五年级奥数(数论问题)题及答案-最大公因数
《最大公因数》习题(附答案) (2)

小学数学学习材料金戈铁骑整理制作《最大公因数》习题一、填空1、甲=2×3×5,乙=2×3×7,甲和乙的最大公约数是().2、36和60相同的质因数有(),它们的积是(),也就是36和60的().3、()的两个数,叫做互质数.4、自然数a除以自然数b,商是15,那么a和b的最大公约数是().二、判断(对的打“√”,错的打“×”).1、互质数是没有公约数的两个数.()2、成为互质数的两个数,一定是质数.()3、只要两个数是合数,那么这两个数就不能成为互质数.()4、两个自然数分别除以它们的最大公约数,商是互质数.()三、选择题1、成为互质数的两个数().①没有公约数②只有公约数1③两个数都是质数④都是质因数2、下列各数中与18互质的数是().①21 ②40 ③25 ④183、下列各组数中,两个数互质的是().①17和51 ②52和91 ③24和25 ④ 11和22四、直接说出下列各组数的最大公约数.1、8与9的最大公约数是().2、48、12和16的最大公约数是().3、6、30和45的最大公约数是().4、150和25的最大公约数是().习题精选(二)一、填空1、按要求,使填出的两个数成为互质数.①质数()和合数(),②质数()和质数(),③合数()和合数(),④奇数()和奇数(),⑤奇数()和偶数().2、两个数为互质数,这两个数的最大公约数是().3、所有自然数的公约数为().4、18和24的公约数有(),18和24的最大公约数是().二、判断(对的打“√”,错的打“×”).1、因为 15÷3=5,所以15和3的最大公约数是5.()2、30 、15和5的最大公约数是30.()3、最小的合数和最小的质数这两个数不是互质数.()4、相邻的两个自然数一定是互质数.()三、选择题1、甲数的质因数里有1个7,乙数的质因数里没有7,它们的最大公约数的质因数里应该().①有五个7 ②没有7 ③不能确定2、甲、乙两数的最大公约数是7,甲数的3倍与乙数的5倍的最大公约数()①肯定是7 ②肯定不是7 ③不能肯定四、用短除法求下列各组数的最大公约数.1、 56和422、 225和153、 84和1054、 54、72和905、 60、90和120五、应用题用96朵红花和72朵白花做花束,如果每个花束里的红花朵数都相等,每个花束里的白花的朵数也都相等.每个花束里最少有几朵花?习题精选(三)1、填一填:(1)9的因数:18的因数:9和18的公因数:(2)15的因数:50的因数:15和50的公因数:15和50个最大公因数:(3)13的因数:11的因数:13和11的公因数:11和13的最大公因数:2、出示集合圈,请学生将15和18的公因数分别填入集合圈内,并说一说它们的最大公因数。
五年级奥数专题第四讲 最大公因数

五年级奥数专题第四讲 最大公因数【一】 在每个分数后面的括号中写出分子和分母的最大公因数。
147( ) 3612( ) 14412( )练习1、24和36的最大公因数是 。
2、分数51264中分子和分母的最大公因数是 。
【二】 有两根铁丝,一根长27米,一根长18米,要把它们截成同样长的小段,不许剩余,每段最长有几米?练习1、有两根钢管,一根长42分米,另一根长63分米,现在要把它们锯成同样长的小段,每根钢管尽可能长,且没有剩余,每段钢管长多少米?一共能锯成几段?2、把一张长15厘米,宽10厘米的长方形纸剪成同样大小,面积尽可能大的正方形纸,且没有剩余,可以剪多少个?剪出正方形的边长是多少?【三】 一张长方形的纸,长7分米5厘米、宽6分米。
现在要把它裁成一块块正方形,而且正方形长为整厘米数,有几种裁法?如果要使裁得的正方形面积最大,可以裁多少块?练习1、把1米3分米5厘米长、1米5厘米宽的长方形纸,裁成同样大小的正方形,无剩余,至少能裁多少块?2、一块长45厘米、宽30厘米的长方形木板,把它锯成若干块正方形而无剩余,所锯成的正方形的边长是多少厘米?【四】一个长方形木块,长2.7米,宽1.8米、高1.5米。
要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?练习1、一个长方体木块的长是4分米5厘米、宽3分米6厘米、高2分米4厘米。
要把它切成大小相等的正方体木块,不许有剩余,求所切正方体木块的棱长最长是多少厘米?2、有50个梨,75个橘子和100个苹果,要把这些水果平均分给几个小组,并且每个小组分得的三种水果的个数也相同,最多可以分给几个小组?【五】一个数除200余4;除300余6;除500余10。
求这个数最大是多少?练习1、一个数除150余6,除250余10,除350余14,这个数最大是多少?2、如果把110块糖果平均分给五(1)班的同学,则多5块;如果把210块糖果平均分给这个班同学正好分完;如果把240块糖果平均分给这班同学,还少5块。
五年级奥数-最大公因数和最小公倍数

五年级奥数-最大公因数和最小公倍数大,问最大能剪成多大的正方形?基本概念公约数和最大公约数是数学中常见的概念。
几个数公有的约数称为这几个数的公约数,其中最大的一个称为这几个数的最大公约数。
同样地,几个数公有的倍数称为这几个数的公倍数,其中最小的一个称为这几个数的最小公倍数。
如果两个数的最大公约数是1,那么这两个数就是互质数。
例题分析例1:求能整除30、60、75的最大正整数。
解:30=2×3×5,60=2×2×3×5,75=3×5×5,这三个数的公约数是3和5,所以它们的最大公约数是15.例2:求能被3、4、5整除的最小正整数。
解:3、4、5的最小公倍数是60,所以这个数是60的倍数,且它还要被3、4、5整除,所以这个数是120.例3:将120厘米、180厘米和300厘米的铁丝截成相等的小段,每根铁丝都不能有剩余,每小段最长多少厘米?一共可以截成多少段?解:这三根铁丝的最大公约数是60,所以每小段最长的长度是60厘米。
将每根铁丝都截成长度为60厘米的小段,可以得到2段、3段和5段,一共可以截成10段。
例4:加工某种机器零件需要三道工序,第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个零件,第三道工序每个工人每小时可完成5个零件,要使加工生产均衡,三道工序至少各分配几个工人?解:设第一道工序分配的工人数为x,第二道工序分配的工人数为y,第三道工序分配的工人数为z,则有3x=10y=5z。
因为要使加工生产均衡,所以x、y、z都要是正整数,且它们的比值要尽可能接近,所以x:y:z=10:3:6,所以至少要分配10个工人。
例5:一次会餐供有三种饮料,餐后统计,三种饮料共用了65瓶;平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料。
问参加会餐的人数是多少人?解:设A、B、C饮料分别用了a、b、c瓶,则有a+b+c=65.由题意可知,A饮料每2人饮用1瓶,所以a=2x;B饮料每3人饮用1瓶,所以b=3y;C饮料每4人饮用1瓶,所以c=4z。
五年级数学奥数:最大公因数

-
14
• 【举一反三3】 • 1、一个数除425余5,除500少4,除300余6,这个数最大是多少?
-
15
• 【举一反三3】
• 2、如果把110本练习本平均分给五(1)班同学,则多5本;如果把210本练 习本平均分给这个班同学则正好分完;如果把240本练习本平均分给这班同 学,还少5本,五(1)班最多有多少名同学?
五年级奥数
课本对应点
-
1
最大公因数(约数)
• 几个数公有的因数叫做这几个数的公因数,其中最大的一个公因数叫做这几 个数的最大公因数。我们可以吧自然数a,b的最大公因数记作(a,b), 如果(a,b)=1,则a和b互质。
• 求几个数的最大公因数的方法:分解质因数法、短除法
-
2
• 王牌例题1
• 一张长方形的纸,长75厘米,宽6分米现在要把它刚好在成一些正方形,并 且正方形边长为整厘米数,有几种栽法?如果要使裁得的正方形面积最大, 可以裁多少块?
答:有4种裁法,最大的正方形可以裁20块。
-
4
•【举一反三1】
•1、把一张135厘米场,105宽的长方形纸,裁成同样大小的正方形,并且无 剩余,至少能裁多少块?
-
5
பைடு நூலகம்
• 【举一反三1】
• 2、一块长45厘米,宽30厘米的长方形木板,把它锯成若干块正方形而无剩 余,所锯成的正方形的边长最长是多少厘米?
-
18
• 【思路导航】
• 由于甲、乙,乙、丙的两村中点各要种上一棵树,所以要将
• 3长6度0÷最2长=1。8(因米为)(,67657,356÷02)==34357,12 (而米18)0=平36均0÷分2成,若3干37段1 ,=并67且5÷使2每,段所的以,
奥数最大公因数、最小公倍数讲义及答案

数的整除(3)最大公因数、最小公倍数教室姓名学号【知识要点】1、2、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。
自然数a、b的最大公因数记作(a,b)。
3、4、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。
自然数a、b的最小公倍数记作[a,b]。
5、(6、7、两个自然数的最大公因数和最小公倍数的性质:(1)(a,b)×[a,b]=a×b;(2)若a>b,则a-b与b的最大公因数就等于a与b的最大公因数。
(3)a+b与b的最大公因数,等于a与b的最大公因数。
【典型例题】¥例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。
解:由性质(1)得到乙数=168×4÷24=28.例2.将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。
(90,42)=6.至少能剪90×42÷(6×6)=105(块).例 3.马鹏和李虎计算甲、乙两个自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407,那么甲、乙两数的乘积应是多少解:473与407的最大公因数是11,而11是质数,所以乙数是11,又473=43×11,407=37×11,所以甲数是47,甲乙两数的乘积应为:47×11=517或1×477=477.]例4.有一种自然数,它加上1是2的倍数,加上2是3的倍数,加上3是4的倍数,加上4是5的倍数,加上5是6的倍数,加上6是7的倍数,则这种自然数中除1以外,最小数是多少解:根据已知,若这个数分别加上1、2、3、4、5、6是2、3、4、5、6、7的倍数,求这个数最小是多少,即这个数是2,3,4,5,6,7的最小公倍数加上1. [2,3,4,5,6,7]=420,最小数是:420+1=421。
最大公因数小学奥数题100道及答案(完整版)

最大公因数小学奥数题100道及答案(完整版)题目1:求18 和24 的最大公因数。
答案:6。
通过分解质因数,18 = 2×3×3,24 = 2×2×2×3,所以最大公因数是2×3 = 6。
题目2:求30 和45 的最大公因数。
答案:15。
30 = 2×3×5,45 = 3×3×5,最大公因数是3×5 = 15。
题目3:已知两个数的积是120,它们的最大公因数是6,求这两个数。
答案:12 和10。
因为最大公因数是6,设这两个数分别为6a 和6b(a、b 互质),则6a ×6b = 120,ab = 10,所以a = 2,b = 5 或 a = 5,b = 2,这两个数为12 和10。
题目4:求48 和64 的最大公因数。
答案:16。
48 = 2×2×2×2×3,64 = 2×2×2×2×2×2,最大公因数是2×2×2×2 = 16。
题目5:求25 和35 的最大公因数。
答案:5。
25 = 5×5,35 = 5×7,最大公因数是5。
题目6:两个数的最大公因数是9,最小公倍数是90,其中一个数是18,求另一个数。
答案:45。
因为最小公倍数×最大公因数= 两数之积,所以另一个数= 90×9÷18 = 45。
题目7:求56 和70 的最大公因数。
答案:14。
56 = 2×2×2×7,70 = 2×5×7,最大公因数是2×7 = 14。
题目8:已知两个数的最大公因数是4,它们的和是20,求这两个数。
答案:12 和8 。
设这两个数分别为4a 和4b(a、b 互质),4a + 4b = 20,a + b = 5,所以a = 1,b = 4 或a = 4,b = 1,这两个数为12 和8。
五年级下册数学课件-最大公因数的奥数题 全国通用( 21 页ppt)PPT

•
2.这些材料从不同的角度呈现事物或 者主题 ,单独 看是完 整的, 合在一 起又能 够综合 地表达 意义, 它们之 间的顺 序并不 固定, 打乱了 原来的 顺序, 仍然可 以表达 原来的 意义。 所以称 之为非 连续性 文本。 具有直 观、简 明、概 括性强 、易于 比较等 特点。
•
3.材料一揭示了垃圾分类的必要性和 紧迫性 ,并对 民众的 认知与 实践情 况作了 统计; 材料二 分析了 垃圾分 类难以 有效推 进的原 因并提 出破解 之道。
•
4.每一座村落都有其自己的文化特色 ,不仅 表现在 当地村 民的衣 饰、建 筑和饮 食上, 还体现 了当地 特色的 节目和 生活习 惯等方 面的内 容。
•
5.正是这些文化代表着传统村落的特 色,所 以吸引 了各地 游客前 来体验 并参与 进来, 在传统 村落中 按照他 们的习 俗和饮 食习惯 体验不 一样的 生活
3、利用辗转相除法求377和221的最大公因数
4、一个数除150余6,除250余10,除350余 14,这个数最大是多少?
•
1、通过分析、比较、综合,了解文本 的阐述 方向, 找准文 本所展 示的话 题,探 究材料 之间的 联系, 明确不 同点, 找准每 则材料 和图表 在内容 和观点 上的共 同点, 从而归 纳出文 本的主 要内容 及文本 主题。
•
6.这些都是非常重要的文化内容,不 要为了 现代化 进程的 推进, 使传统 村落的 文化遭 到摒弃 ,都要 尽可能 的像非 物质文 化一样 去保护 。
•
7.在对乡村进行保护的同时,需要注 重将传 统村落 中太过 落后的 设备和 设施条 件进行 现代化 建设, 将现代 化更方 便、有 利的设 施引进 到传统 村落中 ,将现 代化理 念也灌 输到村 落居民 的大脑 里,促 进乡村 的现代 化发展 。
五年级公因数和公倍数的题120道

五年级公因数和公倍数的题120道一、公因数相关题目(60道,先20道带解析)1. 求12和18的最大公因数。
- 解析:分别列出12和18的因数。
12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。
它们共有的因数有1、2、3、6,其中最大的是6,所以12和18的最大公因数是6。
2. 求24和36的最大公因数。
- 解析:24的因数有1、2、3、4、6、8、12、24;36的因数有1、2、3、4、6、9、12、18、36。
共有的因数为1、2、3、4、6、12,最大公因数是12。
3. 求15和25的最大公因数。
- 解析:15的因数是1、3、5、15,25的因数是1、5、25。
它们的公因数有1和5,最大公因数是5。
4. 求8和12的最大公因数。
- 解析:8的因数有1、2、4、8,12的因数有1、2、3、4、6、12。
共有的因数为1、2、4,最大公因数是4。
5. 求20和30的最大公因数。
- 解析:20的因数有1、2、4、5、10、20,30的因数有1、2、3、5、6、10、15、30。
公因数有1、2、5、10,最大公因数是10。
6. 求16和24的最大公因数。
- 解析:16的因数有1、2、4、8、16,24的因数有1、2、3、4、6、8、12、24。
共有的因数为1、2、4、8,最大公因数是8。
7. 求9和15的最大公因数。
- 解析:9的因数有1、3、9,15的因数有1、3、5、15。
公因数为1和3,最大公因数是3。
8. 求14和21的最大公因数。
- 解析:14的因数有1、2、7、14,21的因数有1、3、7、21。
共有的因数为1、7,最大公因数是7。
9. 求28和42的最大公因数。
- 解析:28的因数有1、2、4、7、14、28,42的因数有1、2、3、6、7、14、21、42。
公因数有1、2、7、14,最大公因数是14。
10. 求10和15的最大公因数。
- 解析:10的因数有1、2、5、10,15的因数有1、3、5、15。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数(数论问题)题及答案-最大公因数
编者导语:小编为同学们带来一道五年级奥数(数论问题)每日一题及答案:最大公因数,同学们首先要了解什么是最大公因数,把课上老师讲的课余时间要多加复习呀!
甲数是36,甲、乙两数最大公因数是4,最小公倍数是2ቤተ መጻሕፍቲ ባይዱ8,那么乙数是多少?
2014六年级语文上册第一二单元月考试卷(1-8课)在线看
六年级奥数(应用题)题及答案-不同和
一2014一年级数学上册1--3单元测试题(冀教版)在线看
【答案解析】
小学教育,5068小学教育推荐:
2014三年级数学上册第一次阶段性考试试题(青岛版)在线看
2014年六年级数学上册10月份月考试卷(人教版)在线看
2014年9月五年级数学上册月考试卷在线看
2014年小学六年级语文毕业复习题在线看
三年级上册数学万以内的加法和减法(二)单元测试题在线看
六年级奥数(应用题)题及答案-不同和