8c ⨯…0.810(2)设小李在比赛中的得分为Y,由(1)知满足二项分布),B (X 8.010服从于所以 E(Y)=E(3X+2)=3E(X)+2=3100.82⨯⨯+=26,D(Y)= D(3X+2)=9D(X) =9100.80.2⨯⨯⨯=14.4, 21.解:(1)由已知,()f x 的定义域为2(,)3-+∞, 23)13)(1(33323)(+-+-=-+='x x x x x x f ,令1310)(-==='x x x f 或得(舍去)2分 ∵10,()0,()3x f x f x '≤<>当时单调递增;当)(,0)(,131x f x f x <'≤<时单调递减.∴11()ln 3()[0,1]36f f x =-为函数在上的极大值. ……………………………4分(2)由(1)知,3()323f x x x'+=+,而ln ln[()3]0x f x x a '-+-<∴3ln ln 23a x x>-+, ① …………………………………………5分设332ln 323ln ln )(2x x x x x h +=+-=,即11()[,]63a h x x >∈在上恒成立,∵223126()(26)23323x h x x x x x x +'=⋅+=++,显然'2(31)()0(32)x h x x x +=>+,…7分 ∴11()[,]63h x 在上单调递增,要使不等式①成立,当且仅当11(),ln 33a h a >>即. ……………………………………………8分(3)由23()2ln(23)20.2f x x b x x x b =-+⇒+-+-= 令xx x x x b x x x x 329723323)(,223)32ln()(22+-=+-+='-+-+=ϕϕ则, 当]37,0[)(,0)(,]37,0[在于是时x x x ϕϕ>'∈上递增;当]1,37[)(,0)(,]1,37[在于是时x x x ϕϕ<'∈上递减. …………………10分而)1()37(),0()37(ϕϕϕϕ>>,∴()2()0[0,1]f x x b x φ=-+=即在恰有两个零点等价于⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-+=>-+-+=≤-=0215ln )1(067267)72ln()37(02ln )0(b b b ϕϕϕ ……………………12分 ∴ 1727ln 5ln(27)263b +≤<+-+,所以,所求实数b 的取值范围是1727[ln 5,ln(27))263++-+. ………………14分。

高二数学下期期末理科考试题(选修2-2,选修2-3 )

高二数学下期期末理科考试题(选修2-2,选修2-3 )

高二数学下期期末理科考试题(选修2-2,选修2-3 )一、选择题(本大题共10小题,每小题5分,共50分)1、复数Z=2+i 在复平面内的对应点在( )A 第一象限B 第二象限C 第三象限D 第四象限2、定积分dx x +⎰1110的值为( ) A 1 B ln2 C2122- D 212ln 21- 3、10)1(xx +展开式中的常数项为( ) A 第5项 B 第6项 C 第5项或第6项 D 不存在4、设随机变量ξ服从B (21,6),则P (ξ=3)的值是( ) A 165 B 163 C 85 D 83 5、曲线232+-=x x y 上的任意一点P 处切线的斜率的取值范围是( )A ⎪⎪⎭⎫⎢⎣⎡+∞,33B ⎪⎪⎭⎫ ⎝⎛+∞,33C ()+∞-,3D [)+∞-,36、某班一天上午安排语、数、外、体四门课,其中体育课不能排在每一、每四节,则不同排法的种数为( )A 24B 22C 20D 127、将骰子(骰子为正方体,六个面分别标有数字1,2...,6)先后抛掷2次,则向上的点数之和为5的概率是( )A 154B 92C 91D 181 8、设函数()y f x =在定义域内可导,()y f x =的图象如图1所示,则导函数()y f x '=可能为( )9、某个命题与正整数有关,若当n=k(*N k ∈)时该命题成立,那么可推得当n=k+1时该命题也成立,现已知当n=5时该命题不成立,那么可推得( )A 当n=6时,该命题不成立B 当n=6时,该命题成立C 当n=4时,该命题成立D 当n=4时,该命题不成立x y O 图1 x y O A x y O Bx y O C y OD x10、等比数列}{n a 中,4,281==a a ,函数))...()(()(821a x a x a x x x f ---=,则=)0(,f ( )A 62B 92C 122D 152二、填空题(本大题共5小题,每小题5分,共25分)11、已知231010-=x x C C ,则x= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

日照实验高中高二下学期期末复习数学练习二十二(选修2-2和2-3)1.复数z 满足:()(2)5z i i --=;则z = ()A 22i -- ()B 22i -+ ()C i 2-2 ()D i 2+22.若曲线ax x y +=3在坐标原点处的切线方程是02=-y x ,则实数=aA. 1B. 1-C. 2D.2-3.设a ∈Z ,且0≤a ≤13,若512012+a 能被13整除,则a =A.0B.1C.11D.124.袋子里有3颗白球,4颗黑球,5颗红球.由甲、乙、丙三人依次各抽取一个球,抽取后不放回.若每颗球被抽到的 机会均等,则甲、乙、丙三人所得之球颜色互异的概率是 (A )14 (B )13 (C )27 (D )3115.曲线2y x =与直线2x y +=围成的图形的面积为 A .72 B .4 C .92D .5 6.已知x 与y 之间的一组数据:已求得关于y 与x 的线性回归方程y =2.1x +0.85,则m 的值为A .1B .0.85C .0.7D .0.57.如图,四边形ABCD 被两条对角线分成四个小三角形,现有4种不同颜色将它染色,使相邻三角形均不同色,求使△AOB 与△COD 同色且△BOC 与△AOD 也同色的概率 A 51 B 61 C 71 D 218.若函数()2x f x e x a =--在R 上有两个零点,则实数a 的取值范围是A.12ln 2,2⎡⎫-+∞⎪⎢⎣⎭ B.1,2ln 22⎛⎤-∞-⎥⎝⎦C.[)22ln 2,-+∞D.(],22ln 2-∞- 9.函数()4x ex f -=π的部分图象大致是10.跳格游戏:如图,人从格子外只能进入第1个格子,在格子中每次可向前跳1格或2格,那么人从格外跳到第8个格子的方法种数为A .8种B .13种C .21种D .34种11.(x +a x )(2x -1x)5的展开式中各项系数的和为2,则该展开式中常数项为__________12.已知20211205232323C C C C C C C =++;303122130844444444C C C C C C C C C =+++;404132231936363636C C C C C C C C C =+++ 观察以上等式的规律, 在横线处填写一个合适的式子使得下列等式成立,3031046________________C C C =+.13.在共有2 013项的等差数列{a n }中,有等式(a 1+a 3+…+a 2 013)-(a 2+a 4+…+a 2 012)=a 1 007成立;类比上述性质,在共有2 011项的等比数列{b n }中,相应的有等式________成立.14.把圆周4等分,A 是其中一个分点,动点P 在四个分点上按逆时针方向前进,掷一个各面分别写有数字1,2,3,4且质地均匀的正四面体,P 从点A 出发按照正四面体底面上所掷的点数前进(数字为n 就前进n 步),转一周之前继续投掷,转一周或超过一周即停止投掷。

则点P 恰好返回A 点的概率是 15.右图是函数()y f x =的导函数()y f x '=的图象,给出下列命题: ①3-是函数()y f x =的极值点;②1-是函数()y f x =的极小值点; ③()y f x =在0x =处切线的斜率小于零;④()y f x =在区间(3,1)-上单调递增.。

则正确命题的序号是__________16.为了参加2013年市级高中篮球比赛,该市的某区决定从四所高中学校选出12人组成男子篮球队代表所在区参赛,队员来源人数如下表:该区篮球队经过奋力拼搏获得冠军,现要从中选出两名队员代表冠军队发言. (Ⅰ)求这两名队员来自同一学校的概率;(Ⅱ)设选出的两名队员中来自学校甲的人数为ξ,求随机变量ξ的分布列及数学期望E ξ.17.设函数-1()=x e f x x.(1)判断函数f(x)在(0,+∞)上的单调性;(2)证明:对任意正数a ,存在正数x ,使不等式f(x)-1<a 成立. 18.有两枚均匀的硬币和一枚不均匀的硬币,其中不均匀的硬币抛掷后出现正面的概率为23.小华先抛掷这三枚硬币,然后小红再抛掷这三枚硬币.(1)求小华抛得一个正面两个反面且小红抛得两个正面一个反面的概率; (2)若用ξ表示小华抛得正面的个数,求ξ的分布列和数学期望; (3)求小华和小红抛得正面个数相同(包括0个)的概率. 19.已知函数)0(ln )42(f(x)22>+-=a x x ax x(I )求()f x 的单调区间;(II )设[)1,x ∀∈+∞,不等式x x a x ->-ln )42(恒成立,求a 的取值范围。

20. 某班联欢晚会玩飞镖投掷游戏,规则如下:每人连续投掷5支飞镖,累积3支飞镖掷中目标即可获奖;否则不获奖.同时要求在以下两种情况下中止投掷:①累积3支飞镖掷中目标;②累积3支飞镖没有掷中目标.已知小明同学每支飞镖掷中目标的概率是常数)5.0(>p p ,且掷完3支飞镖就中止投掷的概率为31. (1)求p 的值;(2)记小明结束游戏时,投掷的飞镖支数为X ,求X 的分布列和数学期望. 21.已知函数()1()xf x e ax a R =--∈(1)求函数()y f x =的单调区间;(2)试探究函数()()ln F x f x x x =-在定义域内是否存在零点,若存在,请指出有几个零点;若不存在,请说明理由;(3)若()ln(1)ln x g x e x =--,且(())()f g x f x <在(0,)x ∈+∞上恒成立,求实数的取值范围日照实验高中高二下学期期末复习数学练习二十二(选修2-2和2-3)答案DCDDC DCCCC 11. 40;12.122130464646C C C C C C ++;13.b 1·b 3·b 5·…·b 2 011b 2·b 4·b 6·…·b 2 010=b 1 006;14.256125=P ;15. ①④16.解:(I )“从这12名队员中随机选出两名,两人来自于同一学校”记作事件A ,(II )ξ的所有可能取值为0,1,2∴17.解:(1) 由题意知:,f '(x)=xe -(e -1)x 2= (x-1)e +1x2, 令h(x)=(x-1)e x +1,则h '(x)=x e x >0, ∴h(x)在(0,+∞)上是增函数,又h(0)=0,∴h(x)>0,则f '(x)>0,∴f(x)在(0,+∞)上是单调增函数. (2) f(x)-1=e x - x -1x,不等式f(x)-1<a 可化为e x -(a+1)x-1<0,令G(x)= e x -(a+1)x-1, G '(x)=e x -(a+1), 由G '(x)=0得:x=ln(a+1), 当0<x< (ln(a+1)时,G '(x)<0, 当x>ln(a+1)时,G '(x)>0,∴当x=ln(a+1)时,G(x)min =a-(a+1)ln(a+1), 令ϕ(a)=a a+1- ln(a+1),(a≥0) ϕ'(a)=1(a+1)2-1a+1=-a(a+1)2<0, 又ϕ(0)=0,∴当a>0时,ϕ(a)< ϕ(0)=0,即当x=ln(a+1)时,G(x)min =a-(a+1)ln(a+1)<0. 故存在正数x=ln(a+1),使不等式F(x)-1<a 成立. 18.解:(1)设A 表示事件“小华抛得一个正面两个反面”,B 表示事件“小红抛得两个正面一个反面”,则P (A )=1111121()22232233⨯⨯⨯+⨯⨯=, P (B )=1121115()222322312⨯⨯⨯+⨯⨯=,则小华抛得一个正面两个反面且小红抛得两个正面一个反面的概率为 P (AB )= P (A )P (B )=15531236⨯=.(2)由题意ξ的取值为0,1,2,3,且1111(0)22312P ξ==⨯⨯=;1(1)3P ξ==;5(2)12P ξ==;1121(3)2236P ξ==⨯⨯=. 所求随机变量ξ的分布列为数学期望11515()01231231263E ξ=⨯+⨯+⨯+⨯=.(3)设C 表示事件“小华和小红抛得正面个数相同”,则所求概率为2222()(0)(1)(2)(3)P C P P P P ξξξξ==+=+=+=2222115123()()()()12312672=+++=.所以“小华和小红抛得正面个数相同”的概率为2372. 19.解:(Ⅰ)f’(x)=21(24)(44)lnx 2x(44)(44)ln 4()(ln 1)(0).x ax x a x x a x a x x a x x -+-+=-+-=-+>.当0<a<e1时,()f x ',()f x 在(0,+∞)上随x 的变化情况如下:x (,a)0 a (a,)e1 1e(,)e +∞1()f x ' + 0 - 0 + ()f x ↗ 极大值 ↘ 极小值 ↗所以f(x)在(0,a)和(1e ,+∞)上是单调递增,在(a,1e)上单调递减当a=1e 时,f’(x)≥0, f(x)在(0,+∞)上单调递增当a>1e时,()f x ',()f x 在(0,+∞)上随x 的变化情况如下:x (,)e 10 1e (,a)e1a(a,)+∞ ()f x ' + 0 - 0 + ()f x ↗ 极大值 ↘ 极小值 ↗所以,f(x)在(,)e 10和(a,)+∞上单调递增,在(,a)e1上单调递减(Ⅱ)因为x≥1,所以由(2x-4a)lnx>-x,得(2x 2-4ax)lnx+x 2>0, 即f(x)>0对x≥1恒成立。

由(Ⅰ)可知,当0<a≤1e时,f(x)在[)1,+∞上单调递增,则f(x)min =f(1)>0成立, 0<a≤1e当11a e<≤时,f(x)在[1,+ ∞)为增函数,f(x)min =f(1)=1>0恒成立,符合要求 当a>1时,f(x)在(1,a)上单调递减,(a,+∞)上单调递增,则f(x)min =f(a)>0 即(2a 2-4a 2)lna+a 2综上所述,20.21.解:(1)由),(,1)(R a R x ax e x f x∈∈--=a e x f x-=∴)('…………(1分) ① 当0≤a 时,则R x ∈∀有0)('>x f ∴函数)(x f 在区间),(+∞-∞单调递增;…(2分) ② 当0>a 时,0)('>x f a x ln >⇒,0)('<x f a x ln <⇒∴函数)(x f 的单调增区间为),(ln +∞a ,单调减区间为)ln ,(a -∞。

相关文档
最新文档