弹性波动力学

合集下载

弹性波动理论

弹性波动理论

四、波动方程 若应力体内两相邻质点应力相同,无相对运动,静止平衡状态
若二者之间有应力差,产生波动
为研究弹性波动形成的物理机制和传播规律,须建立波的运动方程(波动方程)
波动方程: 研究介质中质点位移随时间和空间的变化规律。
在弹性理论中,对于均匀、各向同性、理想弹性介质中的三维波动方程式为
(
)
x
2u
2u t 2
一个体积为V的立方体,在流体静压力P的挤压下所发生体积形变。即每个正
截面的压体变模量(压缩模量): 压力P与体积相对变化之比
P K=-
(1.7)
(4) 切变模量(μ)
切变模量(刚性模量):表示了物体切应力与切应变之比
μ=
(1.8)
对于液体: μ=0,不产生切应变,只有体积变化。
(5) 拉梅常数(λ、μ) 弹性力学中:受力物体内任意点受力 沿坐标轴分为三个分力,每个分力 都会引起纵向和横向沿三个轴的应力与应变。
因此:振动图是描述地震波质点位移随时间的变化规律的图像。 图中: t1――初至,质点刚开始振动 △t――波(质点振动)的延续时间,△t的大小直接影响地震勘探的分辨率。
1.8 (a) 振动图 (b)波形记录
体波:纵、横波,在整个空间
面波:弹性分界面附近 瑞利面波:自由界面,地滚波,R波 特点:低频、低速,能量大(强振幅),旋转(铅垂面,椭圆,逆转)
天然地震中,危害极大 勒夫面波:低速带顶底界面,平行界面的波动,振动方向垂直传播方向,
SH波 特点:对纵波勘探影响不大,对横波勘探严重干扰
图1.5 (a)瑞雷面波的传播 (b)勒夫面波的传播
自然界中绝大部分物体,在外力作用下,既可显弹,也可显塑
地震勘探,震源是脉冲式的,作用时间很短(持续十几~几十毫秒),岩土受 到的作用力很小,可把岩、土介质看作弹性介质,用弹性波理论来研究地震波。

弹性波动力学

弹性波动力学

学习意义:理解不同边界条件下的地震波波动方程的含义,理解各种弹性力学参数的物理意义并将参数和地下介质的岩性问题联系起来,最终为地震剖面的岩性解释服务。

刚体:变形忽略不计的物体弹性波:扰动在弹性介质中的传播波前面:波在介质中传播的某个时刻,介质内已扰动的区域和未扰动区域间的界面称为波前面地震波分类:纵波横波,平面波球面波柱面波,体波界面波表面波 哑指标:在同一项中重复两次从而对其应用求和约定的指标 自由指标:在同一项中出现一次因而不约定求和的指标各项同性张量:如果一个张量的每个分量都是坐标变换下的不变量,则称此张量为各项同性张量张量性质:二阶实对称张量的特征值都是实数:二阶实对称张量对应于不同特征值的两个特征向量垂直:二阶实对称张量总存在三个相互垂直的主方向:在主轴坐标系内二阶实对称张量的矩阵形式是对角形:三个相互垂直主方向的右手坐标系为主轴坐标系弹性:物体受外力时发生形变,外力消除时物体回到变形前的水平 弹性变形:在弹性范围内发生的可恢复原状的变形 弹性体:处于弹性变形阶段的物体弹性波动力学基本假设:物体是连续的:物体是线性弹性的:物体是均匀分布的:物体是各项同性的:小变形假设:无体物初应力假设 位形:弹性体在任意时刻所占据的空间区域参考位形:弹性体未受外力作用处在自然情况下的位形 运动:刚性平移,刚性转动,变形应变主方向:如果过p 点的某个方向的线源,在变形后只沿着他原来的方向产生相对伸缩主应变:沿着应变主方向的相对伸缩体力:连续分布作用于弹性体每个体元上的外力称为体力 面力:连续分布作用于弹性体表面上的力 运动微分方程的物理意义:表示应力张量在弹性体内部随点位置变化时应满足的关系式内能:弹性体在某个变形状态下,其内部分子的动能以及分子之间相互作用具有的势能总和应变能密度:单位体积内的弹性体所具有的应变能 广义胡克定律:线性弹性体内一点处的应力张量分量可以表示为该点处应变量张量的线性齐次方程动弹性模量:由介质的速度参数表达的弹性模量极端各向异性弹性体:过p 点任意方向都不同的弹性体粘滞力:实际流体中两层流体相互滑动流体间相互作用的阻力 理想流体介质:可以将粘滞力忽略的流体无旋波:无旋位移场的散度对应弹性体的涨缩应变场以波的形式传播(涨缩应变场)无散波:无散位移场的旋度对应弹性体的转动情况以波的形式运动平面波:波前面离开波源足够远时脉冲型和简谐型均匀和非均匀平面波 非频散波:波的传播速度仅仅依赖媒介密度拉美系数等而与波的频率无关 频散波:波的传播速度与频率有关频散:初始扰动的没一个简谐成分都以不同速度前进,从而初始波形在行进中发生了变化相速度:简谐波的传播速度群速度:由简谐波叠加而成的波其合成振幅的传播速度非均匀平面波:如果波的等位相面各点振幅不同,既等位相面和等振幅面不平行球面波:弹性媒质的位移矢量场具有球对称性,且只是空间变量和时间变量的函数 1、证明:kmjn kn jm im n ijk e e δδδδ-=;2、321321321n n n m m m i i i imne δδδδδδδδδ=3、321321321n n n m m m i i i ijkimn ijk e e e δδδδδδδδδ=4、kmjn kn jm knkm ki jn jm ji inim ii δδδδδδδδδδδδδ-==5、如果i i e a a =,ii e b b =,i i e c c=,证明:c b a b c a c b a )()()(∙-∙=⨯⨯;k ijk j i e e c b c b =⨯)()()(k ijk j i m m k ijk j i e e c b e a e e c b a c b a ⨯=⨯=⨯⨯n m kn ijk j i m k m ijk j i m e e e c b a e e e c b a=⨯=)(njn im jm in j i m n knm kij j i m e c b a e e e c b a)(δδδδ-==nn m m n m n m n n m m m n m e c b a e c b a e c b a c b a-=-=)(c b a b c a e c b a e b c a n n m m n n m m)()(∙-∙=-=分析:由于标量对坐标的选择无关,因此,如果证明了物理量在坐标变换前后相等,即可以认为此物理量是标量。

《弹性波动力学》固体中弹性波-05 声波在流体-固体界面上的反射和折射

《弹性波动力学》固体中弹性波-05 声波在流体-固体界面上的反射和折射
2 2 k sin 2 k 切向应力连续: t 2 L tT t 2 L cos 2tT 0
势函数的反射和折射系数的定义为
t t r r , t , t i i i
反射系数与折射系数
势函数的反射和折射系数为 r z2 L cos 2 2tT z2T sin 2 2tT z1L r , 2 2 i z2 L cos 2tT z2T sin 2tT z1L
上式应对所有的z都成立,因而式中指数因子部分必然应该恒等,即
k1L sin i k1L sin r k2 L sin tL k2T sin tT 波矢的界面分量相等
从此导得反射定律 i r
P P
与折射定律
sin i k2 L c1L , sin tL k1L c2 L sin i k2T c1L . sin tT k1L c2T
声波在流体/固体界面上的 反射和折射
P P
i r
流体 固体
z
折射
步骤(思路)
声学边界条件 写出波函数表达式 将波函数代入边界条件 定义和求解反射系数、透射系数 结果讨论
P P
i r
流体 固体
z
tT tL
S P
x
流固界面的边界条件
15
30
45
60
75
90
Incident Angle
Incident Angle
1.0 0.8
Amplitude
Tp R 第二临界角
f
第一临界角 0.6
0.4
1000.,1483 1700.0,1700.0,600.0
第一临界角 不存在第二临界角
t 1 2 z2 L cos 2tT t , 2 2 i 2 z2 L cos 2tT z2T sin 2tT z1L

弹性波动力学2014

弹性波动力学2014

3 I2 II III 0
其中,
I Tii T 11 T 22 T 33
II 1 2 (Tii Tjj TijTij )
III det(Tij )
I,II,III 分别叫做二阶张量的第一、第二和第三不变量。 其特征向量满足的方程为:
(Tij ij )n j 0 n i n i 1
6.标量的梯度、向量的旋度、散度等的混合计算等。 第二章 1. 内力、附加内力、体应变、泊松比
2. 弹性波、波阵面、波速、纵波、横波、平面波、球面波、 柱面波、体波、面波 3. 弹性波动力学的基本假设: (连续性、线性弹性、均匀性、 各向同性、微小变形) 第三章 1.位形、参考位形、变形、运动; 2.位移、速度、加速度,空间点和质点的统一; 3.小变形应变张量( eij )及其各个分量的意义;
1. 弹性波(SV 波、SH 波、P 波)传播到介质和空气分界面, 入射波、反射波的类型及传播方向,垂直入射时各个波的(位 移)振幅系数。 2,弹性波(SV 波、SH 波、P 波)传播到弹性介质分界面, 入射波、反射波、透射波的类型及传播方向,垂直入射时各个 波的(位移)振幅系数等 3. 面波的基本概念。 第九章(本次考试不要求) 求解弹性波动力学问题的方法(理论推导,即解析解;数值方 法,如有限单元法、有限差分法、伪谱法等) ,一维有限差分 法合成地震记录的编程实现。 本次考试题型及分数分布: 一、名词解释 (每小题 5 分,共 30 分) 二、简答(每小题 8 分,共 32 分) 三、计算 (1 小题,共 15 分) 四、 (15 分)推导(一小题,共 15 分) 五、 (8 分)波场分析。
第一章 1.指标记号,求和约定,自由指标,哑指标 2.三个符号,克罗尼克尔符号( ij )排列符号( eijk ), 以及微分符号 ( ).

研究性教学模式在《弹性波动力学基础》课程中的实践

研究性教学模式在《弹性波动力学基础》课程中的实践

研究性教学模式在《弹性波动力学基础》课程中的实践作者:韩开锋来源:《中国科教创新导刊》2012年第28期摘要:研究性教学是教师为了使学生进行研究性学习而开展的一种课堂教学,具有教学形式与内容的开放性、教学方式的自主性、学生知识获得的实践性及素质提升的综合性等特点。

本文在探讨研究性教学特性和必要性的基础上,通过亲身实践创建了高校专业课程——《弹性波动力学基础》研究性教学的场景模式。

实践证明,该授课模式对提高专业课程的教学质量,培养学生的研究性思维和创新精神具有重要意义。

关键词:研究性教学特性弹性波动力学基础场景模拟中图分类号:G4 文献标识码:A 文章编号:1673-9795(2012)10(a)-0048-02研究性教学是教师以培养学生的研究意识和创新能力为目标,引导学生进行研究性学习,从而让学生掌握知识、培养研究能力和创新能力的教学,其目标在于让学生以类似于科学探究的形式进行学习。

目前,我国高校研究性教学更多集中在诸如“创新杯”、“挑战杯”之类的课外竞赛活动以及大学生科研计划等“第二课堂”来开展,而通过专门在“第一课堂”的教学中来实施研究性教学尚不普遍。

于是,大部分高校学生被排除在发现、探索、研究之外,继续接受着传统的以知识灌输型为主的教学,这严重抑制了学生的思维能力、创造能力以及科研兴趣等非智力因素的发展,已无法适应当代素质教育的需要。

因此,通过一门课程的研究性教学,让所有学生都能够独立的进行探究性学习,一直是我们教学过程中努力实践探索的目标。

1 研究性教学的特性所谓研究性教学,是指在教师的指导下,将课内讲授与课外实践、教师引导与学生自学、教材与课外阅读有机结合起来并达到完整、和谐、统一的教学。

[1]与传统的被动接受性教学相比,研究性教学具有以下特性。

1.1 教学形式与内容的开放性传统的接受性教学有一套规范的标准和预期的答案,而在研究性教学中,教师关注的是学生怎样找到解决问题的切入点,怎样进行论证,而不是要求得到统一的答案。

弹性波与结构动力学

弹性波与结构动力学

弹性波与结构动力学引言:弹性波是物质中传播的一类波动现象,它在结构动力学中起着重要的作用。

通过研究弹性波的传播特性,我们可以深入了解结构的振动行为,进而为工程结构的设计和安全性评估提供理论支持。

一、弹性波的基本概念弹性波是一种沿着介质中传递的机械波,其传播过程中介质的形状和体积保持不变。

弹性波包括两种类型:纵波和横波。

纵波是沿传播方向的波动,介质中的粒子在波传播过程中沿波的传播方向振动。

而横波是垂直于传播方向的波动,介质中的粒子在波传播过程中垂直于传播方向振动。

二、弹性波的传播特性弹性波在传播过程中受到介质本身刚度和密度的影响。

根据介质的性质不同,弹性波的传播速度也不同。

例如,在固体中,纵波的传播速度大于横波的传播速度;而在液体中,纵波和横波的传播速度相等。

此外,弹性波的传播还受到外部条件的限制,如介质的边界条件和存在的障碍物。

这些因素会使波动的传播方向改变,产生反射、折射和散射现象。

三、结构动力学中的应用结构动力学旨在研究结构体在受到外界力作用下的响应行为。

通过研究弹性波的传播和结构的振动特性,我们可以了解结构在承受外力时的变形和应力分布情况,从而评估结构的安全性和稳定性。

1. 弹性波的成像技术利用弹性波的传播特性,我们可以将其应用于结构的成像技术中。

通过在结构表面上布置传感器,并采集传感器上的信号信息,可以获得结构内部的振动分布情况。

这对于检测结构的缺陷和损伤以及评估结构的健康状况具有重要意义。

2. 弹性波在地震工学中的应用地震是一种具有较高频率和较大能量的弹性波。

研究地震波的传播行为可以帮助我们了解地震的发生机理和地震波对结构的影响。

通过地震波的预测和分析,可以为建筑物的抗震设计和城市的抗震规划提供科学依据。

3. 结构动力响应的数值模拟结构动力学中的数值模拟是利用计算机模拟方法来分析结构体在受到外力激励下的响应行为。

其中,弹性波的传播特性被广泛应用于模拟结构的振动响应。

通过建立结构的有限元模型和适当的边界条件,可以计算结构在不同外力作用下的动态行为,为工程师提供设计和评估结构安全性的参考。

弹性波

某一弹性介质内的弹性波在传播到介质边界以前,边界的存在对弹性波的传播没有影响,如同在无限介质中传播一样,这类弹性波称为体波。体波传播到两个弹性介质的界面上,即发生向相邻弹性介质深部的折射和向原弹性介质深部的反射。此外,还有一类沿着一个弹性介质表面或两个不同弹性介质的界面上传播的波,称为界面波。如果和弹性介质相邻的是真空或空气,则界面波称为表面波。弹性波绕经障碍物或孔洞时还会发生复杂的绕射现象。
斯通利波
在两种不同介质的半空间体的交界面上传播的波称为斯通利波,因斯通利首先发现并研究这种波而得名。它是一种波速与两个介质的性质有关的变态瑞利波。斯通利波的存在与介质的弹性拉梅常数和介质密度有关。在两个介质的拉梅常数λ1、G1和λ2、G2满足λ1/G1=λ2/G2=1的情况下,存在条件如图所示,如果两个介质的密度ρ1和ρ2之比ρ1/ρ2和G1/G2在图示坐标系中对应的点落在曲线A和曲线B之间,斯通利波就存在。在地震学中,理论上已证明斯通利波是存在的,但尚未观测到。
式中为拉普拉斯算符;α和β分别为纵波波速和横波波速;嗞=嗞(x,y,z,t)为标量势;ψx=ψx(x,y,z,t)、ψy=ψy(x,y,z,t)、ψz=ψz(x,y,z,t)为矢量势φ(x,y,z,t)的三个分量。ψx、ψy、ψz统称为波函数,它们和嗞同坐标系中的三个位移分量u、v、w的关系为:
上述波动方程是根据下面的假设导出的:①弹性介质中各质点间的相对位移为无穷小量;②介质是完全线弹性的,即应力和应变之间呈均匀线性关系,服从胡克定律;③介质是各向同性的;④不计外力(如重力、体积力、摩擦力等)。
在精确理论发展的同时,近似解理论也得到发展。有限差分方法先被用于解决短杆中弹性波的传播问题,后被推广到一些复杂结构中波的传播问题。有限元法逐步用于研究弹性波问题,开始用于分析细杆中弹性波的传播,后用于分析各种结构(柱、板、壳体)中的波的传播以及层状介质、正交异性介质中的波的传播等。非线性弹性波的传播问题的研究也取得初步成果。

声学基础


医学
大气地物球理和
生物 声学
大学地气震声学
生理学
听觉
心理 声学
通讯
音剧质声院室学内乐器乐律
音乐
2010/9/8
海洋学
水声 学
电工和 化工
工机程械
声声电工和声程超学噪声冲击振动
声学基础
建筑 工程
艺表术演
语言 心理学
次声学
¡ 研究次声的产生、传播、接收、作用试验检测的四种方法:次声、水声、
9
5
B超-B Mode (Cross Sectional 2 Dimensional) Imaging
2010/9/8
医学B超
工作在自发自收状态的超声波探头在空间一条线上 移动过程中测量的反射脉冲波所成图像。
Mechanical real-time scanners used for B mode scanning: (a) rectilinear, (b) sector, (c) spinner, and (d) oscillating reflector.
绪论课的教学内容
¡ 声学的各个分支;
¡ 声学在地球物理学中的地位; ¡ 关于本课程教学:
™本课程主要教学内容 ™本课程教学方法 ™本课程教学中对同学的要求
目的:开放视野、激发兴趣
声学的各个分支和应用
¡ 什么是声学?
™声学的定义 ™声学的分支
¡ 声学的应用
™A超、B超、C超、彩超 ™地震和海啸 ™声呐 ™声发射及其应用
显衰减;
声波
¡ 频率在20Hz~20kHz之间的机械波。 ¡ 也称为可闻声波,即人的耳朵可以感觉到的弹性波。 ¡ 我们生活在声波的海洋之中。
超声波
¡ 频率在20kHz以上的机械波。人耳听不到,但个别 动物(例如狗、蝙蝠等)可以感受到超声波的存在。

浙江大学硕士论文1

分类号: P315.3 单位代码: 10335密级:公开学号: 21338038硕士学位论文中文论文题目:基于弹性波动力学的检波器耦合系统研究英文论文题目: Research on Geophone CouplingSystem Based on Elastics Theory申请人姓名:陈高翔指导教师:田钢专业名称:地质资源与地质工程研究方向:检波器耦合所在学院:地球科学学院论文提交日期基于弹性波动力学的检波器耦合系统研究论文作者签名:指导教师签名:论文评阅人1:评阅人2:评阅人3:评阅人4:评阅人5:答辩委员会主席:委员1:委员2:委员3:委员4:委员5:答辩日期:Research on Geophone Coupling System Based on Elastics TheoryAuthor’s signature:Supervisor’ s signature:External Reviewers:Examining Committee Chairperson:Examining Committee Members:Date of oral defence:浙江大学研究生学位论文独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。

除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得浙江大学或其他教育机构的学位或证书而使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。

学位论文作者签名:签字日期:年月日学位论文版权使用授权书本学位论文作者完全了解浙江大学有权保留并向国家有关部门或机构送交本论文的复印件和磁盘,允许论文被查阅和借阅。

本人授权浙江大学可以将学位论文的全部或部分内容编入有关数据库进行检索和传播,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。

(保密的学位论文在解密后适用本授权书)学位论文作者签名:导师签名:签字日期:年月日签字日期:年月日回望过去的三年时光,有太多人与事需要我铭记与致谢。

第六章弹性波波动方程及其解ppt课件




又 • u • uS 0



2

代入纳维方程 ( )( • u ) u f u




uS f uS

2 2
VS uS f uS
2

vs

结论:在均匀各向同性弹性体内,切变扰动以速度VS向
(4)
(5)
式u j , ji (ui , jj u j ,ij ) f i ui即为位移在弹性体
内传播时所满足的方程 .称为纳维 ( Navier)方程.
纳维方程是线性弹性假设条件下得到的各向同性弹性体中
的弹性波最基本方程。
指标表示的纳维方程 ( )u j , ji ui , jj f i ui
§6.1 线性弹性动力学的基本方程
1.
基本方程


运动微分方程 ji , j
几何方程
1
eij (ui , j u j ,i )
2
2 ui
f i 2
t
u1
e11
x1
u2
e22
x2
u
e33 3
x3
1 u1 u2
e12 (

)
2 x2 x1
v p t
上式表示波场是以速度VP向外传播的无旋场。

转动矢量表示的横波方程



2
( )( • u ) u f u两边取旋度

2




(


u
)
( )( ( • u )) 2 ( u ) ( f )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016 至2017 学年第 1 学期
教学日历
课程名称_弹性波动力学_性质_专业必修__
总学时64 讲课49 实验_0_其它_15_
授课班级_物探14级1-3班_学生人数_99 (含重修)_
任课教师_唐跟阳____职称_副教授__
所在院(系、部)__地球物理与信息工程学院物探系
系(教研室)主任签字_________________________
教材名称:地震波动力学基础作者:孙成禹等
出版单位:石油工业出版社出版时间:2011年
中国石油大学(北京)教务处制
填写说明:
1.每上一次课填写一行,节次填写数字“1-5”,一天共分5大节课,例如:一周上三次课填写三行,并在周学时栏合并单元格填写“6”,周一第3、4节,在节次栏中填写2。

2.教学日历一经制订,不应出现大的变动,但允许主讲教师在完成课程教学大纲规定的教
学要求前提下,进行必要的调整,以适应不断出现的新情况。

如有变动,须经课程所属系主任(教研室主任)批准,并报院(系、部)办公室备查。

3.上机、大作业、课堂讨论、外出参观、考试等如占课内学时,在“备注”栏内注明。

4.教学日历由教师自存一份、课程所属系存一份,在每学期开学后第一周内送课程所属院(系、部)办公室并发一份电子版给课程所属院(系、部)办公室;有实验和上机学时的须发一份电子版的给实践科sjk@。

相关文档
最新文档