农田自动灌溉系统单片机硬件系统
基于32单片机控制的智能灌溉系统

基于32单片机控制的智能灌溉系统随着农业现代化的发展,智能农业技术已经广泛应用于农田、果园和家庭菜园等各种农业生产场景中。
在这些应用中,智能灌溉系统是不可或缺的一部分。
基于32单片机控制的智能灌溉系统是一种高效、智能化的灌溉系统,能够根据土壤湿度、气温和植物生长状态等参数自动调整灌溉时间和水量,从而实现节水、增产、省力的目的。
本文将详细介绍基于32单片机控制的智能灌溉系统的原理、设计和实现。
一、系统原理基于32单片机控制的智能灌溉系统的原理主要由传感器、执行器、32单片机和控制算法组成。
1. 传感器:系统采用土壤湿度传感器、温湿度传感器、光照传感器等多种传感器,用于监测土壤湿度、气温、湿度和光照等环境参数。
2. 执行器:系统采用电磁阀、水泵等执行器,用于控制灌溉水源的开关和水流量。
3. 32单片机:系统的核心控制器是一款32位的单片机,用于接收传感器的数据、控制执行器的动作,并根据预设的控制算法进行智能化的决策。
4. 控制算法:系统的控制算法主要包括灌溉规则的设定、土壤湿度的调控、气象数据的分析等,能够根据实时数据和预设的条件进行智能化的决策。
二、系统设计基于32单片机控制的智能灌溉系统的设计主要包括硬件设计和软件设计两部分。
硬件设计方面,系统需要设计传感器模块、执行器模块和32单片机模块。
传感器模块包括土壤湿度传感器、温湿度传感器、光照传感器等,用于监测环境参数;执行器模块包括电磁阀、水泵等,用于控制灌溉水源的开关和水流量;32单片机模块需要选用一款性能稳定、功耗低、易于编程的32单片机作为系统的核心控制器,用于接收传感器的数据、控制执行器的动作,并根据预设的控制算法进行智能化的决策。
软件设计方面,系统需要设计传感器数据的采集和传输模块、控制算法的实现模块和用户界面模块。
传感器数据的采集和传输模块用于接收传感器的数据,并将数据传输给32单片机进行处理;控制算法的实现模块用于实现系统的控制算法,包括灌溉规则的设定、土壤湿度的调控、气象数据的分析等;用户界面模块用于显示系统运行状态、设置参数和实时交互。
基于单片机的智能抽水灌溉系统设计

基于单片机的智能抽水灌溉系统设计智能抽水灌溉系统是一种利用单片机控制的系统,通过感应土壤湿度、温度、光照等指标,自动调节水泵的工作状态和灌溉量,从而实现对农作物的精准灌溉。
本文将详细介绍基于单片机的智能抽水灌溉系统的设计。
首先,智能抽水灌溉系统的硬件设计需要包括以下几个模块:传感器模块、单片机模块、执行器模块和电源模块。
传感器模块主要包括土壤湿度传感器、温度传感器和光敏传感器,用于实时监测环境参数;单片机模块则负责获取传感器数据,计算灌溉所需水量,并控制水泵和阀门的开关;执行器模块主要是水泵和阀门,用于控制水的供给和停止;电源模块则提供系统的电力供应。
在软件设计方面,首先需要编写单片机的驱动程序,包括读取传感器数据、控制执行器模块的开关和计算灌溉所需的水量等功能。
其次,需要设计一个基于传感器数据和用户设定的灌溉策略算法,用于判断何时开始灌溉、灌溉的时长和水量,并根据计算结果控制水泵和阀门的开关。
最后,将所有功能整合在一起,形成一个完整的智能抽水灌溉系统。
具体实现步骤如下:1.硬件设计:选择合适的单片机和传感器模块,并进行电路设计和连接。
将传感器模块与单片机模块相连接,通过模拟输入引脚读取传感器数据。
将单片机模块与执行器模块相连接,通过数字输出引脚控制水泵和阀门的开关。
2.软件设计:编写单片机的驱动程序,通过模拟输入引脚读取传感器数据,并通过数字输出引脚控制执行器模块的开关。
编写灌溉策略算法,根据传感器数据和用户设定的灌溉策略计算灌溉所需的水量,并控制水泵和阀门的开关。
编写用户界面程序,用于设置灌溉策略的参数和显示实时的传感器数据。
3.系统测试:完成硬件和软件设计后,进行系统的测试和调试。
首先测试传感器模块是否正常,通过模拟输入引脚读取传感器数据并在终端显示。
然后测试单片机模块是否正常,通过数字输出引脚控制水泵和阀门的开关。
最后测试整个系统的功能,包括传感器数据的读取、灌溉策略的计算和水泵和阀门的控制。
基于单片机的智能灌溉系统设计

基于单片机的智能灌溉系统设计随着现代农业技术的不断进步,智能化农业、智能化灌溉已经成为农业领域的研究热点和发展方向。
基于单片机的智能灌溉系统通过无线通讯、传感器控制等技术手段,实现对水源、土壤、气候等情况的实时监测和掌控,从而实现对灌溉的精准控制、降低浪费,提高作物产量和质量,助力农业现代化建设。
本文将介绍基于单片机的智能灌溉系统的设计,主要包括系统的硬件、软件设计与实现等方面。
一、系统硬件设计1.传感器模块智能灌溉系统需要使用多种传感器来实现对土壤、空气、水源等信息的测量和控制。
目前常用的传感器有土壤湿度传感器、温度传感器、湿度传感器、光照度传感器和PH值传感器等。
2.控制模块控制模块是系统的核心组成部分,它通过对传感器的测量值进行分析和处理,得出灌溉时机、灌溉量等决策,并通过执行器如水泵、阀门等,实现自动灌溉控制。
3.执行器模块执行器模块主要由水泵、阀门等组件构成,负责将水源供给给灌溉点。
在水泵的控制方面,可以使用PWM技术,控制电机的转速,从而实现灌溉量的精准控制。
1.数据采集模块数据采集模块需要定时测量土壤湿度、温度、湿度、光照度和PH值等参数,并将数据存储在数据库中,为后续的决策和操作提供支持。
控制决策模块对采集到的各种参数进行分析和处理,根据设定的灌溉策略,制定相应的灌溉控制方案。
例如,当土壤湿度低于一定水平时,控制模块会根据该阈值点打开水泵并持续一定时间。
智能灌溉系统需要与互联网相连,实现实时数据采集、传输和操作控制。
采用WiFi、GPRS等方式实现无线通讯,并在网页上实时显示各种参数信息和操作控制界面。
三、系统实现在基于单片机的智能灌溉系统的实现过程中,需要进行硬件和软件的相互配合和优化。
硬件的调试和测试需要结合软件的开发,完成各个模块的调试和优化。
最终的系统应该具有以下特点:1. 灵活性:系统能够适应不同的作物、不同的灌溉场地和不同的环境条件,灌溉策略可以进行相应的调整和修改。
基于单片机的智能灌溉系统设计

基于单片机的智能灌溉系统设计随着社会的发展,农业灌溉技术也在不断地发展和改进。
传统的手动灌溉方式已经不能适应现代化农田的需求,基于单片机的智能灌溉系统应运而生。
本文将介绍基于单片机的智能灌溉系统的设计及其实现原理。
一、系统功能设计基于单片机的智能灌溉系统的功能设计主要包括以下几个方面:1. 定时灌溉:系统能够根据农作物的生长周期和需要,设定合理的灌溉时间和频率,实现自动定时灌溉。
2. 土壤湿度检测:系统能够通过传感器检测土壤的湿度情况,当土壤湿度低于一定阈值时,自动进行灌溉。
3. 智能控制:系统能够根据土壤湿度、气候条件等因素调整灌溉的时间和量,以达到节水、省力的目的。
4. 远程监控:系统能够通过互联网实现远程监控和控制,农民可以在手机或电脑上实时查看农田的灌溉情况,并进行远程控制。
1. 单片机控制模块:选用高性能的单片机作为系统的核心控制模块,负责处理各种传感器采集的数据,并进行灌溉控制。
2. 传感器模块:包括土壤湿度传感器、温度传感器、湿度传感器等,用于监测土壤和环境的各种参数。
3. 执行模块:包括电磁阀、水泵等执行元件,用于控制灌溉系统的开关和水流量。
4. 通信模块:包括无线模块、以太网模块等,用于实现系统的远程监控和控制功能。
系统的硬件设计需要考虑到各个模块之间的协同工作,确保系统能够稳定可靠地运行。
1. 传感器数据采集模块:负责采集土壤湿度、温度、湿度等传感器的数据,并进行处理和存储。
2. 控制逻辑模块:根据采集到的传感器数据和设定的灌溉参数,进行逻辑判断,并生成相应的灌溉控制指令。
4. 用户界面模块:为用户提供友好的操作界面,让用户可以方便地设置灌溉参数和监控农田的灌溉情况。
系统的软件设计需要考虑到系统的稳定性、实时性和用户体验,确保系统能够满足用户的需求。
四、系统工作流程2. 数据处理:系统对采集到的传感器数据进行处理和分析,得出土壤湿度情况和气候条件。
通过以上工作流程,系统能够实现对农田的智能灌溉,提高农田的灌溉效率,节约水资源,减少人工成本。
基于单片机的智能灌溉系统设计

基于单片机的智能灌溉系统设计
智能灌溉系统是指基于单片机控制的自动化灌溉系统,它利用传感器和控制器等硬件设备,实现对植物的智能化监测和自动化灌溉。
本文将从系统原理、硬件设计和软件设计三个方面,对基于单片机的智能灌溉系统进行详细介绍。
系统原理部分,智能灌溉系统基于单片机,主要包括传感器、控制器和执行器三个组成部分。
传感器用于监测植物的土壤湿度、光照强度和温度等信息,控制器负责对传感器采集的数据进行处理和判断,根据预设的灌溉规则来控制执行器对植物进行灌溉。
该系统通过传感器采集植物周围环境信息,并通过控制器对采集到的数据进行判断和处理,从而实现对植物灌溉的智能化控制。
软件设计部分,智能灌溉系统需要通过编程来实现对传感器和执行器的控制。
在软件设计中,需要首先通过单片机的IO口连接传感器和执行器。
然后,编写相应的程序来读取传感器输入的模拟量,并将其转化为数字量进行处理。
接着,根据预设的灌溉规则,对传感器采集到的数据进行判断,决定是否进行灌溉,并控制执行器进行相应的动作。
还可以在软件设计中加入一些保护措施,如限制灌溉水的流量和时间,以避免过度灌溉。
基于32单片机控制的智能灌溉系统

基于32单片机控制的智能灌溉系统智能灌溉系统是一种能够实现自动化管理的灌溉系统,能够根据植物的需水量和环境条件进行智能化的灌溉,提高灌溉效率,减少资源浪费。
本文将介绍一种基于32单片机控制的智能灌溉系统,通过32单片机的控制,实现对植物的精准灌溉,提高植物的生长效率。
一、系统的设计原理本系统的设计原理是通过32单片机作为主控制器,连接传感器对植物的需水量和环境条件进行监测,通过控制执行器对灌溉设备进行控制,实现对植物的智能化灌溉。
通过32单片机的编程,对监测到的数据进行分析处理,制定出相应的灌溉方案,从而实现对植物的精准灌溉。
二、系统的硬件设计1. 主控制器:32单片机作为主控制器,通过接收传感器的数据,进行数据的处理和分析,并控制执行器的工作。
2. 传感器:包括土壤湿度传感器、光照传感器和温湿度传感器,用于监测植物的需水量和环境条件。
3. 执行器:包括电磁阀和水泵,用于控制灌溉设备的开关。
五、系统的优势1. 精准灌溉:通过32单片机对监测到的数据进行处理和分析,制定出精准的灌溉方案,提高灌溉效率。
2. 节约资源:根据植物的需水量和环境条件制定灌溉方案,减少水资源浪费。
3. 自动化管理:实现对灌溉设备的自动控制,减少人工管理的成本和工作量。
六、系统的应用前景1. 农业灌溉:可应用于农业生产中,实现对作物的精准灌溉,提高作物的产量和质量。
2. 园林绿化:可应用于城市园林的绿化工程中,提高植物的存活率和观赏价值。
3. 智能管控:可应用于农田和园林的智能化管控中,提高管理效率和节约资源成本。
基于32单片机控制的智能灌溉系统具有精准灌溉、节约资源、自动化管理的优势,有着广泛的应用前景。
在未来的发展中,将会得到更多的应用和推广。
51单片机智慧农业系统设计方案

51单片机智慧农业系统设计方案智慧农业系统是利用先进的技术手段,将传统农业与信息化技术相结合,实现农业生产的智能化和自动化管理。
本方案基于51单片机设计一个智慧农业系统,可提供温室农作物的自动化管理、环境监测、智能灌溉等功能。
系统硬件设计方案:1. 主控模块:采用51单片机作为系统的主控芯片,负责控制整个系统的运行,包括数据采集、处理与分析、运动控制等功能。
2. 传感器模块:通过温湿度传感器、光照传感器等实时监测温室内的环境参数,并将数据传输给主控模块。
同时,还可以加入土壤湿度传感器、二氧化碳浓度传感器等,以更全面地监测环境状况。
3. 执行器模块:包括水泵、灯具等执行器设备,通过控制电路与主控模块相连,实现对温室内灌溉、补光等功能的控制。
4. 显示模块:可以通过液晶显示屏显示温室内的实时环境数据,如温度、湿度等。
系统功能设计方案:1. 自动化灌溉:系统采集土壤湿度数据,并利用51单片机进行分析。
当土壤湿度低于设定值时,系统会自动开启水泵进行灌溉,使土壤湿度恢复到合适的水平。
2. 环境监测:通过温湿度传感器、光照传感器等对温室内的环境参数进行实时监测,并将数据传输给主控模块。
主控模块可以对数据进行分析,提供详细的环境状况报告。
3. 智能调光:利用光照传感器监测温室内的光照强度,当光照不足时,系统自动开启灯具进行补光,保证植物的正常生长。
4. 远程监控与控制:通过与互联网连接,用户可以通过手机或电脑远程监控温室的环境状况,并可远程控制系统的运行,如开启灯具、进行灌溉等。
系统软件设计方案:1. 数据采集与处理:主控模块通过串口通信协议,与传感器模块进行数据通信与采集,并对所采集到的数据进行处理与分析,生成相应的控制指令。
2. 数据显示与报告:系统通过液晶显示屏将温室的环境数据实时显示出来,用户可以直观地了解温室的环境状况。
同时,系统还可以生成详细的环境报告,帮助用户做出相应的决策。
3. 远程控制与监控:系统与互联网连接,用户可以在手机或电脑上安装相应的APP或软件,实现对温室的远程控制与监控。
基于32单片机控制的智能灌溉系统

基于32单片机控制的智能灌溉系统智能灌溉系统是一种能够根据土壤湿度自动进行喷水的系统,能够根据土壤的湿度情况来合理地供水,减少水资源的浪费,提高作物的产量和质量。
基于32单片机的控制系统主要是利用硬件以及相应的软件来实现对灌溉系统的控制和监测。
本文将介绍基于32单片机控制的智能灌溉系统的设计与实现。
一、系统架构智能灌溉系统的整体架构如下图所示:硬件部分包括传感器、执行器以及与32单片机相连接的模块。
传感器用于检测土壤的湿度,光照强度和温度等信息,执行器则用于根据32单片机的控制输入来实现灌溉和喷水的功能。
这些模块通过32单片机的引脚直接连接,实现对其感知和控制。
32单片机则是作为整个系统的大脑,通过对传感数据的采集和处理生成相应的控制指令,从而实现智能灌溉的目的。
软件部分主要包括系统的控制逻辑和算法,并通过32单片机的编程来实现。
通过对传感数据的分析和处理,系统可以确定何时进行灌溉,以及需要的水量和时间等参数。
在实际的应用中,可以根据具体的需求进行相应的优化和调整,以满足不同地区和作物的生长需求。
二、传感器模块1.土壤湿度传感器土壤湿度传感器一般采用电阻式或电容式传感器,能够准确地测量土壤中的水分含量。
32单片机通过传感器模块读取土壤湿度的数值,并根据一定的阈值来判断是否需要进行灌溉。
传感器的准确度和稳定性对系统的控制精度和可靠性有着很大的影响,因此选用合适的传感器模块十分重要。
2.光照传感器光照传感器主要用于检测光照强度,可以帮助系统根据环境的实际情况进行调整。
在光照强度较大的情况下,作物本身就能够进行光合作用,因此相应的灌溉的需求就会减少。
通过光照传感器的数据,系统可以根据不同的光照条件来确定灌溉的时机和水量。
温度传感器用于检测土壤的温度,土壤的温度对于作物的生长有着重要的影响。
在一些特殊时期如春季和秋季,温度的变化对于作物来说特别重要。
因此系统可以根据温度传感器的数据对灌溉进行相应的调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
独立完成与诚信声明本人郑重声明:所提交的毕业设计(论文)是本人在指导教师的指导下,独立工作所取得的成果并撰写完成的,郑重确认没有剽窃、抄袭等违反学术道德、学术规范的侵权行为。
文中除已经标注引用的内容外,不包含其他人或集体已经发表或撰写过的研究成果。
对本文的研究做出重要贡献的个人和集体,均已在文中作了明确的说明并表示了谢意。
本人完全意识到本声明的法律后果由本人承担。
毕业设计(论文)作者签名:指导导师签名:签字日期:签字日期:毕业设计(论文)版权使用授权书本人完全了解华北水利水电学院有关保管、使用毕业设计(论文)的规定。
特授权华北水利水电学院可以将毕业设计(论文)的全部或部分内容公开和编入有关数据库提供检索,并采用影印、缩印或扫描等复制手段复制、保存、汇编以供查阅和借阅。
同意学校向国家有关部门或机构送交毕业设计(论文)原件或复印件和电子文档(涉密的成果在解密后应遵守此规定)。
毕业设计(论文)作者签名:导师签名:签字日期:签字日期:目录摘要 (I)Abstract (II)第一章绪论 (1)1.1项目背景 (1)1.2国外研究现状 (1)1.3国内研究现状 (2)1.4设计任务与要求 (3)第二章硬件设计元器件的选择 (4)2.1单片机——at89c51 (4)2.1.1单片机简介 (4)2.1.2 A T89C51管脚说明 (5)2.2液晶显示——lcd1602a (7)2.2.1液晶显示器简介 (7)2.2.2 1602LCD的基本参数及引脚功能 (7)2.2.3 1602LCD的指令说明及时序 (9)2.3 温度传感器——ds18b20 (10)2.4 湿度传感器——HIH-4000 (12)2.5 模数转换——adc0809 (13)第三章单片机硬件设计 (15)3.1 系统整体框图 (15)3.2 硬件部分模块介绍 (15)3.2.1 时钟电路和复位电路的设计 (15)3.2.2 模数转换电路 (16)3.2.3 液晶显示电路 (17)第四章PCB结构设计 (18)4.1 PCB设计平台 (18)4.2原理图的设计 (18)4.3 PCB的绘制 (21)第五章系统调试与实现 (25)5.1 软件仿真 (25)5.2 硬件仿真 (26)5.3 硬件调试 (26)结论 (28)致谢 (29)参考文献 (30)附录一外文翻译—英语原文 (31)附录二外文翻译—中文译文 (35)附录三毕业设计任务书 (38)附录四毕业设计开题报告 (40)附录五proteus硬件设计图 (40)附录六protel电路设计图 (41)附录七程序代码 (42)农田自动灌溉系统——单片机硬件设计摘要现如今我国大部分地区农田的灌溉还停留在传统的模式上,传统的灌溉模式自动化程度较低,基本上属人工操作,不仅效率低,还不能很好的控制灌水量,对人力物力造成了极大的浪费。
为了提高灌溉效率,缩短劳动时间和节约水资源,必须发展自动灌溉技术。
农田自动灌溉系统是进行田间管理的有效手段和工具,它可提高操作准确性,有利于灌溉过程的科学管理,降低对操作者本身素质的要求,除了能大大减少劳动量,更重要的是能准确、定时、定量、高效的给作物自动补充水分,以提高产量、质量、节水、节能。
本设计针对不同的植物类型,土壤状况,天气情况等,利用LabVIEW技术进行灌溉模式优化和自动控制。
硬件部分的设计主要针对农田进行温度和湿度的采集。
采集的过程是个动态的过程,把采集到的两路温度和一路湿度实时显示在液晶上。
最后把采集到的数据通过无线模块发送给pc机,给人以直观的印显示,实现很好的人机交互。
关键词:农田;灌溉;自动控制;单片机The automatic Farmland irrigation system——Hardware designAbstractNow most of our areas of farmland irrigation is still stuck in the traditional mode, which caused great waste of manpower and resources. Traditional mode of irrigation low degree of automation, is basically a manual operation, not only inefficient, and can not control the irrigation amount. In order to improve irrigation efficiency, shorten labor time and save water resources, the development of automatic irrigation technology.The farmland automatic irrigation system is an effective means of field management and tools, it can improve the accuracy of operation, the scientific management of the irrigation process, reduce the requirements on the quality of the operator, can greatly reduce the amount of labor and, more importantly, heaccurate , time, quantitative, and efficient to crop automatically add moisture to improve yield, quality, saving water and energy.The design for different plant types, soil conditions, weather conditions, which use the LabVIEW technology optimization and automatic control of irrigation mode. The Hardware design for farmland acquisition of temperature and humidity. The acquisition process is a dynamic process, and collected temperature and one humidity which are shown in real time on the LCD,. Finally, the collected data sent by the wireless module to the pc machine,giving the visual impression, good man-machine communication.key words: Farmland; Irrigation; Automatic control; Single chip microcomputer.第一章绪论1.1项目背景我国是农业大国,农田灌溉建设有着悠久的历史,但现代化水平不高,而要使我国农田水利灌溉走上新台阶,就必须加速推进农业的科学化、合理化、现代化进程。
我国现在的灌溉方式还基本上停留在传统的灌溉模式上,传统的灌溉模式自动化程度较低,基本上属粗放的人工操作。
即便对于给定的量,在操作中也无法进行有效的控制。
而自动灌溉设备是针对我国农业引水到田的传统灌溉方式,在现代化农业和即将推进的精准农业面前的落后现状,及灌溉过程中无法知道农作物需水量的大小,盲目的频繁灌溉、过量灌溉所造成的水资源浪费现状,提出的农田自动灌溉控制系统设计方案。
自动控制节水灌溉技术的高低代表着农业现代化的发展状况,灌溉系统自动化水平较低是制约我国高效农业发展的主要原因。
从长远利益出发,完善的灌溉系统对农业的长效管理是非常必要的。
现代自动灌溉控制设备的研究使用在我国农业上为数不多,与发达国家相比,有较大的差距,还基本停留在人工操作上,即使有些地方搞了一些灌溉工程的自动化控制系统,也是根据经验法来确定每天灌溉次数和每次灌溉量,如果灌溉量与作物实际需水量相比太少,便不能有效的促进作物健康成长;而灌溉量太多,肥水流失,又会造成资源浪费,同时传统的灌溉法还需要相关专家的实时观察并经验知道生产,劳动生产率低,这也不能与现代化农业向优化,高效化方向发展要求同步。
随着计算机技术和传感器技术的迅猛发展,计算机和传感器的价格日益降低。
可靠性日益提高,用信息技术改造农业不仅是可能的而且是必要的。
用高新技术改造农业产业,实施自动灌溉已成为我国农业乃至国民经济持续发展战略性的根本大事。
1.2国外研究现状灌溉自动化始于20世纪30年代。
第二次世界大战前,法国研制了一系列用以实行渠系自动化运行的水利自动闸门,并提出了一套比较完整的自动化灌溉控制方法,开辟了自动化灌溉的先河。
20世纪50年代以来,随着电子学和计算机技术的应用和发展,利用电子设备、计算机设备和程序控制的灌溉自动化技术也得到了同步发展,并在法国、美国、日本等发达国家乃至一些发展中国家得到了日益广泛的应用和发展,控制模式也由早期的当地控制发展到可以实现遥测、遥控的集中控制模式。
国外由于节水灌溉发展时间长,电子技术水平较高,所以与节水灌溉配套的自动控制系统也比较完善和先进。
虚拟仪器技术是20世纪90年代以来,随着计算机技术进步而逐步发展起来的新仪器产品,是将仪器技术、计算机软硬件技术、网络技术和通信技术等有机结合的产物,近几年已在农业领域得到了初步应用,已成为农业控制系统研发新的里程碑。
1996年没过Geomatica,Inc利用虚拟仪器技术开发了一套Agrimate自动灌溉系统,系统中的现场处理器有运用 LabVIEW的个人计算机控制(它利用RS-232串行通信口与计算机连接)。
现场处理器配置了模拟输入。
锁存和继电器板,各种检测器和传感器以行星排列的方式与它相连。
用户能够监控水箱水位,阀门位置,泵的状态和土壤温度等;而修改设定点即可改变灌溉计划;通过检测降雨情况,可使灌溉计划中补充灌水量。
补充灌水量、水的用法、水箱水位和降雨情况等都是存储在灌溉数据库文件里数据。
用户能够读出这些数据以与当前月份进行比较;以图形方式显示给定月份的土壤温湿度和外加的水。
AgriMate产生的制表软件数据库也提供硬拷贝灌溉状态报告。