二次函数背景下的线段和差及最值问题(1)
二次函数中线段最值问题

二次函数中线段最值问题二次函数中的线段最值问题(一)例1:已知抛物线经过点A(-1,0)、B(3,0)、C(0,-3),顶点为M。
求抛物线的解析式和对称轴上使得PA+PC最小的点P的坐标。
解:(1)由已知点可列出三个方程:y=a(-1)^2+b(-1)+cy=a(3)^2+b(3)+c3=a(0)^2+b(0)+c化简后可得:y=x^2-2x-32)对称轴为x=1,因此P的横坐标为1.设P的纵坐标为y,则根据距离公式可得:PA+PC=sqrt[(1+1)^2+y^2]+sqrt[(1-0)^2+(y+3)^2]对其求导并令其为0,可得y=-1/2.因此P的坐标为(1,-1/2),PA+PC的最小值为3.练1:如图,直线y=-x+3与x轴、y轴分别交于B、C两点,抛物线y=-x^2+2x+3经过点B、C,与x轴另一交点为A,顶点为D。
在x轴上找一点E,使得EC+ED的值最小,求EC+ED的最小值。
解:(1)由已知点可列出四个方程:y=a(-1)^2+b(-1)+cy=a(3)^2+b(3)+c0=a(1)^2+b(1)+cy=aD^2+bD+c化简后可得:y=-x^2+2x+32)对称轴为x=1,因此D的横坐标为1.设E的横坐标为x,则EC+ED=sqrt[x^2+(3-(-x+3))^2]+sqrt[(1-x)^2+D^2]。
对其求导并令其为0,可得x=1/2.因此E的坐标为(1/2,0),EC+ED的最小值为2sqrt(10)。
练2:如图,抛物线经过点A(-1,0)、B(1,0)、C (0,-3),顶点为D。
点M是对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标。
解:(1)由已知点可列出三个方程:y=a(-1)^2+b(-1)+cy=a(1)^2+b(1)+c3=aD^2+bD+c化简后可得:y=x^2-2x-32)设M的横坐标为x,则△ACM的周长为AC+CM+MA=sqrt[(x+1)^2+9]+2sqrt[(x-D)^2+1]。
部编数学九年级下册专项10二次函数和线段和差最值问题(解析版)含答案

专项10 二次函数和线段和差最值问题“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。
“两点定点一定长”模型一:当两定点 A、B 在直线l异侧时,在直线l上找一点 P,使 PA+PB 最小。
作法:连接AB交直线l 于点 P,点P即为所求作的点。
结论:PA+PB值最小模型二:作法:作点B关于直线l的对称点B’,连接AB’与直线l相交的点P即为所求结论:AP+PB’值最小模型三:PA-最大。
当两定点 A、B 在直线l同侧时,在直线l上找一点 P,使PB作法:接 AB并延长交直线l于点 P,点P即为所求作的点。
PA-的最大值为 AB。
结论:PBPA-最大。
当 l 两B定点 A、B 在直线l 异侧时,在直线l 上找一点 P,使PB作法:作点B关于直线l的对称点B′,连接AB′并延长交直线于点 P,点P即为所求作的点。
PA-的最大值为AB′结论:PB模型四:当 l 两定点 A、B 在直线l同侧时,在直线l上找一点 P,使PBPA-最小。
作法:连接 AB,作AB的垂直平分线交直线l于点 P,点 P 即为所求作的点。
PA-的最小值为 0结论:PB【考点1 线段最值问题】【典例1】(盘锦)如图,在平面直角坐标系中,抛物线y=ax2+bx+4交y轴于点C,交x 轴于A、B两点,A(﹣2,0),a+b=,点M是抛物线上的动点,点M在顶点和B点之间运动(不包括顶点和B点),ME∥y轴,交直线BC于点E.(1)求抛物线的解析式;(2)求线段ME的最大值;【解答】解:(1)将点A的坐标代入抛物线表达式得:0=4a﹣2b+4,则,解得:,故抛物线的表达式为:y=﹣x2+x+4;(2)y=﹣x2+x+4,令x=0,则y=4,令y=0,则x=4或﹣2,故点A、B、C的坐标分别为:(﹣2,0)、(4,0)、(0,4),设直线BC的表达式为:y=kx+b,则,解得:,故直线BC的表达式为:y=﹣x+4,设点M(x,﹣x2+x+4),则点E(x,﹣x+4),则ME=(﹣x2+x+4)﹣(x﹣4)=﹣x2+2x,∵,故ME有最大值,当x=2时,ME的最大值为2;【变式1-1】(2021•柳南区校级模拟)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x.①求h与x之间的函数关系式,并写出自变量x的取值范围;②线段PE的长h是否存在最大值?若存在,求出它的最大值及此时的x值;若不存在,请说明理由?【解答】解:(1)∵点A(3,4)在直线y=x+m上,∴4=3+m.∴m=1.设所求二次函数的关系式为y=a(x﹣1)2.∵点A(3,4)在二次函数y=a(x﹣1)2的图象上,∴4=a(3﹣1)2,∴a=1.∴所求二次函数的关系式为y=(x﹣1)2.即y=x2﹣2x+1.(2)①设P、E两点的纵坐标分别为y P和y E.∴PE=h=y P﹣y E=(x+1)﹣(x2﹣2x+1)=﹣x2+3x.即h=﹣x2+3x(0<x<3).②存在.∵h=﹣(x﹣)2+,又∵a=﹣1<0,∴x=时,h的值最大,最大值为.【变式1-2】(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.求线段PM的最大值;【解答】解:(1)将A,B,C代入函数解析式得,,解得,∴这个二次函数的表达式y=x2﹣2x﹣3;(2)设BC的解析式为y=kx+b,将B,C的坐标代入函数解析式得,,解得,∴BC的解析式为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,=,当n=时,PM最大∴线段PM的最大值;【典例2】(2020秋•椒江区校级月考)如图,已知抛物线y=ax2+bx+3(a≠0)经过点A (1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点T为对称轴直线x=2上一点,则TC﹣TB的最大值为多少?【解答】解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=ax2+bx+3,解得a=1,故抛物线的表达式为y=x2﹣4x+3①;(2)点B关于函数对称轴的对称点为点A,连接CA交函数对称轴于点T,则点T为所求点,则TC﹣TB=TC﹣TA=AC为最大,故TC﹣TB的最大值为AC==,故答案为;【变式2】(2020•连云港)在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=x2﹣x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;(2)当BP﹣CP的值最大时,求点P的坐标;【解答】解:(1)当y=0时,x2﹣x﹣2=0,解得x=﹣1或4,∴A(﹣1,0),B(4,0),C(0,﹣2),由题意设抛物线L2的解析式为y=a(x+1)(x﹣4),把(2,﹣12)代入y=a(x+1)(x﹣4),﹣12=﹣6a,解得a=2,∴抛物线的解析式为y=2(x+1)(x﹣4)=2x2﹣6x﹣8.(2)∵抛物线L2与L1是“共根抛物线”,A(﹣1,0),B(4,0),∴抛物线L1,L2的对称轴是直线x=,∴点P在直线x=上,∴BP=AP,如图1中,当A,C,P共线时,BP﹣PC的值最大,此时点P为直线AC与直线x=的交点,∵直线AC的解析式为y=﹣2x﹣2,∴P(,﹣5)【典例3】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线及直线BC的表达式;(2)过点P作PN⊥BC,垂足为点N.求线段PN的最大值;【解答】解:(1)∵抛物线对称轴为x=1,点B与A(﹣1,0)关于直线x=1对称,∴B(3,0),设y=a(x﹣3)(x+1),把C(0,3)代入得:﹣3a=3,解得:a=﹣1,∴y=﹣(x﹣3)(x+1)=﹣x2+2x+3,设直线BC的解析式为y=kx+d,则,解得:,∴直线BC的解析式为y=﹣x+3,故抛物线解析式为y=﹣x2+2x+3,直线BC的解析式为y=﹣x+3;(2)设P(t,﹣t2+2t+3),则Q(t,﹣t+3),∴PQ=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∵OB=OC=3,∠BOC=90°,∴∠BCO=45°,∵PQ⊥x轴,∴PQ∥y轴,∴∠PQN=∠BCO=45°,∵PN⊥BC,∴PN=PQ•sin∠PQN=(﹣t2+3t)•sin45°=﹣(t﹣)2+,∵<0,∴当t=时,PN的最大值为;【变式3】(2022•广元)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.(1)求a,b满足的关系式及c的值;(2)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.【解答】解:(1)直线y=﹣x﹣2中,当x=0时,y=﹣2,∴B(0,﹣2),当y=0时,﹣x﹣2=0,∴x=﹣2,∴A(﹣2,0),将A(﹣2,0),B(0,﹣2)代入抛物线y=ax2+bx+c(a>0)中,得,,∴2a﹣b=1,c=﹣2;(2)当a=1时,2×1﹣b=1,∴b=1,∴y=x2+x﹣2,∴A(﹣2,0),B(0,﹣2),C(1,0),∴OA=OB,∴△AOB是等腰直角三角形,∴∠OAB=45°,如图2,过点Q作QF⊥x轴于F,交AB于E,则△EQD是等腰直角三角形,设Q(m,m2+m﹣2),则E(m,﹣m﹣2),∴QE=(﹣m﹣2)﹣(m2+m﹣2)=﹣m2﹣2m=﹣(m+1)2+1,∴QD=QE=﹣(m+1)2+,当m=﹣1时,QD有最大值是,当m=﹣1时,y=1﹣1﹣2=﹣2,综上,点Q的坐标为(﹣1,﹣2)时,QD有最大值是.【考点2 线段和最小】【典例4】(2019秋•东莞市校级期末)已知,抛物线y=ax2+bx+c,过A(﹣1,0)、B (3,0)、C(0,﹣3),M为顶点.(1)求抛物线的解析式;(2)在该抛物线的对称轴上找一点P,使得PA+PC的值最小,并求出P的坐标;【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),把C(0,﹣3)代入得a×(0+1)×(0﹣3)=﹣3,解得a=1,∴抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3;(2)抛物线的对称轴为直线x=1,点A与点B关于直线x=1对称,连接BC交直线x=1于P点,则PA=PB,∵PA+PC=PB+PC=BC,∴此时PA+PC的值最小,设直线BC的解析式为y=mx+n,把B(3,0),C(0,﹣3)代入得,解得,∴直线BC的解析式为y=x﹣3,当x=1时,y=x﹣3=﹣2,则满足条件的P点坐标为(1,﹣2);【变式4-1】(2019•赤峰)如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;【解答】解:(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,则点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3,令y=0,则x=﹣1或3,故点A(﹣1,0);(2)如图1中,作点C关于x轴的对称点C′,连接CD′交x轴于点E,则此时EC+ED 为最小,函数顶点D坐标为(1,4),点C′(0,﹣3),将C′、D的坐标代入一次函数表达式并解得:直线C′D的表达式为:y=7x﹣3,当y=0时,x=,故点E(,0),则EC+ED的最小值为DC′=;【变式4-2】(2016•黑龙江二模)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣2上,∴×(﹣1)2+b×(﹣1)﹣2=0,解得:b=﹣,∴抛物线的解析式为:y=x2﹣x﹣2.∵y=x2﹣x﹣2=(x2﹣3x﹣4 )=,∴顶点D的坐标为(,﹣).(2)设点C关于x轴的对称点为C′,直线C′D的解析式为y=kx+n,则,解得:.∴y=﹣x+2.∴当y=0时,﹣x+2=0,解得:x=.∴m=.【典例5】(2022•恩施州模拟)如图1,已知抛物线.点A(﹣1,2)在抛物线的对称轴上,是抛物线与y轴的交点,D为抛物线上一动点,过点D 作x轴的垂线,垂足为点C.(1)直接写出h,k的值;(2)如图1,若点D的坐标为(3,m),点Q为y轴上一动点,直线QK与抛物线对称轴垂直,垂足为点K.探求DK+KQ+QC的值是否存在最小值,若存在,求出这个最小值及点Q的坐标;若不存在,请说明理由;【解答】解:(1)∵点A(﹣1,2)在抛物线的对称轴上,∴抛物线的对称轴为直线x=﹣1,∴h=1,∴y=(x+1)2+k,∵是抛物线与y轴的交点,∴+k=,∴k=1;(2)存在最小值,理由如下:由(1)可知y=(x+1)2+1,作C点关于直线x=﹣的对称点C',连接C'D交抛物线对称轴于点K,连接CQ,由对称性可知C'K=CQ,∴CQ+KQ+KD=C'K+KD+KQ≥C'D+KQ,当C'、K、D三点共线时,CQ+KQ+KD的值最小,∵抛物线的对称轴为直线x=﹣1,∴KQ=1,∵D(3,5),CD⊥x轴,∵C(3,0),∴C'(﹣4,0),∴C'D=,∴CQ+KQ+KD的最小值为+1,设直线C'D的解析式为y=kx+b,∴,解得,∴y=x+,∴K(﹣1,),∴Q(0,);【变式5】(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B 的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)求CP+PQ+QB的最小值;【解答】解:(1)在y=﹣x2+3x+4中,令x=0得y=4,令y=0得x=﹣1或x=4,∴A(﹣1,0),B(4,0),C(0,4);(2)将C(0,4)向下平移至C',使CC'=PQ,连接BC'交抛物线的对称轴l于Q,如图:∵CC'=PQ,CC'∥PQ,∴四边形CC'QP是平行四边形,∴CP=C'Q,∴CP+PQ+BQ=C'Q+PQ+BQ=BC'+PQ,∵B,Q,C'共线,∴此时CP+PQ+BQ最小,最小值为BC'+PQ的值,∵C(0,4),CC'=PQ=1,∴C'(0,3),∵B(4,0),∴BC'==5,∴BC'+PQ=5+1=6,∴CP+PQ+BQ最小值为6;【考点3 周长最值问题】【典例6】(2020春•五华区校级期末)如图,抛物线y=x2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点M是对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣3上,∴b=﹣2,∴抛物线解析式y=x2﹣2x﹣3,∵抛物线y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标(1,﹣4);(2)对于y=x2﹣2x﹣3,当x=0时,y=﹣3,∴C(0,﹣3),当y=0时,0=x2﹣2x﹣3,解得:x=3或﹣1,∴B(3,0),由抛物线的性质可知:点A和B是对称点,∴连接BC交函数的对称轴于点M,此时AM+CM=BC为最小值,而BC的长度是常数,故此时△ACM的周长最小,设直线BC的表达式为y=mx+n,则,解得,故直线BC的表达式为y=x﹣3,当x=1时,y=﹣2,故点M(1,﹣2).【变式6-1】(2021•富拉尔基区模拟)如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线解析式;(2)若M是抛物线对称轴上的一点,则△ACM周长的最小值为多少?【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴,解得,∴抛物线解析式为y=﹣x2﹣2x+3;(2)∵△ACM周长的值最小,∴MC+AM的值最小,即点M即为直线BC与抛物线对称轴的交点,∴△ACM周长的最小值为BC+AC,∵点B(﹣3,0),C(0,3),∴BC==3,AC==,∴△ACM周长的最小值为,故答案为:;【变式6-2】(2022•齐河县模拟)如图1,抛物线y=ax2+bx+3过A(1,0)、B(3,0)两点,交y轴于点C.(1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在点M,使△ACM的周长最小?若存在,求出△ACM 周长的最小值;若不存在,请说明理由.(3)如图2,连接BC,抛物线上是否存在一点P,使得∠BCP=∠ACB?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3过A(1,0)、B(3,0)两点,∴方程ax2+bx+3=0的两根为x=1或x=3,∴1+3=﹣,1×3=,∴a=1,b=﹣4,∴二次函数解析式是y=x2﹣4x+3;(2)∵二次函数解析式是y=x2﹣4x+3,∴抛物线的对称轴为直线x=2,C(0,3).∵点A、B关于对称轴对称,∴点M为BC与对称轴的交点时,MA+MC=BC的值最小.设直线BC的解析式为y=kx+t(k≠0),则,解得:.∴直线BC的解析式为y=﹣x+3.∵抛物线的对称轴为直线x=2.∴当x=2时,y=1.∴抛物线对称轴上存在点M(2,1)符合题意,∵A(1,0)、B(3,0),C(0,3).∴AC==,BC==3,∴AC+BC=+3,∴在抛物线的对称轴上存在点M,使△ACM的周长最小,△ACM周长的最小值为+3;【典例7】(2022春•衡阳期中)如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+x+c经过A、B两点.(1)求二次函数解析式;(2)如图1,点E在线段AB上方的抛物线上运动(不与A、B重合),过点E作ED⊥AB,交AB于点D,作EF⊥AC,交AC于点F,交AB于点M,求△DEM的周长的最大值;【解答】解:(1)∵直线y=﹣x+3与x轴交于点A,与y轴交于点B,∴A(4,0),B(0,3).∵抛物线y=ax2+x+c经过A、B两点,∴,解得.∴二次函数的解析式为:y=﹣x2+x+3.(2)∵A(4,0),B(0,3).∴OA=4,OB=3,∴AB=5.∵ED⊥AB,∴∠EDM=∠AOB=90°,∵∠DEM+∠EMD=∠FMA+∠BAO=90°,∠FMA=∠EMD,∴∠DEM=∠BAO,∴△AOB∽△EDM,∴AO:OB:AB=ED:DM:EM=4:3:5,设E的横坐标为t,则E(t,﹣t2+t+3),∴M(t,﹣t+3),∴EM=﹣t2+t+3﹣(﹣t+3)=﹣t2+t.∴△DEM的周长为:ED+DM+EM=EM=﹣(t﹣2)2+,∴当t=2时,△DEM的周长的最大值为.【变式7】(2022春•北碚区校级期中)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+2交x轴于A、B两点(点A在点B的左侧),交y轴于点C,一次函数y=﹣x﹣1交抛物线于A,D两点,其中点D(3,﹣4).(1)求抛物线C1的解析式;(2)点G为抛物线上一点,且在线段BC上方,过点G作GH∥y轴交BC于H,交x 轴于点N,作GM⊥BC于点M,求△GHM周长的最大值;【解答】解:(1)∵一次函数y=﹣x﹣1交抛物线于A点,且点A在x轴上,∴A(﹣1,0);将A(﹣1,0)和D(3,﹣4)代入抛物线C1:y=ax2+bx+2,∴,解得,∴抛物线C1:y=﹣x2+x+2.(2)由(1)知抛物线C1:y=﹣x2+x+2.令y=0,解得x=﹣1或x=2,∴B(2,0);令x=0,则y=2,∴C(0,2).∴OB=OC=2,直线BC的解析式为:y=﹣x+2;∴△OBC是等腰直角三角形,且∠OBC=∠OCB=45°;∵GH∥y轴,∴∠GNB=90°,∴∠BHN=45°,∵GM⊥BC,∴∠GMH=90°,∵∠MGH=∠GHM=45°,∴GM=MH=GH;设点G的横坐标为t,则G(t,﹣t2+t+2),H(t,﹣t+2),∴GH=﹣t2+2t=﹣(t﹣1)2+1.∵﹣1<0,∴当t=1时,GH有最大值1;∵△GHM的周长为:GM+MH+GH=(+1)GH,∴△GHM周长的最大值为+1.1.(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A (﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.求线段PM的最大值;【解答】解:(1)将A,B,C代入函数解析式得,,解得,∴这个二次函数的表达式y=x2﹣2x﹣3;(2)①设BC的解析式为y=kx+b,将B,C的坐标代入函数解析式得,,解得,∴BC的解析式为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,=,当n=时,PM最大∴线段PM的最大值;2.(2022•宁远县模拟)如图,抛物线y=x2+bx+c与x轴交于A,B两点,其中点A的坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;【解答】解:(1)∴二次函数y=x2+bx+c的图象经过A(﹣3,0),D(﹣2,﹣3),∴,解得:.∴二次函数解析式为y=x2+2x﹣3;(2)∵抛物线y=x2+2x﹣3的对称轴x=﹣=﹣1,D(﹣2,﹣3),C(0,﹣3),∴C、D关于抛物线的对称轴x=﹣1对称,连接AC与对称轴的交点就是点P,此时PA+PD=PA+PC=AC===3.∴PA+PD的最小值为3;3.(2022•昭平县二模)如图1,对称轴为直线x=1的抛物线经过B(3,0)、C(0,4)两点,抛物线与x轴的另一交点为A.(1)求抛物线的解析式;(2)若点P为抛物线对称轴上的一点,使PA+PC取得最小值,求点P的坐标;【解答】解:(1)由对称性得:A(﹣1,0),设抛物线的解析式为:y=a(x+1)(x﹣3),把C(0,4)代入:4=﹣3a,a=﹣,∴y=﹣(x+1)(x﹣3),∴抛物线的解析式为:y=﹣x2+x+4;(2)如图,点A与点B关于对称轴直线x=1对称,连接BC,交抛物线对称轴于点P,连接PA,即点P为所求点,此时PA+PC=PB+PC=BC的值最小,∵B(3,0)、C(0,4),设直线BC的函数解析式为y=kx+b,∴,解得,∴直线BC的函数解析式为y=﹣x+4,当x=1时,y=,∴P点的坐标为(1,);4.(2022春•石鼓区校级月考)已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求△PAD周长的最小值.【解答】解:(1)将(﹣3,0),(﹣2,﹣3)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2+2x﹣3.(2)∵y=x2+2x﹣3,∴抛物线对称轴为直线x=﹣1,连接BD,交对称轴于点P,∵点A坐标为(﹣3,0),抛物线对称轴为直线x=﹣1,∴点B坐标为(1,0),∴BD==3,又∵AD==,∴△PAD周长的最小值为3+.5.(2022•江阴市校级一模)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x 轴分别相交于A(﹣1,0)、B(3,0)两点,与y轴相交于点C(0,3).(1)求出这条抛物线的解析式及顶点M的坐标;(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC 的最小值;【解答】解:(1)∵抛物线过点A(﹣1,0),B(3,0),C(0,3),∴设抛物线解析式为y=a(x+1)(x﹣3),将C(0,3)代入,得:3=a(0+1)(0﹣3),解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,∴该抛物线解析式为y=﹣x2+2x+3,顶点坐标为M(1,4).(2)如图1,将点C沿y轴向下平移1个单位得C′(0,2),连接BC′交抛物线对称轴x=1于点Q′,过点C作CP′∥BC′,交对称轴于点P′,连接AQ′,∵A、B关于直线x=1对称,∴AQ′=BQ′,∵CP′∥BC′,P′Q′∥CC′,∴四边形CC′Q′P′是平行四边形,∴CP′=C′Q′,Q′P′=CC′=1,在Rt△BOC′中,BC′=,==.∴AQ′+Q′P′+P′C=BQ′+C′Q′+Q′P′=BC′+Q′P′=+1,此时,C′、Q′、B三点共线,BQ′+C′Q′的值最小,∴AQ+QP+PC的最小值为+1.6.(2022•常德)如图,已知抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,点B是抛物线对称轴上的一点,且点B在第一象限.(1)求此抛物线的解析式;(2)当△OAB的面积为15时,求B的坐标;(3)在(2)的条件下,P是抛物线上的动点,当PA﹣PB的值最大时,求P的坐标以及PA﹣PB的最大值.【解答】解:(1)∵抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,∴抛物线与x轴的另一个交点坐标为(4,0),设抛物线解析式为y=ax(x﹣4),把A(5,5)代入,得5a=5,解得:a=1,∴y=x(x﹣4)=x2﹣4x,故此抛物线的解析式为y=x2﹣4x;(2)∵点B是抛物线对称轴上的一点,且点B在第一象限,∴设B(2,m)(m>0),设直线OA的解析式为y=kx,则5k=5,解得:k=1,∴直线OA的解析式为y=x,设直线OA与抛物线对称轴交于点H,则H(2,2),∴BH=m﹣2,=15,∵S△OAB∴×(m﹣2)×5=15,解得:t=8,∴点B的坐标为(2,8);(3)设直线AB的解析式为y=cx+d,把A(5,5),B(2,8)代入得:,解得:,∴直线AB的解析式为y=﹣x+10,当PA﹣PB的值最大时,A、B、P在同一条直线上,∵P是抛物线上的动点,∴,解得:,(舍去),∴P(﹣2,12),此时,PA﹣PB=AB==3.7.(2022•玉州区一模)如图,抛物线y=﹣x2x+4交x轴于A,B两点(点B在A的右边),与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P 的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.(1)求A、B两点坐标;(2)过点P作PN上BC,垂足为点N,请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?【解答】解:(1)当y=0,﹣x2+x+4=0,解得x1=﹣3,x2=4,∴A(﹣3,0),B(4,0),(2)设点P(m,﹣m2+m+4),则点Q(m,﹣m+4),∵OB=OC,∴∠ABC=∠OCB=45°=∠PQN,P~N=PQ•sin∠PQN=(﹣m2+m+4+m﹣4)=﹣(m﹣2)2+,∵﹣<0,∴PN有最大值,当m=2时,PN的最大值为.8.(2022•怀化)如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF∥AB交BC于点F.(1)求抛物线和直线BC的函数表达式.(2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.【解答】解:(1)∵抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3,令x=0,可得y=3,∴C(0,3),设直线BC的解析式为y=kx+b,则,∴,∴直线BC的解析式为y=﹣x+3;(2)如图一中,连接PC,OP,PB.设P(m,﹣m2+2m+3),∵B (3,0),C (0,3),∴OB =OC =3,∴∠OBC =45°,∵PF ∥AB ,∴∠PFE =∠OBC =45°,∵PE ⊥BC ,∴△PEF 是等腰直角三角形,∴PE 的值最大时,△PEF 的周长最大,∵S △PBC =S △POB +S △POC ﹣S △OBC=×3×(﹣m 2+2m +3)+×3×m ﹣×3×3=﹣m 2+m=﹣(m ﹣)2+,∵﹣<0,∴m =时,△PBC 的面积最大,面积的最大值为,此时PE 的值最大,∵×3×PE =,∴PE =,∴△PEF 的周长的最大值=++=+,此时P (,);。
二次函数中线段最值问题

二次函数中线段最值问题(一)例1.已知,抛物线y=ax2+bx+c,过A(﹣1,0)、B(3,0)、C(0,﹣3),M为顶点.(1)求抛物线的解析式;y=x2﹣2x﹣3(2)在该抛物线的对称轴上找一点P,使得PA+PC的值最小,并求出P的坐标;练习1.如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;y=﹣x2+2x+3,(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;练习2.如图,抛物线y=x2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;y=x2﹣2x﹣3,(2)点M是对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.例2.如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;y=x2﹣4x+3(2)若点T为对称轴直线x=2上一点,则TC﹣TB的最大值为.练习3.在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=x2﹣x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;y==2x2﹣6x﹣8.(2)当BP﹣CP的值最大时,求点P的坐标;例3.如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;y=﹣x2+x+2;(2)当线段DF的长度最大时,求D点的坐标;练习4.如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;y=x2﹣2x+1.(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x.①求h与x之间的函数关系式,并写出自变量x的取值范围;②线段PE的长h是否存在最大值?若存在,求出它的最大值及此时的x值;若不存在,请说明理由?、练习5.如图,已知二次函数y=﹣x2+bx+c的图象与x轴交于点A、C,与y轴交于点B,直线y=x+3经过A、B两点.(1)求b、c的值.y=﹣x2﹣x+3,(2)若点P是直线AB上方抛物线上的一动点,过点P作PF⊥x轴于点F,交直线AB 于点D,求线段PD的最大值.练习6.如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;y=x2+2x﹣3.(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;例4.如图,已知二次函数图象的顶点坐标为A(1,4),与坐标轴交于B、C、D三点,且B 点的坐标为(﹣1,0).(1)求二次函数的解析式;(y=﹣x2+2x+3)(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;练习7.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣5,0)和点B(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;例5.如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;y=x2﹣3x﹣4;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.练习8.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于点A,点B,与y 轴交于点C,其中A(﹣4,0),B(2,0),C(0,﹣4).(1)求该抛物线的函数表达式;(2)点P为直线AC下方抛物线上一点,PD⊥AC,当线段PD的长度最大时,求点P 的坐标;。
精品课件-二次函数背景下的线段最值问题

通过观察、分析、对比等方法,提高学生分析问题, 解决问题的能力,进一步强化分类归纳综合的思想,提 高综合能力。 • 情感目标:
通过自己的参与和教师的指导,体会及感悟化归与转 化、数形结合、数学建模等数学思想方法,享受学习数 学的快乐,提高应用数学的能力。
分析:第一步,找点P, 利用直线外一点与直线 上各点连接的所有线段 中,垂线段最短 。
第二步,解析法或几何 法求点P的坐标。
链接中考
(2015•漳州)如图,抛物线 yx22x3与x轴交于
A,B两点,与y轴交于点C,点D为抛物线的顶点,请 解决下列问题. (1)填空:点C的坐标为( 0 , 3 ), 点D的坐标为( 1 , 4 ); (2)设点P的坐标为(a,0),当|PD﹣PC|最大时, 求a的值并在图中标出点P的位置;
代入可得
,解得
,
∴直线DC的解析式为y=x+3, 将点P的坐标(a,0)代入得a+3=0,
求得a=﹣3, 如图1,点P(﹣3,0)即为所求
探究三
(6)点P在第一象限的抛物线上,PQ⊥x轴交BC于Q, 求PQ的最大值;
分析:第一步,设P点的坐标;
第二步,求直线B段PQ的函数关 系式,最后求出最值。
二次函数背景下的线段最 值问题
(2015•漳州卷第25题)
如图,抛物线 yx22x3与x轴交于A,B两点, 与y轴交于点C,点D为抛物线的顶点,请解决下列问题.
(1)填空:点C的坐标为( , ), 点D的坐标为( , );
(2)设点P的坐标为(a,0), 当|PD﹣PC|最大时, 求a的值并在图中标出点P的位置;
y x 2 2 x 3 x 1 2 4
二次函数下的线段和差问题

类型一、二次函数中的“饮马问题”基本原理:两点之间,线段最短。
解题思路:利用函数自身的对称性找到某点关于直线的对称点,实现“折”转“直”,再结合函数的相关知识解题。
例题1、如图,抛物线y=x2﹣2x与直线y=3相交于点A、B,P是x轴上一点,若PA+PB最小,则点P的坐标为()A.(﹣l,0)B.(0,0) C.(1,0) D.(3,0)【考点】HF:二次函数综合题.菁优网版权所有.【分析】把直线y=3代入抛物线解析式得到A,B点的坐标,根据两点之间线段最短,作点B关于x轴的对称点B′,连接AB′,则与x轴的交点即为点P的坐标.【解答】解:如图,作点B关于x轴的对称点B′,连接AB′与x轴的交点即为点P.当y=3时代入到抛物线解析式得:x2﹣2x﹣3=0,解得x=3或x=﹣1.则由图可知点A(﹣1,3),点B(3,3),∴B′(3,﹣3).设直线AB′的解析式为:y=kx+b.代入A,B′求得:y=,则该直线与x轴的交点为:当y=0时,x=1.∴点P(1,0).故选C.【点评】本题考查了二次函数的综合运用,交点坐标的求法,也灵活地考查了两点之间线段最短,难度中等.例题2、如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.【考点】HF:二次函数综合题.菁优网版权所有【分析】(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l与x轴的交点,即为符合条件的P点;(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M点的坐标,然后用M 点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.【解答】解:(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线y=ax2+bx+c中,得:,解得:故抛物线的解析式:y=x2﹣2x﹣3.(2)当P点在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x=﹣=1,故P(1,0);(3)如图所示:抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:MA2=m2+4,MC2=(3+m)2+1=m2+6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2+6m+10,解得:m=﹣1,②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2+6m+10=10,得:m1=0,m2=﹣6;当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为 M(1,)(1,﹣)(1,﹣1)(1,0).【点评】此题主要考查了二次函数综合题涉及了抛物线的性质及解析式的确定、等腰三角形的判定等知识,在判定等腰三角形时,一定要根据不同的腰和底分类进行讨论,以免漏解.例题3、如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标.【考点】PA:轴对称﹣最短路线问题;H8:待定系数法求二次函数解析式.菁优网版权所有【专题】31 :数形结合.【分析】(1)设抛物线顶点式解析式y=a(x﹣1)2+4,然后把点B的坐标代入求出a的值,即可得解;(2)先求出点B关于x轴的对称点B′的坐标,连接AB′与x 轴相交,根据轴对称确定最短路线问题,交点即为所求的点P,然后利用待定系数法求一次函数解析式求出直线AB′的解析式,再求出与x轴的交点即可.【解答】解:(1)∵抛物线的顶点为A(1,4),∴设抛物线的解析式y=a(x﹣1)2+4,把点B(0,3)代入得,a+4=3,解得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4;(2)点B关于x轴的对称点B′的坐标为(0,﹣3),由轴对称确定最短路线问题,连接AB′与x轴的交点即为点P,设直线AB′的解析式为y=kx+b(k≠0),则,解得,∴直线AB′的解析式为y=7x﹣3,令y=0,则7x﹣3=0,解得x=,所以,当PA+PB的值最小时的点P的坐标为(,0).【点评】本题考查了轴对称确定最短路线问题,待定系数法求二次函数解析式,待定系数法求一次函数解析式,(1)利用顶点式解析式求解更简便,(2)熟练掌握点P的确定方法是解题的关键.例题4、如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.【考点】HF:二次函数综合题.菁优网版权所有【分析】(1)利用矩形的性质和B点的坐标可求出A点的坐标,再利用待定系数法可求得抛物线的解析式;(2)设AD=x,利用折叠的性质可知DE=AD,在Rt△BDE中,利用勾股定理可得到关于x的方程,可求得AD的长;(3)由于O、A两点关于对称轴对称,所以连接OD,与对称轴的交点即为满足条件的点P,利用待定系数法可求得直线OD的解析式,再由抛物线解析式可求得对称轴方程,从而可求得P点坐标.【解答】解:(1)∵四边形ABCD是矩形,B(10,8),∴A(10,0),又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得,解得,∴抛物线的解析式为y=﹣x2+x;(2)由题意可知:AD=DE,BE=10﹣6=4,AB=8,设AD=x,则ED=x,BD=AB﹣AD=8﹣x,在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5,∴AD=5;(3)∵y=﹣x2+x,∴其对称轴为x=5,∵A、O两点关于对称轴对称,∴PA=PO,当P、O、D三点在一条直线上时,PA+PD=PO+PD=OD,此时△PAD 的周长最小,如图,连接OD交对称轴于点P,则该点即为满足条件的点P,由(2)可知D点的坐标为(10,5),设直线OD解析式为y=kx,把D点坐标代入可得5=10k,解得k=,∴直线OD解析式为y=x,令x=5,可得y=,∴P点坐标为(5,).【点评】本题主要考查二次函数的综合应用,涉及知识点有待定系数法、矩形的性质、勾股定理、轴对称的性质及方程思想.在(2)中注意方程思想的应用,在(3)中确定出满足条件的P点的位置是解题的关键.本题考查知识点虽然较多,但题目属于基础性的题目,难度不大.例题5、如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC 为直角三角形的点P的坐标.【考点】HF:二次函数综合题.菁优网版权所有【专题】16 :压轴题.【分析】(1)先把点A,C的坐标分别代入抛物线解析式得到a 和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P 的坐标.【解答】解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).【点评】本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.类型二、二次函数与线段差最大问题基本原理:三角形任何两边之差小于第三边。
二次函数有关线段和差面积最值问题_doc

二次函数之最值问题◆ 线段和或差(或三角形周长)最值问题:此类问题一般是利用轴对称的性质和两点之间线段最短确定最短距离,这个距离一般用勾股定理或两点之间距离公式求解.特殊地,也可以利用平移和轴对称的知识求解固定线段长问题.◆ 最短距离和找法:以动点所在的直线为对称轴,作一个已知点的对称点,连结另一个已知点和对称点的线段,与对称轴交于一点,这一点即为所求点.线段长即为最短距离和.◆ 线段长最值问题:根据两点间距离公式12x x -把线段长用二次函数关系式表示出来求最值. 几何面积最值问题:此类问题一般是先运用三角形相似,对应线段成比例等性质或者用“割补法”或者利用平行线得到三角形同底等高进行面积转化写出图形的面积y 与边长x 之间的二次函数关系,其顶点的纵坐标即为面积最值.例1、已知二次函数2y x bx c =++的图象过点()3,0A -和点()1,0B ,且与y 轴交于点C ,D 点在抛物线上且横坐标是2-.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P ,求出PA PD +的最小值.例2、如图,在平面直角坐标系xOy 中,直线2y =+分别交x 轴、y 轴于C 、A 两点.将射线AM 绕着点A 顺时针旋转45°得到射线AN.点D 为AM 上的动点,点B 为AN 上的动点,点C 在∠MAN 的内部. (1)求线段AC 的长; (2)求△BCD 周长的最小值;(3)当△BCD 的周长取得最小值,且BD 时,△BCD 的面积为________.1、已知抛物线21y ax bx =++经过点()1,3A 和点()2,1B .(1)求此抛物线解析式; (2)点C 、D 分别是x 轴和y 轴上的动点,求四边形ABCD 周长的最小值;(3)过点B 作x 轴的垂线,垂足为E 点.点P 从抛物线的顶点出发,先沿抛物线的对称轴到达F 点,再沿FE 到达E 点,若P 点在对称轴上的运动速度是它在直线FE倍,试确定点F 的位置,使得点P 按照上述要求到达E 点所用的时间最短.2、如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为()3,0-、()0,4,抛物线223y x bx c =++经过B 点,且顶点在直线52x =上.(1)求抛物线对应的函数关系式;(2)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.3、已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A 、B 两点,与y 轴交于点C ,其中()()3,0,0,2A C --.(1)求这条抛物线的函数表达式;(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标;(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合),过点D 作DE ∥PC 交x 轴于点E ,连结PD 、PE .设CD 的长为m ,PDE △的面积为S ,求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.4、如图,已知抛物线y=ax2+bx+3与x 轴交于A 、B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D ,使△BCD 的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;并求出周长的最小值;(3)若点E 是(1)中抛物线上的一个动点,且位于直线AC 的下方,试求△ACE 的最大面积及E 点的坐标.5、如图,△ABC 的三个顶点坐标分别为A (-2,0)、B (6,0)、C (0,32-),抛物线y=ax2+bx+c (a ≠0)经过A 、B 、C 三点。
中考数学中的二次函数的线段和差以及最值问题
二次函数与线段和差问题例题精讲:如图抛物线与x轴交于A,B(1,0),与y 轴交于点C,直线经过点A,C。
抛物线的顶点为D,对称轴为直线l,(1)求抛物线解析式.(2)求顶点D的坐标与对称轴l。
(3)设点E为x轴上一点,且AE=CE,求点E的坐标.(4)设点G是y轴上的一点,是否存在点G,使得GD+GB的值最小,若存在,求出G点坐标,若不存在,说明理由。
(5)在直线l上是否存在一点F,使得△BCF的周长最小,若存在,求出点F的坐标及△BCF周长的最小值,若不存在,说明理由。
(6)在y轴上是否存在一点S,使得SD-SB的值最大,若存在,求出S点坐标,若不存在,说明理由。
(7)若点H是抛物线上位于AC上方的一点,过点H作y轴的平行线,交AC 于点K,设点H的横坐标为h,线段HK=d①求d关于h的函数关系式②求d的最大值及此时H点的坐标(8)设点P是直线AC上方抛物线上一点,当P点与直线AC距离最大值时,求P点的坐标,并求出最大距离是多少?1.如图,矩形的边OA 在轴上,边OC 在轴上,点的坐标为(10,8),沿直线OD 折叠矩形,使点正好落在上的处,E 点坐标为(6,8),抛物线经过、、三点。
(1)求此抛物线的解析式。
(2)求AD 的长.(3)点P 是抛物线对称轴上的一动点,当△PAD 的周长最小时,求点P 的坐标.2。
如图,在平面直角坐标系中,抛物线412+=x y 与轴相交于点A ,点B 与点O 关于点A 对称。
(1)填空:点B 的坐标是 。
(2)过点的直线(其中)与轴相交于点C ,过点C 作直线平行于轴,P 是直线上一点,且PB=PC,求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由.(3)在(2)的条件下,若点C 关于直线BP 的对称点恰好落在该抛物线的对称轴上,求此时点P 的坐标。
3.如图,抛物线与x 轴交于A,B 两点,与y 轴交于点C,点O 为坐标原点,点D 为抛物线的顶点,点E 在抛物线上,点F 在x 轴上,四边形OCEF 为矩形,且OF=2,EF=3,.(1)写出抛物线对应的函数解析式: △AOD 的面积是(2)连结CB 交EF 于M ,再连结AM 交OC 于R ,求△ACR 的周长。
二次函数背景下的几何问题——线段最值问题
二次函数背景下的几何问题——线段最值问题线段最值问题是在二次函数背景下的一种几何问题,主要是求解一个线段的最大值或最小值。
这个问题可以通过二次函数的图像和相关的数学理论来解决。
在解决这类问题时,我们可以利用二次函数的性质和相关的数学技巧来找到线段的最值点,从而得出最值。
首先,我们来回顾一下二次函数的一般形式:f(x) = ax^2 + bx+ c,其中a、b、c都是常数且a不等于0。
根据二次函数的图像特点,我们知道它是一个抛物线,可以是开口向上(a>0)或开口向下(a<0)的。
对于线段最值问题,我们通常要确定线段的端点,然后找出其中的最大值或最小值点。
这可以通过以下步骤来完成:1.确定二次函数的图像形状:根据二次函数的参数a的值,确定抛物线是开口向上还是开口向下。
2.确定线段的端点:线段的端点可以是给定的数值,也可以通过求解二次函数的解来确定。
根据二次函数的性质,它的两个解(也就是x的值)对应着抛物线与x轴的交点,即抛物线的顶点和x轴的两个交点。
3.求解最值点:对于线段的最大值点,我们需要找到抛物线的顶点,并通过计算确定它的y坐标值。
通过二次函数的解析式,我们可以知道抛物线的顶点坐标是(-b/2a, f(-b/2a))。
同样的,对于线段的最小值点,我们也可以通过类似的方法来解决。
4.判断最值点是否在线段上:在找到最值点之后,我们需要判断它是否在给定的线段上。
这可以通过将最值点的x坐标值与线段的端点的x坐标值进行比较来实现。
如果最值点的x坐标值位于线段的端点之间,则最值点就在线段上。
通过以上步骤,我们可以很容易地求解线段的最值问题。
当然,在实际应用中,可能会碰到更复杂的情况,例如线段与其他二次函数曲线的交点等。
但是,通过理解二次函数的性质和运用相关的数学知识,我们可以应对这些情况并解决问题。
总结而言,线段最值问题是在二次函数背景下的一种几何问题,通过确定二次函数的图像形状、线段的端点、求解最值点和判断最值点是否在线段上,我们可以解决线段的最值问题。
二次函数背景下的几何问题——线段最值问题
二次函数背景下的几何问题——线段最值问题一、【教学内容分析】二次函数是一次函数和反比例函数的继续和发展,是初中数学学习的重点和难点,也为以后更高层次函数的学习奠定了基础.以二次函数为背景的试题常受命题者的青睐,它能够全面考察学生的数形结合能力与计算能力,同时它也是学生学习高中数学知识所必备的.而此命题一般不会用以纯函数的形式出现,而是结合几何图形或点的运动使几何图形发生变化,从而让代数与几何有机结合起来. 二次函数背景下的线段最值问题是利用重要的几何结论(如两点之间线段最短、垂线段最短、三角形两边之和大于第三边、两边之差小于第三边等)及二次函数的性质求最值.这类问题大多是“将军饮马”模型的变式应用,试题通过考查点在直线上运动时与它相关线段的最值情况,不但能了解学生综合运用数学知识的能力,而且还能通过学生对“动”与“定”之间的关系的思考,深入了解学生在图形的运动变化中探索几何元素之间位置关系和数量关系的能力和识别能力,体现新课程对学生几何探索活动过程、合情推理能力的要求.二【疑难点分析】培养学生能正确运用将军饮马等几何模型、函数模型,解决二次函数背景下的线段最值问题.三、【教学目标】(1)掌握利用基本事实——两点之间线段最短、三角形的三边关系构建几何模型,解决因动点产生的二次函数背景下的线段最值问题.(2)根据问题构建函数模型,解决因动点产生的二次函数背景下的线段最值问题.四、【教学重难点】重点:能运用几何模型和函数模型解决因动点产生的二次函数背景下的线段最值问题.难点:提高学生运用二次函数知识与几何知识解决数学综合题的能力.五、【教学媒体】PPT 课件、微课、导学练六、【教法】讲练结合法、问题教学法七、【学法】小组合作交流法、自主探究法、观察发现法八、【教学流程框图】教学过程设计:教学内容(一)微课助手,忆旧知播放微课视频短片,让学生回顾下数学史上著名的“将军饮马”问题(二)重点难点,细解读1、模型一:如图 1,点 P 在直线 l 上运动,找出一点 p 使得PA+PB 取最小值.观察模型并回答以下两个问题:教学策略让学生通过观察模型一,总结出模型一的特点和所运用的方法.设计意图通过回顾“将军饮马”问题,烘托问题情境,利用微课吸引学生的注意力,在历史经典中唤起学生的兴趣,激发学生探究问题的欲望,让学生回忆起旧知.为了落实好下面的模型应用,把知识背景归纳成一般化的数学模型. 在温故中实现引新,为展开模型应值时,求点 P 的坐标 (1)该模型有什么特征?(2)基本解法是什么?特征:定点 A 、B 同侧,P 为动点; 原理:两点之间,线段最短; 思想:转化(化同侧为异侧);方法:轴对称法.模型运用:(2016•漳州)已知:如图,A (-1,0),B (3,0),C(0,3),抛物线经过点 A 、B 、C , 抛物线的顶点为 D .(1) 求抛物线的解析式和抛物线的顶点 D ;(2) 点 P 在对称轴上,PA+PC取最小 .解题思路分析:(1)利用两点式或者一般式求抛物线的解析式;通过小组讨论,再请学生代表解析.教师给予点评,并板演解答过程.用提供知识、方法及经验的支持.二次函数类的压轴题第一问通常为求点坐标、解析式,本小问要求学生能够熟练地掌握待定系数法求函数解析式或利用函数解析式求点坐标,相对较简单,通过第一小问的解答增进学生解压轴题的信心. 同时在具体的实例中学习把知识迁移应用并体会“将军饮马”问题中蕴含的数学本 质.利用对称思想(2)步骤:板书解题过程:(2)解:连接 BC,与对称轴的点即为点 P,如图所示,点 P为所求,则可得 P 的横坐标为1.设直线BC 的解析式为y=kx+b(k≠0),将点 B(3,0)、C(0,3)代入y=kx+b(k≠0),可得:⎧3k +b = 0 ⎧k = -1⎨,解得:⎨⎩b = 3 ⎩b = 3则直线 BC 的表达式为:y = -x + 3 .当x =1时,y =-1+3 = 2 .∴当点 P 的坐标为(1,2)时,PA+PC 取最小值.让学生独立思考,通过类比上一把复杂的问题简单化.变式 1:已知:如图,A(-1,0),B (3,0),C(0,3),抛物线经过点 A、B、C.点 P 在对称轴上.(1)求抛物线的解析式和抛物线的顶点 D;(2)△PAC周长最小时,求点P 的坐标.解题思路分析:由于AC 为定值,要使△PAC周长最小,则此问题转化成在对称轴上找一点 P,使得PA+PC 最小即可.2、模型二:在直线 l 上,找出一点P,使|PA-PB|的值最大.观察模型并回答以下两个问题:(1)该模型有什么特征?还能利用对称轴的知识去解决?(2)小组成员间每人找一点 P,进行比较,你有什么发现?(3)这个模型的基本解法是什么?题,规范书写解题过程.再与学生强调此类型题解题步骤:(1)找对称点;(2)连线并求直线解析式;(3)求点坐标.这一环节问题一个接着一个,形成了问题串,具有挑战性,能极大引起学生的思考,教师在这一环节中要善于运用语言不断鼓励学生.引导学生得出这一模型的基本解法:使A、B、P 三点共线,原理是:三角形两边之差小于第三边.经历画图-观察-说理等活动,得出作图原理,将该问题归类建模,熟悉并理解该几何模型,培养学生的逻辑思维能力.对于问题教师要给学生足够的时间进行讨论、交流,让学生对图象进行细致的观察、类比、分析、及时检测学生对所学知识的掌握情况,加深对这一模型的理解 .基本解法:使A、B、P 三点共线;基本原理:三角形两边之差小于第三边;基本思想:转化(化折为直).变式 2:已知:如图,A(-1,0),B (3,0),C(0,3),抛物线经过点 A、B、C.点 P 在对称轴上.(1)求抛物线的解析式和抛物线的顶点 D;(2)|PA-PC|最大,求点 P 的坐标.解题思路分析:交流,同时鼓励学生尽可能多的从图象中获取信息,以小组的形式对信息进行分析、综合、概括、归纳,形成知识系统.教师鼓励学生先独立完成,然后共同交流,总结知识,提炼方法.(2)解:连接直线 AC 交对称轴于点P,如图所示,点P 为所求,则可得P 的横坐标为1. 设直线AC 的解析式为y =kx +b(k ≠ 0),将点A ( -1,0 )、 C (0,3 )代入y=kx+b(k≠0),可得:⎧-k +b = 0 ⎧k = 3⎨,解得:⎨⎩b = 3 ⎩b = 3则直线 AC 的表达式为:y = 3x + 3.当x =1时,y = 3 +3 = 6 .∴当点 P 的坐标为(1,6)时,|PA-PC|最取大值.模型三:如图,在平面直角坐标系中如何表示线段 AB 的长度. 对于这个探究,教师利用微课进行讲解,组织学生先观看微课。
最新二次函数中的最值问题整理(中考数学必考知识点)
二次函数中的最值问题归纳(中考数学必考知识点)一.线段和差最值1、如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),B(4,0),与y轴交于点C,点D为BC的中点.(1)求该抛物线的函数表达式;(2)点G是该抛物线对称轴上的动点,若GA+GC有最小值,求此时点G的坐标;第二问解题思路:(1)根据点G是该抛物线对称轴上的动点可得当点G在直线BC与抛物线对称轴的交点上时,GA+GC最小,先求出点C的坐标.(2)再设直线BC的解析式为y=kx﹣4(k≠0),根据待定系数求得直线BC 的解析式为y=x﹣4,然后求出抛物线的对称轴为直线x=1,联立两解析式求解即可.2、如图,在平面直角坐标系中,直线y=4x+4与x轴交于A点,与y轴交于C点,抛物线)经过A,C两点,与x轴相交于另一点B,连接BC.点P是线段BC上方抛物线上的一个动点,过点P作PQ⊥BC交线段BC于点Q.(1)求抛物线的解析式;(2)点D为抛物线对称轴上的一个动点,求|DC﹣DB|的最大值;第二问解题思路:(1)作点C关于抛物线的对称轴的对称点N(2,4).(2)连接BN交抛物线的对称轴于点D,则点D为所求点,进而求解.二.线段最值3、如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(1)求抛物线的解析式和直线BC的解析式;(2)当点P在线段OB上运动时,求线段MN的最大值;第二问解题思路:(1)用m可分别表示出N、M的坐标,则可表示出MN的长.(2)再利用二次函数的最值可求得MN的最大值.变式训练:如图,已知抛物线经过点A(﹣6,0),B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点P为该抛物线上一动点.当点P在直线AC下方时,过点P作PE∥x轴,交直线AC于点E,作PF∥y轴.交直线AC于点F,求EF的最大值;4、如图,在平面直角坐标系中,直线y=4x+4与x轴交于A点,与y轴交于C点,抛物线)经过A,C两点,与x轴相交于另一点B,连接BC.点P是线段BC上方抛物线上的一个动点,过点P作PQ⊥BC交线段BC于点Q.(1)求抛物线的解析式;(2)求PQ的最大值,并写出此时点P的坐标;第二问解题思路:由PQ=HP sin∠PHQ=PH知,当PH最大时,PG最大,进而求解变式训练:如图,二次函数y=ax2+bx+2的图象与x轴相交于点A(﹣1,0)、B(4,0),与y轴相交于点C.(1)求该函数的表达式;(2)点P为该函数在第一象限内的图象上一点,过点P作PQ⊥BC,垂足为点Q,连接PC.线段PQ的最大值;变式训练:如图,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.对称轴为直线x=﹣1.(1)a=;(2)点P为直线AC下方抛物线上的一动点,过P作PE⊥AC于点E,过P作PF⊥x轴于点F,交直线AC于点G,求PE+PG的最大值;5、如图,抛物线y=ax2+bx+3交x轴于点A(3,0)和点B(﹣1,0),交y轴于点C.(1)求抛物线的表达式;(2)D是直线AC上方抛物线上一动点,连接OD交AC于点N,求的最大值,并求出此时D的坐标.第二问解题思路:过点D作DH∥y轴,交AC于点H,由(1)设D(m,﹣m2+2m+3),直线AC的解析式为y=kx+n,然后可求出直线AC的解析式,则有H(m,﹣m+3),进而可得DH=﹣m2+3m,最后根据△OCN∽△DHN可进行求解.变式训练:如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;三.周长和面积6、如图,抛物线过点O(0,0),E(10,0),矩形ABCD的边AB在线段OE上(点B在点A的左侧),点C,D在抛物线上.设B(t,0),当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?第二问解题思路:由抛物线的对称性得AE=OB=t,据此知AB=10﹣2t,再由x=t时BC=t2﹣t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得变式训练:如图1,抛物线y=ax2+bx+c与x轴相交于点B,C(点B在点C左侧),与y轴相交于点A(0,4),已知点C坐标为(4,0),△ABC面积为6.(1)求抛物线的解析式;(2)点M是直线AC下方抛物线上一点,过点P作直线AC的垂线,垂足为点H,过点P作PQ∥y轴交AC于点Q,求△PHQ周长的最大值及此时点P的坐标;7、如图,抛物线y=ax2+x+c经过坐标轴上A、B、C三点,直线y=﹣x+4过点B和点C.(1)求抛物线的解析式;(2)E是直线BC上方抛物线上一动点,连接BE、CE,求△BCE面积的最大值及此时点E的坐标;第二问解题思路:过E点作EG∥y轴交BC于点G,设E(t,﹣t2+t+4),则G(t,﹣t+4),可得S=﹣(t﹣2)2+4,当t=2时,△BCE的面积有最大值4,此时E △BCE(2,4)变式训练:二次函数y=ax2+bx+4(a≠0)的图象经过点A(﹣4,0),B(1,0),与y轴交于点C,点P为第二象限内抛物线上一点.(1)求二次函数的表达式;(2)如图,连接P A,PC,AC,求S的最大值;△P AC变式训练:已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)直接写出抛物线的函数解析式;(2)点N是第一象限内抛物线上的一动点,连接NA分别交BC、y轴于D、E两点,若△NBD、△CDE的面积分别为S1、S2,求S1﹣S2的最大值;四.AP+kBP型8、如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3),P是第四象限内这个二次函数的图象上一个动点,设点P的横坐标为m,过点P作PH⊥x轴于点H,与BC交于点M.(1)求这个二次函数的表达式;(3)求PM+2BH的最大值;第二问解题思路:设P点坐标为(m,m2﹣2m﹣3),则M点坐标为(m,m﹣3),H点坐标为(m,0),将PM+2BH转化为二次函数求最值即可变式训练:抛物线y=﹣x2+bx+c与x轴交于A、B(3,0)两点,与y轴交于点C,点和点P都在抛物线上.(1)求出抛物线表达式;(2)如图,若点P在直线AD的上方,过点P作PH⊥AD,垂足为H,①当点P是抛物线顶点时,求PH的长,②求AH+PH的最大值;变式训练:如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.(1)求抛物线的解析式;(2)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M.①求线段PM长度的最大值.②在①的条件下,若F为y轴上一动点,求PH+HF+CF的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数背景下的线段和差及最值问题
【典例选讲】如图,在平面直角坐标系中,抛物线y =-x 2+2x +3与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是抛物线的顶点.
(1)设点P 是对称轴上的一个动点,当△PAC 的周长最小时,求点P 的坐标;
(2)在直线BC 上是否存在一点Q ,使△QAO 的周长最小?若存在,求出Q 点坐标;若不存在,请说明理由;
(3)若点M 是抛物线对称轴上的一动点,当|AM -CM |的值最大时,求出点M 的坐标;
(4)若点N 是抛物线对称轴上的一动点,点|BN -CN |的值最大时,求点N 的坐标;
(5)若点T 是x 轴上的一个动点,当|BT -DT |的值最小时,求点T 的坐标;
(6)若点E 在x 轴上,且使得CE +3
1BE 最小,求点E 的坐标;(7)已知点K (4,0),将OK 绕点O 逆时针旋转得到OK ',旋转角为(090)αα<<︒,
连接BK '、CK ',求BK '+34CK '的最小值.
【解析】
(1)解:当y =0时,-x 2+2x +3=0,∴x 1=-1,x 2=3
当x =0时,y =3,∴A (-1,0),B (3,0),C (0,3)
∴抛物线的对称轴为:x =1
∵点A 、B 关于对称轴对称
∴连接BC 交对称轴于点P ,则P 为满足条件的点
∴BC 的解析式为:y =-x +3,∴当x =1时,y =2
∴P (1,2)
(2)作点O 关于直线BC 的对称点'
O
连接'AO 交BC 于点Q ,则Q 为满足条件的点
∵BC 的解析式为y =-x +3,B (3,0)
∴∠ABC =45°,∠ABO =90°,∴O 'B =OB =3,∴'O (3,3)
设'AO 的解析式为y =k 1x +b 1
∴11110
33k b k b -+=⎧⎨+=⎩,∴113344k b ==,,∴'AO 的解析式为33
44
y x =+∴3
3443y x y x ⎧
=+⎪⎨⎪=-+⎩,91277x y ==,,∴912
()
77Q ,(3)设AC 与对称轴的交点为M ,则M 为满足条件的点
∴|AM -CM |=CM 最大
∵A (-1,0),C(0,3)
∴直线AC 的解析式为:y =3x +3
∴当x =1时,y =6,∴M (1,6)
(4)∵点A 、B 关于对称轴x =1对称
∴|BN -CN |=|AN -CN |=CN 最大
∴由(3)知N (1,6)
(5)取BD 的中点R ,过点R 作BD 的垂线交x 轴于T ,
∴|BT -DT |=0,T 为满足条件的点
∵D (1,4),B (3,0)∴R (2,2)
∴DB 的解析式为:y =-2x +6
∴RT 的解析式为:1
1
2y x =+∴当y =0时,1
012
2x x =+=-,∴T (-2,0)
(6)在y 轴上取点G ,使OG :BG =1:3,
作CE ⊥BG 交x 轴于E ,交BG 于F
设OG =a ,BG =3a ,则2222OB BG OG a
=-=∴2
tan tan 4
22OCE OBG a ∠=∠=∴2
32
3OE
OE ==∴32
(0)
4E (7)在y 轴上取点N ,使2'k O OC ON =∙,连接BN
∵OC =3,'4K O OK ==,∴16
3ON =,∴'4
'3
OK ON OC OK ==∵''COK K ON ∠=∠
,
∴'COK ∆∽'K ON
∆∴4''3''4'3NK OK CK OC NK CK ===,∴4''''3BK CK BK NK BN +=+≤∴B 、'K ,N 三点共线时,4''''=3
BK CK BK NK BN +=+最小∴2220
3
BN OB ON =+=∴4''3BK CK +的最小值为203
【精讲精练】
1.(2014•绵阳)如图,抛物线y =ax 2+bx +c (a ≠0)的图象过点(23)M -,,顶点坐标为43(1)3
N -,,且与x 轴交于A 、B 两点,与y 轴交于C 点.
(1)求抛物线的解析式;
(2)在直线AC 上是否存在一点Q ,使△QBM 的周长最小?若存在,求出Q 点坐标;若不存在,请说明理由.
【解析】
(1)∵抛物线顶点坐标为43(1)N -,,∴设解析式为243(1)y a x =++∴24333(21),3
3a a =-++=-∴抛物线的解析式为2343(1)33y x =-
++或2323333y x x =--+(2)延长BC 至'B ,使'CB CB =,连接'MB 交AC 于点Q
当y =0时,23430(1)3
3x =-++,x 1=1,x 2=-3∴(10)(30)(03)A B C -,,
,,,,OA =1,OB =3,3OC =∴22222223(3)121(3)4,16
BC AC AB =+==+==,∴BC 2+AC 2=AB 2,∴90BCA ∠=︒
∴点B 、'B 关于直线AC 对称,点Q 为满足条件的点
∴由中点坐标公式得'(3
23)B ,∵M (﹣2,3)∴'B M 的解析式为:3735
5y x =+,AC 的解析式为:33y x =-+∴3735533y x y x ⎧=+⎪⎨⎪=-+⎩
,14333x y =-=,,143()33Q -,2.(2014•成都)如图,已知抛物线)4)(2(8
-+=x x k y (k 为常数,且0>k )与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B 的直线b x y +-
=33与抛物线的另一交点为D .(1)若点D 的横坐标为-5,求抛物线的函数表达式;
(2)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止.当点F 的坐标是多少时,点M 在整个运动过程中用时最少?
【解析】
(1)作DE ⊥x 轴于E ,设BD 交y 轴于G ,
当y =0时,(2)(4)08
k x x +-=∴x 1=-2,x 2=4,∴A (-2,0),B (4,0),
∴OE =5,OB =4,BE =9,OG =b
∴27(52)(54)8
8k y k =-+--=∵OG ∥DE ,∴△BOG ∽△BED ,
∴4,27398
2OG BO b DE BE k k b ===,∴27533838329
k k k =+=,∴抛物线的解析式为3(2)(4)y x x =+-。