【最新精编2016】南京市七年级下数学期末模拟测试卷(2)含答案
南京市2015-2016学年七年级下期末模拟数学试题(二)含答案

七年级(下)数学期末模拟测试卷班级 姓名 一、填空题1.若a >b ,则下列不等式中成立的是( ) A .a+2<b+2 B .a ﹣2<b ﹣2C .2a <2bD .﹣2a <﹣2b2.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C=35°,则∠BED 的度数是( )A .70°B .68°C .60°D .72°3.不等式x+5<2的解在数轴上表示为( )A .B .C .D .4.一个多边形的每一个内角均为108°,那么这个多边形是( )A .七边形B .六边形C .五边形D .四边形5.下列运算正确的是( )A 、22x x x =⋅B 、22)(xy xy = C 、632)(x x = D 、422x x x =+6.下列各式能用平方差公式计算的是( )A.)2)(2(a b b a -+B.)121)(121(--+-x x C.)2)((b a b a -+ D.)12)(12(+--x x7.关于x ,y 的方程组的解满足x+y=6,则m 的值为( ) A .﹣1 B .2C .1D .48.从下列不等式中选择一个与x+1≥2组成不等式组,若要使该不等式组的解集为x≥1,则可以选择的不等式是( )A .x >0B .x >2C .x <0D .x <2 9.下列命题中,①长为5㎝的线段AB 沿某一方向平移10㎝后,平移后线段AB 的长为10㎝ ②三角形的高在三角形内部;③六边形的内角和是外角和的两倍;④平行于同一直线的两条直线平行;⑤两个角的两边分别平行,则这两个角相等. 真命题个数有( ) A .1个B .2个C .3个D .4个10.如图,矩形纸片按图(1)中的虚线第一次折叠得图(2),折痕与矩形一边的形成的∠1=65°,再按图(2)中的虚线进行第二折叠得到图(3),则∠2的度数为( ) A .20° B .25° C .30° D .35°二、填空题11.“x 的4倍与2的和是负数”用不等式表示为 . 12.已知是二元一次方程2x+ay=7的解,则a 的值为 .13.因式分解:4a 2﹣9= . 14.已知,4=+t s 则t t s 822+-= .15.已知三角形的两边分别为a 和b (a >b ),三角形的第三边x 的范围是 2<x <6,则ba = .16.若方程组⎩⎨⎧=++=+3313y x k y x 的解x ,y 满足01x y <+<,则k 的取值范围是 .17.若多项式()16322+-+x m x 能够用完全平方公式分解因式,则m 的值为 .18.一个正三角形和一副三角板(分别含30°和45°)摆放成如图所示的位置,且AB ∥CD .则∠1+∠2= .三、解答题 19.计算:(1)(﹣)﹣2+()0+(﹣5)3÷(﹣5)2; (2)(2xy 2)3﹣(5xy 2)(﹣xy 2)2.20.因式分解:(1)a 3﹣4a ; (2)x 3﹣2x 2y+xy 2.图(3)2BA DC21(第18题)21.解方程组:(1) (2).22.解不等式组,并在数轴上表示它的解集.(1) (2).23.先化简,再求值:()()()()()2122213---++-+x x x x x ,其中x =21.24.某电器经营业主计划购进一批同种型号的冷风扇和普通电风扇,若购进8台冷风扇和20台普通电风扇,需要资金17400元,若购进10台冷风扇和30台普通电风扇,需要资金22500元.求冷风扇和普通电风扇每台的采购价各是多少元?25.如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2=(),又因为∠1=∠2,所以∠1=∠3(),所以AB∥(),所以∠BAC+=180°(),因为∠BAC=80°,所以∠AGD= .26.已知:如图,在△ABC中,∠A=90°,点D、E分别在AB、AC上,DE∥BC,CF与DE的延长线垂直,垂足为F.(1)求证:∠B=∠ECF ;(2)若∠B=55°,求∠CED的度数.27.某公园门票的价格是每位20元,20人以上(含20人)的团体票8折优惠.(1)现有18位游客要进公园,如果他们买20人的团体票,那么比买普通票便宜多少钱?(2)当游客人数不足20人时,至少要有多少人去该公园,买团体票才比普通票更合算?参考答案一、选择题1.D2.A3.D4.C 5.C 6.B7.A 8.A 9.B10.B 二、填空题11.4x+2<0.12.﹣3.13.(2a+3)(2a﹣3).14.16;15.1616.-4<k<0 17.-1或7 18.75°三、解答题19.解:(1)原式=9+1﹣5=5;(2)原式=8x3y6﹣5x3y6=3x3y6.20解:(1)a3﹣4a,=a(a2﹣4),=a(a+2)(a﹣2);(2)x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.21.解:(1)由①得:y=3x﹣5③,把③代入②得:x=3,把x=3代入③得:y=4,则方程组的解为;(2)方程组整理得:,②×2﹣①×3得:y=1,把y=1代入①得:x=6,则方程组的解为.22.解:(1)去分母得:x+5﹣2<3x+2,移项得:x﹣3x<2+2﹣5,合并同类项得:﹣2x<﹣1,把x 的系数化为1得:x >;(2),解①得:x≥1, 解②得:x <3,不等式组的解集为:1≤x <3.23. 解:原式=332-+-x x x ()()122422+---+x x x=6x -9.当x =12时,6x -9=6×21-9=-6.24.解:设冷风扇和普通电风扇每台的采购价格分别为x 元和y 元,依题意得,,解得:.答:冷风扇和普通电风扇每台的采购价分别为1800元和150元. 25. 解:∵EF ∥AD ,∴∠2=∠3(两直线平行,同位角相等); 又∵∠1=∠2,∴∠1=∠3(等量代换),∴AB ∥DG (内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补), ∵∠BAC=80°, ∴∠AGD=100°.26.(8分)(本题解法不唯一,以下解答供参考)证明: (1)∵DE ∥BC∴∠B =∠ADE∵∠A =90°∴∠ADE +∠AED =90° ∵∠F =90°∴∠ECF +∠CEF =90°∵∠AED =∠CEF∴∠ADE =∠ECF∴∠B =∠ECF(2) 由(1)可知∠B =∠ECF =55°∴∠CED=∠F+∠ECF=90°+55°=145°27.解:(1)买普通票价钱为:20×18=360(元),买20人团体票价钱为:20×20×80%=320(元),360﹣320=40(元),答:18位游客买团体票比买普通票便宜40元;(2)设有x人去该公园,根据题意,得20x>20×80%×20,解得:x>16.答:至少17人,买团体票比买普通票便宜.。
2016年江苏省南京市秦淮区七年级下学期数学期末试卷与解析答案

2015-2016学年江苏省南京市秦淮区七年级(下)期末数学试卷一、选择题:每小题2分,共16分1.(2分)计算3﹣1的结果是()A.B.C.3 D.﹣32.(2分)下列运算结果正确的是()A.a2+a3=a5 B.a2•a3=a6 C.a3÷a2=a D.(a2)3=a53.(2分)某种感冒病毒的直径是0.00000012米,将0.00000012用科学记数法可表示为()A.12×10﹣8B.1.2×10﹣8C.1.2×10﹣7D.0.12×10﹣74.(2分)若a<b,则下列各式中不正确的是()A.a+3<b+3 B.a﹣3<b﹣3 C.﹣3a<﹣3b D.<5.(2分)如果一个三角形的两边长分别是1cm,2cm,那么这个三角形第三边长可能是()A.1cm B.2.5cm C.3cm D.4cm6.(2分)要判断命题“若a>b,则a2>b2”是假命题,可举得反例是()A.a=1,b=﹣2 B.a=1,b=0 C.a=2,b=1 D.a=2,b=﹣17.(2分)如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210° D.270°8.(2分)如图,方格中的点A,B称为格点(格线的交点),以AB为一边画△ABC,其中是直角三角形的格点C的个数为()A.3 B.4 C.5 D.6二、填空题:每小题2分,共20分9.(2分)计算:(﹣2xy2)2=.10.(2分)计算:(2x+1)(3x﹣1)=.11.(2分)已知是二元一次方程mx+2y=﹣4的解,则m的值是.12.(2分)不等式2x﹣3≤5的正整数解为.13.(2分)一个多边形的内角和等于1080°,这个多边形是边形.14.(2分)命题“直角三角形两锐角互余”的逆命题是:.15.(2分)如图,△ABC的角平分线AD交BD于点D,∠1=∠B,∠C=66°,则∠BAC的度数是.16.(2分)如图,将一张长方形纸片ABCD沿EF折叠后,点D,C分别落在D′,C′地位置,ED′的延长线与BC相交于点G,若∠EFG=68°,则∠1的度数是.17.(2分)若(a+b)2=7,(a﹣b)2=3,则a2+b2=.18.(2分)如果一个数表中某一列各数之和为负数,那么改变该列中所有数的符号,称之为一次“操作”,下表是由8个整数组成的数表,若经过一次“操作”后,使可使新的数表每行的各数之和与每列的各数之和均为非负数,则整数a的值为.a a2﹣1﹣a﹣a22﹣a1﹣a2a﹣2a2三、解答题19.(8分)因式分解(1)2a2b﹣4ab+2b(2)a2(x﹣y)+4b2(y﹣x)20.(6分)解方程组.21.(6分)解不等式组,并把它的解集在数轴上表示出来.22.(6分)2016年南京市“全民低碳出行,共创绿色南京”活动启动,下载手机APP“我的南京”,绿色出行将获得积分,积分可兑换卡片,兑换规则如图,某市民现有积分不超过650分,他兑换了“叶”和“树”卡片共6张,该市民最多兑换了几张“树”卡片?23.(5分)如图,方格纸中每个小正方形的边长为1cm,平移图中的△ABC,使点B移到点B1的位置.(1)利用方格和三角尺画图.①画出平移后的△A1B1C1;②画出AB边上的中线CD;③画出BC边上的高AH;(2)△A1B1C1的面积为cm2.24.(8分)如图①,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.(1)求证:CD⊥AB;(2)如图②,若∠BAC的平分线分别交BC,CD于点E,F,求证:∠AEC=∠CFE.25.(8分)(1)如图①,在边长为a的正方形纸片上剪去一个边长为b(b<a)的小正方形,通过不同的方法计算图中阴影部分的面积;方法①;方法②;由此可以验证的乘法公式是.(2)类似地,在边长为a的正方体上割去一个边长为b(b<a)的小正方体(如图②),通过不同的方法计算图中余下几个几何体的体积.方法①;方法②;由此可以得到的等式是,并证明这个等式.26.(8分)写出下列命题的已知、求证,并完成证明过程.命题:三角形三个内角的和等于180°.已知:如图,;求证:证明:.27.(9分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如表:速度y(公里/时)里程数s(公里)车费(元)小明60812小刚501016(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?2015-2016学年江苏省南京市秦淮区七年级(下)期末数学试卷参考答案与试题解析一、选择题:每小题2分,共16分1.(2分)计算3﹣1的结果是()A.B.C.3 D.﹣3【解答】解:原式=.故选A.2.(2分)下列运算结果正确的是()A.a2+a3=a5 B.a2•a3=a6 C.a3÷a2=a D.(a2)3=a5【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选:C.3.(2分)某种感冒病毒的直径是0.00000012米,将0.00000012用科学记数法可表示为()A.12×10﹣8B.1.2×10﹣8C.1.2×10﹣7D.0.12×10﹣7【解答】解:0.00000012=1.2×10﹣7.故选:C.4.(2分)若a<b,则下列各式中不正确的是()A.a+3<b+3 B.a﹣3<b﹣3 C.﹣3a<﹣3b D.<【解答】解:A、由a<b,得到a+3<b+3,正确;B、由a<b,得到a﹣3<b﹣3,正确;C、由a<b,得到﹣3a>﹣3b,不正确;D、由a<b,得到<,正确,故选:C.5.(2分)如果一个三角形的两边长分别是1cm,2cm,那么这个三角形第三边长可能是()A.1cm B.2.5cm C.3cm D.4cm【解答】解:设第三边长为x,则由三角形三边关系定理得2﹣1<x<2+1,即1<x<3.故选:B.6.(2分)要判断命题“若a>b,则a2>b2”是假命题,可举得反例是()A.a=1,b=﹣2 B.a=1,b=0 C.a=2,b=1 D.a=2,b=﹣1【解答】解:当a=1,b=﹣2时,满足a>b,而不满足a2>b2,所以a=1,b=﹣2可作为命题“若a>b,则a2>b2”是假命题的反例.而a=1,b=0或a=2,b=1或a=2,b=﹣1时,满足a2>b2,所以它们不能作为命题“若a>b,则a2>b2”是假命题的反例.故选:A.7.(2分)如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210° D.270°【解答】解:∵AB∥CD,∴∠B+∠C=180°,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故选:B.8.(2分)如图,方格中的点A,B称为格点(格线的交点),以AB为一边画△ABC,其中是直角三角形的格点C的个数为()A.3 B.4 C.5 D.6【解答】解:如图所示:以AB为一边画△ABC,其中是直角三角形的格点C共有4个,故选:B.二、填空题:每小题2分,共20分9.(2分)计算:(﹣2xy2)2=4x2y4.【解答】解::(﹣2xy2)2=(﹣2)2•x2•(y2)2=4x2y4.故答案为:4x2y4.10.(2分)计算:(2x+1)(3x﹣1)=6x2+x﹣1.【解答】解:原式=6x2﹣2x+3x﹣1=6x2+x﹣1,故答案为:6x2+x﹣111.(2分)已知是二元一次方程mx+2y=﹣4的解,则m的值是3.【解答】解:∵是二元一次方程mx+2y=﹣4的解,∴m×(﹣2)+2×1=﹣4,解得,m=3,故答案为:3.12.(2分)不等式2x﹣3≤5的正整数解为1,2,3,4.【解答】解:不等式的解集是x≤4,故不等式2x﹣3≤5的正整数解为1,2,3,4.故答案为:1,2,3,4.13.(2分)一个多边形的内角和等于1080°,这个多边形是8边形.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故答案为:8.14.(2分)命题“直角三角形两锐角互余”的逆命题是:如果三角形有两个角互余,那么这个三角形是直角三角形.【解答】解:因为“直角三角形两锐角互余”的题设是“三角形是直角三角形”,结论是“两个锐角互余”,所以逆命题是:“如果三角形有两个角互余,那么这个三角形是直角三角形”.故答案为:如果三角形有两个角互余,那么这个三角形是直角三角形.15.(2分)如图,△ABC的角平分线AD交BD于点D,∠1=∠B,∠C=66°,则∠BAC的度数是76°.【解答】解:∵△ABC的角平分线AD交BD于点D,∴∠CAD=∠1=∠BAC,∵∠1=∠B,∴∠ADC=∠1+∠B=2∠1,在△ABC中,∠B+2∠1+∠C=180°,∴3∠1=180°﹣∠C=114°,∴∠1=38°,∴∠BAC=2∠1=76°.故答案为76°16.(2分)如图,将一张长方形纸片ABCD沿EF折叠后,点D,C分别落在D′,C′地位置,ED′的延长线与BC相交于点G,若∠EFG=68°,则∠1的度数是136°.【解答】解:∵AD∥BC,∠EFG=68°,∴∠DEF=∠EFG=68°,由折叠的性质可得:∠FEG=∠DEF=68°,∴∠DEG=∠DEF+∠FEG=136°,∵AD∥BC,∴∠1=∠DEG=136°.故答案为:136°.17.(2分)若(a+b)2=7,(a﹣b)2=3,则a2+b2=5.【解答】解:已知等式整理得:(a+b)2=a2+b2+2ab=7①,(a﹣b)2=a2+b2﹣2ab=3②,①+②得:2(a2+b2)=10,则a2+b2=5,故答案为:518.(2分)如果一个数表中某一列各数之和为负数,那么改变该列中所有数的符号,称之为一次“操作”,下表是由8个整数组成的数表,若经过一次“操作”后,使可使新的数表每行的各数之和与每列的各数之和均为非负数,则整数a的值为1或2.a a2﹣1﹣a﹣a22﹣a1﹣a2a﹣2a2【解答】解:∵每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,则:如果操作第三列,a a2﹣1a﹣a22﹣a1﹣a22﹣a a2第一行之和为2a﹣1,第二行之和为5﹣2a,,解得:≤a≤,又∵a为整数,∴a=1或a=2.故答案为:1或2.三、解答题19.(8分)因式分解(1)2a2b﹣4ab+2b(2)a2(x﹣y)+4b2(y﹣x)【解答】解:(1)原式=2b(a2﹣2a+1)=2b(a﹣1)2;(2)原式=a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(a2﹣4b2)=(x﹣y)(a+2b)(a ﹣2b).20.(6分)解方程组.【解答】解:,①×2﹣②得:3x=﹣3,即x=﹣1,把x=﹣1代入②得:y=3,则方程组的解为.21.(6分)解不等式组,并把它的解集在数轴上表示出来.【解答】解:,由①得:x≤1;由②得:x>﹣1,∴不等式组的解集为﹣1<x≤1,22.(6分)2016年南京市“全民低碳出行,共创绿色南京”活动启动,下载手机APP“我的南京”,绿色出行将获得积分,积分可兑换卡片,兑换规则如图,某市民现有积分不超过650分,他兑换了“叶”和“树”卡片共6张,该市民最多兑换了几张“树”卡片?【解答】解:设有x张“树”,则“叶”有(6﹣x)张,根据题意得:50(6﹣x)+200x≤650,解得:x≤,则该市民最多兑换了2张“树”卡片.23.(5分)如图,方格纸中每个小正方形的边长为1cm,平移图中的△ABC,使点B移到点B1的位置.(1)利用方格和三角尺画图.①画出平移后的△A1B1C1;②画出AB边上的中线CD;③画出BC边上的高AH;(2)△A1B1C1的面积为8cm2.【解答】解:(1)、①、②、③、④如图所示;=×4×4=8.(2)S△A1B1C1故答案为:8.24.(8分)如图①,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.(1)求证:CD⊥AB;(2)如图②,若∠BAC的平分线分别交BC,CD于点E,F,求证:∠AEC=∠CFE.【解答】(1)证明:∵∠ACB=∠ACD+∠BCD=90°,∠B=∠ACD,∴∠B+∠BCD=90°,又∵∠CDB+∠B+∠BCD=180°,∴∠CDB=90°,∴CD⊥AB;(2)在△ACE中,∠AEC+∠CAE=90°,在△AFD中,∠FAD+∠AFD=90°,∵AE平分∠BAC,∴∠CAE=∠FAD,∴∠AEC=∠AFD,又∵∠CFE=∠AFD,∴∠AEC=∠CFE.25.(8分)(1)如图①,在边长为a的正方形纸片上剪去一个边长为b(b<a)的小正方形,通过不同的方法计算图中阴影部分的面积;方法①a2﹣b2;方法②a(a﹣b)+b(a﹣b);由此可以验证的乘法公式是(a+b)(a﹣b)=a2﹣b2.(2)类似地,在边长为a的正方体上割去一个边长为b(b<a)的小正方体(如图②),通过不同的方法计算图中余下几个几何体的体积.方法①a3﹣b3;方法②a2(a﹣b)+ab(a﹣b)+b2(a﹣b);由此可以得到的等式是a3﹣b3=(a﹣b)(a2+ab+b2),并证明这个等式.【解答】解:(1)①a2﹣b2;②a(a﹣b)+b(a﹣b);由此可以验证的乘法公式是(a+b)(a﹣b)=a2﹣b2;故答案为:①a2﹣b2;②a(a﹣b)+b(a﹣b);(a+b)(a﹣b)=a2﹣b2;(2)①a3﹣b3;②a2(a﹣b)+ab(a﹣b)+b2(a﹣b);由此可以验证的乘法公式是a3﹣b3=(a﹣b)(a2+ab+b2),证明:等式右边=(a﹣b)(a2+ab+b2)=a3+a2b+ab2﹣a2b+ab2﹣b3=a3﹣b3=左边,得证.故答案为:①a3﹣b3;②a2(a﹣b)+ab(a﹣b)+b2(a﹣b);a3﹣b3=(a﹣b)(a2+ab+b2)26.(8分)写出下列命题的已知、求证,并完成证明过程.命题:三角形三个内角的和等于180°.已知:如图,△ABC;求证:∠BAC+∠B+∠C=180°证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°.【解答】解:已知:△ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°.27.(9分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如表:速度y(公里/时)里程数s(公里)车费(元)小明60812小刚501016(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?【解答】解:(1)小明的里程数是8km,时间为8min;小刚的里程数为10km,时间为12min.由题意得,解得;(2)小华的里程数是11km,时间为12min.则总费用是:11p+12q=17(元).答:总费用是17元.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
2015-2016学年南京市旭东中学七年级(下)数学期末模拟测试卷(二)(含答案)

2015-2016学年南京市旭东中学七年级(下)数学期末模拟测试卷(二)班级姓名一、选择题1.下列判断不正确的是()A.若a>b,则﹣4a<﹣4b B.若2a>3a,则a<0C.若a>b,则ac2>bc2D.若ac2>bc2,则a>b2.设(5a+3b)2=(5a﹣3b)2+A,则A=()A. 30ab B. 15ab C. 60ab D. 12ab3.某校男子100m跑的记录是12s,在今年的校田径运动会上,小刚的100m跑成绩是t s,打破了该项记录,则下列不等式正确的是()A.t>12 B.t<12 C.t≥12D.t≤124.如图,AD是∠CAE的平分线,∠B=35°,∠DAC=60°,则∠ACD=()A.25° B.85° C.60° D.95°5.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=()A.60°B.120°C.150°D.180°6.若方程组的解满足x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>17.不等式组的最小整数解为()A.﹣1 B.0 C.1 D.28.如果的积中不含x项,则q等于()A .B .5C .D .﹣59. 某校春季运动会比赛中,七年级六班和七班的实力相当,关于比赛结果,甲同学说:六班与七班的得分比为4:3,乙同学说:六班比七班的得分2倍少40分,若设六班得x 分,七班得y 分,则根据题意可列方程组( )A .⎩⎨⎧-==40234y x y x B .⎩⎨⎧+==40234y x y x C .⎩⎨⎧+==40243y x y x D .⎩⎨⎧-==40243y x yx10. 若不等式组530x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( )A .53m ≤B .53m <C .53m >D .53m ≥二、填空题11.在(x+1)(2x 2﹣ax+1)的运算结果中x 2的系数是﹣6,那么a 的值是 . 12.从一个多边形的一个顶点出发,一共可作10条对角线,则这个多边形的内角和是度 . 13.已知是方程5x ﹣ky=7的一个解,则k= .14.已知a ,b ,c 为△ABC 的三边长,且a 2+b 2=4a+6b ﹣13,其中c 是△ABC 中最大的边长,且c 为整数,c= .15.如图,点B ,C ,E ,F 在一直线上,AB ∥DC ,DE ∥GF ,∠B=∠F=72°,则∠D= 度.16.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是 .17.在△ABC 中,若∠A=∠B=∠C ,则该三角形是 .18.已知关于x 的不等式组的整数解共有5个,则a 的取值范围是0321x a x -≥⎧⎨-≥-⎩_____________ . 三、解答题 19.计算(1)()121122π-⎛⎫---- ⎪⎝⎭(2)()()22x y x y +-20.因式分解(1)242a a -(2)42816x x -+21. 解下列方程组(不等式组):5225,(1)3415;x y x y +=⎧⎨+=⎩ (2)解不等式组()432,121.3x x x x -≤-⎧⎪⎨++>⎪⎩(并把解集在数轴上表示出来)22.若关于x y ,的方程组325233x y a x y a -=-⎧⎨+=+⎩的解为正数,求a 的取值范围.23.如图,AB∥EF∥CD,∠ABC=45°,∠CEF=155°,求∠BCE的度数.24.已知关于x、y的方程组的解是.(1)求(a+10b)2﹣(a﹣10b)2的值;(2)若△ABC中,∠A、∠B的对边长即为6a、7b的值,且这个三角形的周长大于12且小于18,求∠C对边AB的长度范围.25.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费。
苏科版南京栖霞区2016-2017第二学期七年级数学期末练习卷二

2016-2017学年度第二学期七年级数学期末练习卷二(满分:100分 考试时间:100分钟)一、 选择题(本大题共8小题,每小题2分,共16分.) 1.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .a 3÷a 2=aD .(a 3 ) 2=a 9 2.若a <b ,则下列不等式中,一定正确的是( )A . a +2>b +2B .-a <-bC .a -2<b +2D .a 2<ab 3.如果a =(-2) -2,b =(-2)2,c =(-2)0,那么a 、b 、c 三数的大小关系为( ) 4.下列各式能用平方差公式计算的是( ) A .(-a +b ) (a -b ) B .(a +b ) (a -2b ) C .(a +b ) (-a -b ) D .(-a -b ) (-a +b )5.下列命题中,真命题的有 ( ) (1)内错角相等; (2)锐角三角形中任意两个内角的和一定大于第三个内角; (3)相等的角是对顶角; (4)平行于同一直线的两条直线平行.6.若某n 边形的每个内角都比其外角大120°,则n 等于( )7.如图,给出下列条件:①∠1=∠2; ②∠3=∠4;③AD ∥BE ,且∠D =∠B ;④AD ∥BE ,∠DCE =∠D ;其中能推出AB ∥DC 的条件为( ) 8. 关于x 的不等式2x -a ≥1.若x =2是不等式的解,x =-1不是不等式的解,则a 的范围为( ) 二、填空题(本大题共10小题,每小题2分,共20分.) 9.计算: 30+ (13)-2= .10.不等式-2x +1 ≤ 3的解集是 .11.命题“同旁内角互补,两直线平行”的逆命题是 . 12. 某种感冒病毒的直径是0. 000 000 12米,用科学记数法表示为 米.13. 若⎩⎨⎧x =2,y =1,是关于x 、y 的二元一次方程kx -y =k 的解,则k 的值为 .14. 已知a -b =2 ,a +b =3.则a 2+b 2= . 15. 关于x 的方程﹣2x +5=a 的解小于3,则a 的范围 .16. 如图,a ∥b ,将30°的直角三角板的30°与60°的内角顶点分别放在直线a 、b 上,若∠1+∠2=110°,则∠1= °.17. 如图,∠A =32°,则∠B +∠C +∠D +∠E = °.A . c >a >bB .b >c >aC .a >c >bD . a >b >c A .(1)(2) B .(2)(3) C .(2)(4) D .(3)(4) A .6B .10C .12D .15A . ①②B .②③C . ③④D .②③④A . a ≤3B .-3<a ≤3C . -3≤a <3D .-3 <a <3 (第7题)(第17题)(第16题)21 abA CDE B18. 若不等式组⎩⎨⎧≥-≤02x ax 有3个整数解,则a 的范围为 .三、解答题(本大题共10小题,共64分.)19.(8分)因式分解:(1)a 3-a ; (2)m 3-2m 2+m .20. (5分)先化简,再求值:(x -1)2 -2(x +1)(x -1),其中x =-1.21. (5分)解方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5.22.(6分)解不等式组 ⎩⎪⎨⎪⎧2-x >0,5x +12+1≥2x -13,并把解集在数轴上表示出来.23.(6分) 运输两批救灾物资,第一批360t ,用6节火车车皮和15辆汽车正好装完;第二批440t , 用8节火车车皮和10辆汽车正好装完。
南京市七年级数学下册期末测试卷及答案

南京市七年级数学下册期末测试卷及答案一、选择题1.12-等于( )A .2-B .12C .1D .12- 2.若(x+2)(2x-n)=2x 2+mx-2,则( )A .m=3,n=1;B .m=5,n=1;C .m=3,n=-1;D .m=5,n=-1; 3.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( ) A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 4.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1-5.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩ 6.下列计算中,正确的是( )A .(a 2)3=a 5B .a 8÷ a 2=a 4C .(2a )3=6a 3D .a 2+ a 2=2 a 2 7.下列运算正确的是( ) A .a 2+a 2=a 4B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 2 8.下列各式从左到右的变形,是因式分解的是( )A .a 2-5=(a+2)(a-2)-1B .(x+2)(x-2)=x 2-4C .x 2+8x+16=(x+4)2D .a 2+4=(a+2)2-4 9.下列计算不正确的是( )A .527a a a =B .623a a a ÷=C .2222a a a +=D .(a 2)4=a 8 10.下列说法:2a -没有算术平方根;若一个数的平方根等于它本身,则这个数是0或1;有理数和数轴上的点一一对应;负数没有立方根,其中正确的是( )A .0个B .1个C .2个D .3个二、填空题11.已知5m a =,3n a =,则2m n a -的值是_________.12.某球形流感病毒的直径约为0.000000085m ,0.000000085用科学记数法表为_____.13.已知方程组,则x+y=_____.14.如图,把△ABC 沿线段DE 折叠,使点A 落在点F 处,BC ∥DE ,若∠B =50°,则∠BDF=_______°.15.计算(﹣2xy )2的结果是_____.16.已知()223420x y x y -+--=,则x=__________,y=__________.17.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .18.一个n 边形的内角和是它外角和的6倍,则n =_______.19.已知关于x ,y 的方程22146m n m n xy --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限. 20.比较大小:π0_____2﹣1.(填“>”“<”或“=”)三、解答题21.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案)(2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=∠,13BEH BEM ∠=∠,设∠EMF =α,求∠H 的度数(用含α的代数式表示).22.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A 型放大镜?23.已知a 6=2b =84,且a <0,求|a ﹣b|的值.24.如图1,在△ABC 的AB 边的异侧作△ABD ,并使∠C =∠D ,点E 在射线CA 上. (1)如图,若AC ∥BD ,求证:AD ∥BC ;(2)若BD ⊥BC ,试解决下面两个问题:①如图2,∠DAE=20°,求∠C的度数;②如图3,若∠BAC=∠BAD,过点B作BF∥AD交射线CA于点F,当∠EFB=7∠DBF时,求∠BAD的度数.25.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.(1)求这个多边形是几边形;(2)求这个多边形的每一个内角的度数.26.阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×12)100=,2100×(12)100=;(2)通过上述验证,归纳得出:(a•b)n=;(abc)n=.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.27.定义:对于任何数a,符号[]a表示不大于a的最大整数.(1)103⎡⎤-=⎢⎥⎣⎦(2)如果2333x-⎡⎤=-⎢⎥⎣⎦,求满足条件的所有整数x。
南京市七年级数学下册期末测试卷及答案

16.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.
17.若满足方程组 的x与y互为相反数,则m的值为_____.
18.在平面直角坐标系中,将点 先向上平移 个单位长度,再向左平移 个单位长度后,得到点 ,则点 的坐标为_______.
28.在平面直角坐标系中,点 、 的坐标分别为 , ,其中 , 满足 .将点 向右平移 个单位长度得到点 ,如图所示.
(1)求点 , , 的坐标;
(2)动点 从点 出发,沿着线段 、线段 以 个单位长度/秒的速度运动,同时点 从点 出发沿着线段 以 个单位长度秒的速度运动,设运动时间为 秒 .当 时,求 的取值范围;是否存在一段时间,使得 ?若存在,求出 的取值范围;若不存在,说明理由.
南京市七年级数学下册期末测试卷及答案
一、选择题
1.如图所示,直线a,b被直线c所截,则 与 是( )
A.同位角B.内错角C.同旁内角D.对顶角
2.已知一粒米的质量是0.00021kg,这个数用科学记数法表示为()
A. kgB. kgC. kgD. kg
3. 分解因式时,应提取的公因式是
A.3xyB. C. D.
(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.
22.解不等式(组)
(1)解不等式 ,并把解集在数轴上表示出来.
(2)解不等式 ,并写出它的所有整数解.
4.下列图形中,不能通过其中一个四边形平移得到的是()
2016-2017学年第二学期七年级期末数学模拟试卷(二)及答案
2016-2017学年第二学期七年级期末数学模拟试卷二本次考试范围:苏科版七下全部内容,八年级数学上册《全等三角形》;考试题型:选择、填空、解答三大类;考试时间:120分钟;考试分值:130分。
一、选择题(每小题3分,共30分)1.下列运算中,正确的是 ( ) A .a 2+a 2=2a 4 B .a 2•a 3=a 6 C .(-3x )2÷3x =3x D .(-ab 2)2=-a 2b 42.现有4根小木棒的长度分别为2cm ,3cm ,4cm 和5cm .用其中3根搭三角形,可以搭出不同三角形的个数是 ( ) A .1个 B .2个 C .3个 D .4个 3.如下图,下列判断正确的是 ( )A .若∠1=∠2,则AD ∥BCB .若∠1=∠2.则AB ∥CDC .若∠A =∠3,则 AD ∥BC D .若∠A +∠ADC =180°,则AD ∥BC4.如果a > b ,那么下列不等式的变形中,正确的是 ( ) A .a -1<b -1 B .2a <2b C .a -b <0 D .-a +2<-b +2 5.若5x 3m-2n-2y n -m +11=0是二元一次方程,则 ( )A .m =3,n =4B .m =2,n =1C .m =-1,n =2D .m =1,n =26.已知方程组⎩⎨⎧3x +5y = k +8,3x +y =-2k .的解满足x + y = 2 ,则k 的值为 ( )A .-4B .4C .-2D .27.若不等式组⎩⎨⎧3x +a <0,2x + 7>4x -1.的解集为x <4,则a 的取值范围为 ( )A .a <-12B .a ≤-12C .a >-12D .a ≥-12 8.四个同学对问题“若方程组 111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组 111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是 ( ) A⎩⎨⎧==84y x ; B ⎩⎨⎧==129y x ; C ⎩⎨⎧==2015y x ; D ⎩⎨⎧==105y x9. 如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90° 10. 如图,在△ABC 中,∠CAB =65°.将△ABC 在平面内绕点A 旋转到△AB C ''的位置,使得CC '∥AB ,则旋转角的度数为( ) A .35° ; B .40° ; C .50° ; D .65° 二、填空题(每空3分,共24分) 11.计算:3x 3·(-2x 2y ) = . 12.分解因式:4m 2-n 2 = .第3题图第9题图ABCB ′C ′第10题图13.已知一粒米的质量是0.000021千克,0.000021用科学记数法表示为 __ .14.若⎩⎨⎧x = 2,y = 1.是方程组⎩⎨⎧2ax +y = 5,x + 2y = b .的解,则ab = .15.二元一次方程3x +2y =15共有_______组正整数解....16.关于x 的不等式(a +1)x>(a +1)的解集为x <1,则a 的范围为 .17.如图,已知Rt △ABC 中∠A =90°,AB =3,AC =4.将其沿边AB 向右平移2个单位得到△FGE ,则四边形ACEG 的面积为 .18.某数学兴趣小组开展了一次活动,过程如下:设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线A B 、AC 之间,并使小棒两端分别落在两射线上,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1. (1)如图1,若已经向右摆放了3根小棒,且恰好有∠A 4A 3A =90°,则θ= . (2)如图2,若只能..摆放5根小棒,则θ的范围是 . 三、解答题(共11题,计76分)19.(本题满分6分)计算:(1)(-m )2·(m 2)2÷m 3; (2)(x -3)2-(x +2)(x -2).20.(本题满分6分)分解因式:(1)x 3-4xy 2; (2) 2m 2-12m +18.21.(本题满分6分)(1)解不等式621123x x ++-<; (2)解不等式组()523215122x x x x⎧-<-⎪⎨-<-⎪⎩22.(本题满分6分)已知长方形的长为a ,宽为b ,周长为16,两边的平方和为14.①求此长方形的面积; ②求ab 3+2a 2b 2+a 3b 的值.23.(本题满分6分)在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13. (1)求a 、b 的值;θA 4A 3A 2AA 1BCθA 6A 5A 4A 3A 2AA 1BC图1图2A B CEF G第16题图第18题图(2)当-1<x <2,求y 的取值范围.24. (本题满分6分)如图2,∠A =50°,∠BDC =70°,DE ∥BC ,交AB 于点E , BD 是△ABC 的角平分线.求∠DEB 的度数.25. (本题满分6分)已知,如图,AC 和BD 相交于点O ,OA=OC ,OB=OD ,求证:AB ∥CD .26.(本题8分) 某公司准备把240吨白砂糖运往A 、B 两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:载重量 运往A 地的费用 运往B 地的费用 大车 15吨/辆 630元/辆 750元/辆 小车10吨/辆420元/辆550元/辆(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A 地,其中大车有m 辆,其余货车前往B 地,且运往A 地的白砂糖不少于115吨.①求m 的取值范围;②请设计出总运费最少的货车调配方案,并求最少总运费.27.(8分)(1)如图①,在凹四边形ABCD 中,∠BDC =135°,∠B =∠C =30°,则∠A = °;(2)如图②,在凹四边形ABCD 中,∠ABD 与∠ACD 的角平分线交于点E ,∠A =60°,∠BDC =140°,则∠E = °;(3)如图③,∠ABD ,∠BAC 的平分线交于点E ,∠C =40°,∠BDC =150°,求∠AEB 的度数;(4)如图④,∠BAC ,∠DBC 的角平分线交于点E ,则∠B ,∠C 与∠E 之间有怎样的数量关系 。
江苏省南京市玄武区2016-2017学年七年级第二学期数学期末试卷
江苏省南京市玄武区2016-2017学年七年级第二学期数学期末试卷共需240元钱,购买甲2件、乙3件、丙4件,共需430元钱.则甲、乙、丙三种商品的单价分别为A.45元、60元、75元B.60元、45元、75元C.75元、60元、45元D.45元、75元、60元8.下列计算正确的是A.(x2+3x-4)×(x-2)=x3-8B.(x2-3x+4)×(x+2)=x3+8C.(x2-4)÷(x+2)=x2-4x+8D.(x2+4)÷(x-2)=x2+2x+82016-2017学年第二学期期末调研试卷七年级数学注意事项:1.本试卷共6页,全卷满分100分,考试时间为100分钟。
考生答题必须全部答在答题卡上,答在本试卷上无效。
2.请认真核对监考教师在答题卡上所粘贴的条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上。
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其他答案。
答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效。
作图必须用2B铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共8小题,每小题2分,共16分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.据报道,自2017年5月5日印度电影《摔跤吧,爸爸》在中国内地上映以来,累计票房已达12.8亿人民币,用科学记数法表示12.8亿元是A。
0.128×10^10元B。
1.28×10^9元C。
12.8×10^8元D。
128×10^7元2.下列运算正确的是A。
a^6÷a^3=a^2B。
(-2ab^2)^2=4ab^4C。
(a-2)^2=a^2-4D。
(a-3)(a+2)=a^2-a-63.已知a,b,c都是实数,且a<b,则下列不等关系中一定正确的是A。
南京市七年级下册数学期末试卷(带答案)-百度文库
南京市七年级下册数学期末试卷(带答案)-百度文库一、选择题1.12-等于( )A .2-B .12C .1D .12- 2.以下列各组数据为边长,可以构成等腰三角形的是( )A .1cm 、2cm 、3cmB .3cm 、 3cm 、 4cmC .1cm 、3cm 、1cmD .2cm 、 2cm 、 4cm3.如图所示图形中,把△ABC 平移后能得到△DEF 的是( )A .B .C .D . 4.把多项式228x -分解因式,结果正确的是( )A .22(8)x -B .22(2)x -C .D .42()x x x- 5.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80° 6.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1-7.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150° 8.计算a •a 2的结果是( )A .aB .a 2C .a 3D .a 4 9.下列各式中,能用平方差公式计算的是( )A .(p +q )(p +q )B .(p ﹣q )(p ﹣q )C .(p +q )(p ﹣q )D .(p +q )(﹣p ﹣q )10.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( ) A .10m -<≤ B .10m -≤< C .01m ≤< D .01m <≤二、填空题11.若a m =5,a n =3,则a m +n =_____________.12.分解因式:29a -=__________.13.a m =2,b m =3,则(ab )m =______.14.若29x kx -+是完全平方式,则k =_____.15.科学家发现2019nCoV -冠状肺炎病毒颗粒平均直径约为0.00000012m ,数据0.00000012用科学记数法表示_______.16.已知23x y +=,用含x 的代数式表示y =________.17.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________.18.若等式0(2)1x -=成立,则x 的取值范围是_________. 19.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为_____. 20.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.三、解答题21.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0.22.已知a+b=2,ab=-1,求下面代数式的值:(1)a 2+b 2;(2)(a-b )2.23.已知关于x ,y 的二元一次方程组533221x y n x y n +=⎧⎨-=+⎩的解适合方程x +y =6,求n 的值.24.如图,已知:点A C 、、B 不在同一条直线,AD BE . (1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;、交于点P,(3)如图③,在(2)的前提下,且有AC QB,直线AQ BC⊥,请直接写出::QP PB∠∠∠=______________.DAC ACB CBE25.某公司有A、B两种型号的商品需运出,这两种商品的体积和质量如表所示:体积(m3/件)质量(吨/件)A两种型号0.80.5B两种型号21(1)已知一批商品有A、B两种型号,体积一共是20m3,质量一共是10.5吨,求A、B两种型号商品各有几件;(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:按车收费:每辆车运输货物到目的地收费900元;按吨收费:每吨货物运输到目的地收费300元.要将(1)中的商品一次或分批运输到目的地,该公司应如何选择运送方式,使所付运费最少,并求出该方式下的运费是多少元.26.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.27.解不等式-3+3+121-3-18-x x x x ⎧≥⎪⎨⎪<⎩()28.定义:若实数x ,y 满足22x y t =+,22y x t =+,且x ≠y ,则称点M (x ,y )为“好点”.例如,点(0,-2)和 (-2,0)是“好点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(-3,1)两点中,点________________是“好点”.(2)若点P (m ,n )是“好点”,求m +n 的值.(3)若点P 是“好点”,用含t 的代数式表示mn ,并求t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由题意直接根据负指数幂的运算法则进行分析计算即可.【详解】解: 12-=12. 故选:B.【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.2.B解析:B【分析】先判断三边长是否能构成三角形,再判断是否是等腰三角形.【详解】上述选项中,A 、C 、D 不能构成三角形,错误B 中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确故选:B .【点睛】本题考查的等腰三角形的性质和三角形三边长的关系,注意在判断等腰三角形的时候,一定要先满足三边长能构成三角形.3.A解析:A【分析】根据平移的概念判断即可,注意区分图形的平移和旋转.【详解】根据平移的概念,平移后的图形与原来的图形完全重合.A是通过平移得到;B通过旋转得到;C通过旋转加平移得到;D通过旋转得到.故选A【点睛】本题主要考查图形的平移,特别要注意区分图形的旋转和平移.4.C解析:C【解析】试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=2(2x-4)=2(x+2)(x-2).考点:因式分解.5.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA,CD交于点E.∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC为等腰直角三角形∴∠E=45°∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD互为对顶角∴∠2=∠EAD =70°故选:B.【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.6.D解析:D【分析】利用完全平方公式的特征判断即可得到结果.【详解】解:()22316x m x --+是一个完全平方式, ∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8解得:m =-1或7故选:D【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.8.C解析:C【分析】根据同底数幂的乘法法则计算即可.【详解】解:a •a 2=a 1+2=a 3.故选:C .【点睛】本题考查了幂的运算性质,准确应用同底数幂的乘法是解题的关键.9.C解析:C【分析】利用完全平方公式和平方差公式对各选项进行判断.【详解】(p +q )(p +q )=(p +q )2=p 2+2pq +q 2;(p ﹣q )(p ﹣q )=(p ﹣q )2=p 2﹣2pq +q 2;(p +q )(p ﹣q )=p 2﹣q 2;(p +q )(﹣p ﹣q )=﹣(p +q )2=﹣p 2﹣2pq ﹣q 2.故选:C .【点睛】本题考查了完全平方公式和平方差公式,熟练掌握公式的结构及其运用是解答的关键.10.C解析:C【分析】首先解不等式组求得不等式组的解集,然后根据不等式组有三个整数解,即可确定整数解,然后得到关于m 的不等式,求得m 的范围.【详解】解:0233(2)x m x x ->⎧⎨-≥-⎩①② 解不等式①,得x>m.解不等式②,得x ≤3.∴不等式组得解集为m<x ≤3.∵不等式组有三个整数解,∴01m ≤<.故选C.【点睛】本题考查了不等式组的整数解,解不等式组应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题11.15【分析】根据幂的运算公式即可求解.【详解】∵am=5,an=3,∴am+n= am×an=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运解析:15【分析】根据幂的运算公式即可求解.【详解】∵a m =5,a n =3,∴a m +n = a m ×a n =5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运算.12.【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点解析:()()33a a +-【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a 2-32,符合平方差公式的特点,再利用平方差公式分解因式.a 2-9=a 2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.13.6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为am=2,bm=3,所以(ab )m=am•bm=2×3=6,故答案为:6.【点睛】此题考查积解析:6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为a m =2,b m =3,所以(ab )m =a m •b m =2×3=6,故答案为:6.【点睛】此题考查积的乘方,关键是根据积的乘方运算法则将未知转化为已知.14.【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .【详解】解:∵是完全平方式,即.故答案为:.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式解析:6±【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .【详解】解:∵29x kx -+是完全平方式,即()2293x kx x -+=± 236k ∴=±⨯=±.故答案为:6±.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键15.【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是解析:71.210-⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:0.00000012=71.210-⨯故答案为:71.210-⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.16.y=3-2x【解析】移项得:y=3-2x.故答案是:y=3-2x .解析:y=3-2x【解析】23x y+=移项得:y=3-2x.故答案是:y=3-2x.17.【分析】已知是方程组的解,将代入到方程组中可求得a,b的值,即可得到关于x,y 的方程组,利用加减消元法解方程即可.【详解】∵是方程组的解∴∴a=5,b=1将a=5,b=1代入得①×解析:91 xy=⎧⎨=⎩【分析】已知71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解,将71xy=⎧⎨=⎩代入到方程组316215x ayx by-=⎧⎨+=⎩中可求得a,b的值,即可得到关于x,y的方程组()32162(2)15x y ayx y by⎧--=⎨-+=⎩,利用加减消元法解方程即可.【详解】∵71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解∴2116 1415ab-=⎧⎨+=⎩∴a=5,b=1将a=5,b=1代入()3216 2(2)15x y ayx y by⎧--=⎨-+=⎩得31116 2315x yx y-=⎧⎨-=⎩①②①×2,得6x-22y=32③②×3,得6x-9y=45④④-③,得13y=13解得y=1将y=1代入①,得3x=27解得x=9∴方程组的解为91x y =⎧⎨=⎩故答案为:91x y =⎧⎨=⎩【点睛】本题考查了方程组的解的概念,已知一组解是方程组的解,那么这组解满足方程组中每个方程,同时也考查了利用加减消元法解方程组,解题的关键是如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等.18.【分析】根据非0数的0次幂等于1列出关于的不等式,求出的取值范围即可.【详解】解:成立,,解得.故答案为:.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义 解析:2x ≠【分析】根据非0数的0次幂等于1列出关于x 的不等式,求出x 的取值范围即可.【详解】解:0(2)1x -=成立,20x ∴-≠,解得2x ≠.故答案为:2x ≠.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义.19.【分析】把m 看做已知数表示出x 与y ,代入x+y =0计算即可求出m 的值.【详解】解:,①+②得:5x =3m+2,解得:x =,把x =代入①得:y =,由x 与y 互为相反数,得到=0,去分母解析:【分析】把m 看做已知数表示出x 与y ,代入x +y =0计算即可求出m 的值.【详解】解:33221x y m x y m +=+⎧⎨-=-⎩①②, ①+②得:5x =3m +2, 解得:x =325m +, 把x =325m +代入①得:y =945m -, 由x 与y 互为相反数,得到3294+55m m +-=0, 去分母得:3m +2+9﹣4m =0,解得:m =11,故答案为:11【点睛】 此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.20.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-.()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键. 三、解答题21.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.22.(1)6;(2)8.【分析】(1)先将原式转化为(a+b )2-2ab ,再将已知代入计算可得;(2)先将原式转化为(a+b )2-4ab ,再将已知代入计算计算可得.【详解】解:(1)当a+b=2,ab=-1时,原式=(a+b )2-2ab=22-2×(-1)=4+2=6;(2)当a+b=2,ab=-1时,原式=(a+b )2-4ab=22-4×(-1)=4+4=8.【点睛】本题主要考查完全平方公式的变形求值问题,解题的关键是熟练掌握完全平方公式及其灵活变形.23.116【分析】方程组消去n 后,与已知方程联立求出x 与y 的值,即可确定出n 的值.【详解】解:方程组消去n 得,-7x-8y=1,联立得:7816x y x y --=⎧⎨+=⎩ 解得4943x y =⎧⎨=-⎩把x=49,y=-43代入方程组,解得n=116.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.24.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【分析】(1)过点C 作CF AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.【详解】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒(2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.25.(1)A 种商品有5件,B 种商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为3000元【分析】(1)设A、B两种型号商品各有x件和y件,根据体积一共是20m3,质量一共是10.5吨列出方程组再解即可;(2)分别计算出①按车收费的费用,②按吨收费的费用,③两种方式混合用的花费,进而可得答案.【详解】解:(1)设A、B两种型号商品各有x件和y件,由题意得,0.8220 0.510.5x yx y+=⎧⎨+=⎩,解得:58 xy=⎧⎨=⎩,答:A、B两种型号商品各有5件、8件;(2)①按车收费:10.5÷3.5=3(辆),但车辆的容积为:6×3=18<20,所以3辆车不够,需要4辆车,此时运费为:4×900=3600元;②按吨收费:300×10.5=3150元,③先用3辆车运送A商品5件,B商品7件,共18m3,按车付费3×900=2700(元).剩余1件B型产品,再运送,按吨付费300×1=300(元).共需付2700+300=3000(元).∵3000<3150<3600,∴先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.答:先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.【点睛】本题考查二元一次方程组的应用,关键是正确理解题意,找出题中的等量关系.26.(1)①40°;②30°;(2)50°,130°,10°【解析】试题分析:(1)①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE=12∠ABC=40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD=180°-∠ACB=140°,根据角平分线的定义得到∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,根据三角形的外角的性质即可得到结论;(2)①如图1,当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.试题解析:(1)①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=12∠ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°-∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,∴∠BEC=∠ECD-∠CBE=30°;(2)①如图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-40°-40°-90°=10°.【点睛】本题考查了平行线的性质,角平分线的定义,垂直的定义,三角形的内角和,三角形的外角的性质,正确的画出图形是解题的关键.27.﹣2<x≤1.【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可.试题解析:331(1)213(1)8(2) xxx x-⎧++⎪⎨⎪--<-⎩,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.28.(1)2P ;(2)2-;(3)3t >【分析】(1)将P 1(3,1)和P 2(-3,1)分别代入等式即可得出结果;(2)将点P (m ,n )代入等式即可得出m+n 的值;(3)根据“好点”的定义,将P 点代入即可得到关于m 和n 的等式,将两个等式结合即可得出结果.【详解】解:(1)对于1(3,1)P ,2321,7t t =⨯+=,2123,5t t =⨯+=-对于2(3,1)P -,2(3)21,7t t -=⨯+=,212(3),7t t =⨯-+=,所以2P 是“好点” (2)∵点(,)P m n 是好点,∴222,2m n t n m t =+=+, 222()m n n m -=-,∴2m n +=-(3)∵222,2m n t n m t =+=+,2222m n n t m t -=+--①,2222m n m t n t +=+++②,得()()2()0m n m n m n -++-=,即()(2)0m n m n -++=,由题知,,2m n m n ≠∴+=-,由②得2()22()2m n mn m n t +-=++,∴4242,4mn t mn t -=-+=-,∵m n ≠,∴2()0m n ->,∴2()40m n mn +->,∴44(4)0t -->,所以3t >,【点睛】本题主要考查的是新定义“好点”,正确的掌握整式的乘法解题的关键.。
2016学年江苏省南京外国语学校七年级下学期数学期末试卷带答案
2015-2016学年江苏省南京外国语学校七年级(下)期末数学试卷一、选择题(本题共8小题,每小题2分,共16分)1.(2分)已知a<b,c是有理数,下列各式中正确的是()A.ac2<bc2 B.c﹣a<c﹣b C.a﹣3c<b﹣3c D.2.(2分)下列计算正确的是()A.2(a﹣1)=2a﹣1 B.(﹣a﹣b)2=a2﹣2ab+b2C.(a+1)2=a2+1 D.(a+b)(b﹣a)=b2﹣a23.(2分)如图,在四边形ABCD中,要得到AB∥CD,只需要添加一个条件,这个条件可以是()A.∠1=∠3 B.∠2=∠4C.∠B=∠D D.∠1+∠2+∠B=180°4.(2分)下列命题:(1)如果AC=BC,那么点C是线段AB的中点;(2)不相等的两个角一定不是对顶角;(3)直角三角形的两个锐角互余;(4)同位角相等;(5)两点之间直线最短.其中真命题的个数有()A.1个 B.2个 C.3个 D.4个5.(2分)某种衬衫的进价为400元,出售时标价为550元,由于换季,商店准备打折销售,但要保持利润不低于10%,那么至多打()A.6折 B.7折 C.8折 D.9折6.(2分)在一个n(n>3)边形的n个外角中,钝角最多有()A.2个 B.3个 C.4个 D.5个7.(2分)关于x,y的方程组的解是方程3x+2y=10的解,那么a的值为()A.﹣2 B.2 C.﹣1 D.18.(2分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题(本题共10小题,每小题2分,共20分)9.(2分)直接写出计算结果:(﹣2)﹣2=;(﹣3xy2)3=.10.(2分)直接写出因式分解的结果:4a2﹣2ab=;x2+10x+25=.11.(2分)肥皂泡的泡壁厚度大约是0.0007mm,0.0007mm用科学记数法表示为m.12.(2分)把命题“平行于同一直线的两直线平行”改写成“如果…,那么…”的形式:.13.(2分)已知(a+b)2=8,(a﹣b)2=5,则a2+b2=,ab=.14.(2分)一个等腰三角形的边长分别是4cm和7cm,则它的周长是.15.(2分)若3x=2,9y=7,则33x﹣2y的值为.16.(2分)若(2x﹣3)x+5=1,则x的值为.17.(2分)若不等式组的整数解有5个,则m的取值范围是.18.(2分)我们都知道“三角形的一个外角等于与它不相邻的两个内角的和”,据此,请你叙述四边形的一个外角与它不相邻的三个内角的数量关系.三、解答题(本题共9小题,共64分)19.(9分)因式分解:(1)4x2﹣64(2)81a4﹣72a2b2+16b4(3)(x2﹣2x)2﹣2(x2﹣2x)﹣3.20.(9分)计算:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年南京市七年级(下)数学期末模拟测试卷班级 姓名 一、填空题1.下列计算正确的是( )A .a 2•a 3=a 6B .a 6÷a 3=a 2C .(a 2)3=a 6D .(2a )3=6a 32.若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是( )A .5B .7C .9D .103.下列等式由左边到右边的变形中,属于因式分解的是 ( )A .1)1)(1(2-=-+a a aB .22)3(96-=+-a a aC .1)2(122++=++x x x xD .y x y x y x 222343618∙-=-4.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =35°,则∠BED 的度数是 ( ) A .70° B .68° C . 60° D .72°5.以下说法:①“画线段AB=CD ”是命题;②定理是真命题;③原命题是真命题,则逆命题是假命题;④要证明一个命题是假命题,只要举一个反例,即举一个具备命题的条件,而不具备命题结论的命题即可,以上说法正确的个数为( ) A .1个 B .2个 C .3个 D .4个 6.如图,有以下四个条件:①∠B +∠BCD =180°,②∠1=∠2,③∠3=∠4,④∠B =∠5.其中能判定AB ∥CD 的条件的个数有 ( ) A .1 B .2 C .3 D .47. 如果0)2014(-=a 、1)101(--=b 、2)35(-=c ,那么其大小关系为 ( ) A .c b a >> B .b c a >> C .a b c >> D .b a c >>8.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是 ( ) A .80° B .100° C .108° D .110° 9.如果的积中不含x 项,则q 等于( ) A .B .5C .D .﹣510.如图,∠AOB=30°,点P 是∠AOB 内的一个定点,OP=20cm ,点C 、D 分别是OA 、OB 上的动点,连结CP 、DP 、CD ,则△CPD 周长的最小值为()第4题 第8题A .10cmB .15cmC .20cmD .40cm二、填空题:11.下列现象:①升国旗;②荡秋千;③手拉抽屉,属于平移的是 (填序号) 12.某种细胞可以近似地看成球体,它的半径是0.000005m .0.000005用科学记数法表示为 .13.如图,在△ABC 中,AB=BC ,∠B=120°,AB 的垂直平分线交AC 于点D .若AC=6cm ,则AD= cm .14.若x 2﹣4x+b=(x ﹣2)(x ﹣a ),则a ﹣b 的值是 .15. 如图,BC⊥ED 于O ,∠A=45°,∠D=20°,则∠B=________°.16.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=23度,那么∠2=度.17.已知关于x 的不等式m x 2只有2个正整数解,则m 的取值范围是 . 18.如图,△ABC 中,∠A =35°,沿BE 将此三角形对折,又沿BA' 再一次对折,点C 落在BE 上的C'处,此时∠C'DB =85°,则原三角形的∠ABC 的度数为 . 19.如图,A 、B 、C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积 .第15题 第16题 第18题20.已知AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿AD 所在直线对折,点C 落在点E 的位置(如图),则∠EBC 等于 度.三、解答题 21.计算(1)(2)(x+2)2﹣(x+1)(x ﹣1)+(2x ﹣1)(x ﹣2)22.因式分解:(1)x 2(x ﹣y )+(y ﹣x ); (2)2a 3﹣8a .23. 解方程组:(1) ⎩⎨⎧=-=+3252y x y x (2) ⎩⎨⎧=--=-01083572y x y x24. (1)解不等式:7)1(68)2(5+-<+-x x ;(2)若(1)中的不等式的最小整数解是方程32=-ax x 的解,求a 的值.25.解不等式组()432,121.3x x x x -≤-⎧⎪⎨++>⎪⎩,并把解集在数轴上表示出来.26.如图,在ABC ∆中,C B ∠>∠,BC AD ⊥,垂足为D ,AE 平分BAC ∠. (1)已知 60=∠B , 30=∠C ,求DAE ∠的度数; (2)已知C B ∠=∠3,求证:C DAE ∠=∠.27.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩的解x ,y 都为正数.(1)求a 的取值范围; (2)化简2a a --.(第25ABDE C28. 已知:如图,在△ABC 中,∠A=∠ABC ,直线EF 分别交△ABC 的边AB 、AC 和CB 的延长线于点D 、E 、F.求证:∠F+∠FEC=2∠A.29.在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人. (1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?A BC DE F30.已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.(1)如图1,设点P的运动时间为t(s),那么t= (s)时,△PBC是直角三角形;(2)如图2,若另一动点Q从点B出发,沿线段BC向点C运动,如果动点P、Q都以1cm/s 的速度同时出发.设运动时间为t(s),那么t为何值时,△PBQ是直角三角形?(3)如图3,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么t为何值时,△DCQ 是等腰三角形?(4)如图4,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D,连接PC.如果动点P、Q都以1cm/s的速度同时出发.请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.参考答案一、选择题1-5 CABAB 6-10 CDBDB 二、填空题11、①③ 12、5×10﹣613、2; 14、-2; 15、25; 16、67;17、64≤<m ; 18、75°. 19、7 20、45 三、解答题21.解:(1)原式=100+1﹣0.22011×52011=101﹣1=100; (2)原式=x 2+4x+4﹣x 2+1+2x 2﹣5x+2=2x 2﹣x+7.22.解:(1)原式=(x ﹣y )(x 2﹣1)=(x ﹣y )(x+1)(x ﹣1); (2)原式=2a (a 2﹣4)=2a (a+2)(a ﹣2).23.(1)解:先解出一个未知数,得1分,再解出另一个得2分,最后回答⎩⎨⎧==12y x(2)解:先解出一个未知数,得1分,再解出另一个得2分,最后回答⎩⎨⎧==16y x24. 解:(1)x>-3--(2)x>-3的最小整数解是2-=x ,把2-=x 代入32=-ax x 中,解得27=a 25.(1)解:解①:1≥x 解②:4<x原不等式组的解集是41<≤x画数轴表示(略) 26.解:先解出⎩⎨⎧+=-=21a y a x再得⎩⎨⎧>+>-0201a a解不等式组得解集:1>a27.解:∵AD 是△ABC 的高,∴∠ADC=∠ADB=90°又∵∠C=70°,∴∠DAC=90°-70°=20°又∵∠BED=64°,∴∠DBE=90°-64°=26°∵BE平分∠ABC∴∠ABE=∠EBD=26°∵∠BED=∠ABE+∠BAE∴∠BAE=64°-26°=38°∴∠BAC=38°+20°=58°28.证得∠C+∠A+∠ABC=1800-由∠A=∠ABC得∠C+2∠A=1800-∠C+∠F+∠FEC=1800得到∠F+∠FEC=2∠A29.解:(1)设租甲种客车x辆,则租乙种客车(8﹣x)辆,依题意,得45x+30(8﹣x)≥318+8,解得x≥5,∵打算同时租甲、乙两种客车,∴x<8,即5≤x<8,x=6,7,有两种租车方案:租甲种客车6辆,则租乙种客车2辆,租甲种客车7辆,则租乙种客车1辆;(2)∵6×800+2×600=6000元,7×800+1×600=6200元,∴租甲种客车6辆;租乙种客车2辆,所需付费最少为6000(元);(3)设同时租65座、45座和30座的大小三种客车各x辆,y辆,(7﹣x﹣y)辆,根据题意得出:65x+45y+30(7﹣x﹣y)=318+7,整理得出:7x+3y=23,1≤x<7,1≤y<7,1≤7﹣x﹣y<7,故符合题意的有:x=2,y=3,7﹣x﹣y=2,租车方案为:租65座的客车2辆,45座的客车3辆,30座的2辆.30.解:(1)当△PBC是直角三角形时,∠B=60°,∠BPC=90°,所以BP=1.5cm,所以t=(2)当∠BPQ=90°时,BP=0.5BQ,3﹣t=0.5t,所以t=2;当∠BQP=90°时,BP=2BQ,3﹣t=2t,所以t=1;所以t=1或2(s)(3)因为∠DCQ=120°,当△DCQ是等腰三角形时,CD=CQ,所以∠PDA=∠CDQ=∠CQD=30°,又因为∠A=60°,所以AD=2AP,2t+t=3,解得t=1(s);(4)相等,如图所示:作PE垂直AD,QG垂直AD延长线,则PE∥QG,所以,∠G=∠AEP,因为,所以△EAP≌△GCQ(AAS),所以PE=QG,所以,△PCD和△QCD同底等高,所以面积相等.。