高中数学教案(精选7篇)
高中数学教学设计7篇

高中数学教学设计7篇高中数学教学设计篇1教学目标:1、结合实际问题情景,理解分层抽样的必要性和重要性;2、学会用分层抽样的方法从总体中抽取样本;3、并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。
教学重点:通过实例理解分层抽样的方法。
教学难点:分层抽样的步骤。
教学过程:一、问题情境1、复习简单随机抽样、系统抽样的概念、特征以及适用范围。
2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?二、学生活动能否用简单随机抽样或系统抽样进行抽样,为什么?指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。
由于样本的容量与总体的个体数的比为100∶2500=1∶25,所以在各年级抽取的个体数依次是。
即40,32,28。
三、建构数学1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。
说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。
2、三种抽样方法对照表:类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的概率是相同的从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几个部分,按事先确定的规则在各部分抽取在第一部分抽样时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统总体由差异明显的几部分组成3、分层抽样的步骤:(1)分层:将总体按某种特征分成若干部分。
高中数学教案(优秀7篇)

高中数学教案(优秀7篇)一般地,从m个不同的元素中,任取n(n≤m)个元素为一组,叫作从m个不同元素中取出n个元素的一个组合。
下面是小编帮大伙儿找到的高中数学教案(优秀7篇),希望对大家有一些参考价值。
高中数学教案篇一教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。
教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。
教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列较相似的是“比”为同一个常数的情况。
而这个数列就是我们今天要研究的等比数列了。
)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
高中数学教学计划7篇

高中数学教学方案7篇高中数学教学方案7篇高中数学教学方案篇1 转眼20xx第二个新学期即将到来,为了在这个学期的工作方案更好地施行,现将本学期的教学工作方案如下:一、指导思想准确把握《教学大纲》和《考试大纲》的各项根本要求,立足于根底知识和根本技能的教学,注重浸透数学思想和方法。
立足学生的实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的根底知识、根本技能和根本才能,着力于培养学生的创新精神,运用数学的意识和才能,奠定他们终身学习的根底。
二、学生根本情况分析^p1、根本情况:高二(16)班和高二(13)班。
这两个班的学生对数学学习各不一样。
其中,高二(16)班为理科自主招生班,学生为年级前100名学生组成,根底好,数学学习兴趣较为浓重。
我觉得这个班的数学成绩以及整体程度情况还不错。
分析^p 原因:这个班的学生学习气氛浓重,有良好的班风学风,有你追我干的竞争精神,同时有一批思维相当灵敏的学生,个别学生甚至经常找我要题做,对这个班的教学我力争给他们精选题,选好题,尽量不浪费学生的时间。
高二(13)班是精英班,数学学习积极性较高,整体还不错,但有个别学生自觉性差,自我控制才能弱,因此在教学中需时时提醒学生,培养其自觉性;有些学生对自己学习数学的信心缺乏,学习积极性和主动性不够,大部分学生学习上只满足完成教师所布置的任务,对于灵敏运用知识分析^p 问题、解决问题的才能还不够强,不能举一反三进一步挖深问题,在选例题时尽量选中等难度题目,以适应大多数学生的适应才能。
三、教学目的针对以上问题的出现,在本学期拟订以下目的和措施。
其详细目的1、获得必要的数学根底知识和根本技能,理解根本的数学概念、数学结论的本质,理解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。
通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2、进步空间想像、抽象概括、推理论证、运算求解、数据处理等根本才能。
优秀高中数学教案模板(优秀11篇)

优秀高中数学教案模板(优秀11篇)优秀高中数学教案模板篇一教学目标:(1)了解坐标法和解析几何的意义,了解解析几何的基本问题。
(2)进一步理解曲线的方程和方程的曲线。
(3)初步掌握求曲线方程的方法。
(4)通过本节内容的教学,培养学生分析问题和转化的能力。
教学重点、难点:求曲线的方程。
教学用具:计算机。
教学方法:启发引导法,讨论法。
教学过程:【引入】1.提问:什么是曲线的方程和方程的曲线。
学生思考并回答。
教师强调。
2.坐标法和解析几何的意义、基本问题。
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。
解析几何的两大基本问题就是:(1)根据已知条件,求出表示平面曲线的方程。
(2)通过方程,研究平面曲线的性质。
事实上,在前边所学的直线方程的理论中也有这样两个基本问题。
而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。
本节课就初步研究曲线方程的求法。
【问题】如何根据已知条件,求出曲线的方程。
【实例分析】例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。
首先由学生分析:根据直线方程的知识,运用点斜式即可解决。
解法一:易求线段的中点坐标为(1,3),由斜率关系可求得l的斜率为于是有即l的方程为①分析、引导:上述问题是我们早就学过的,用点斜式就可解决。
可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解。
设是线段的垂直平分线上任意一点,则即将上式两边平方,整理得这说明点的坐标是方程的解。
(2)以这个方程的解为坐标的点都是曲线上的点。
设点的坐标是方程①的任意一解,则到、的距离分别为所以,即点在直线上。
综合(1)、(2),①是所求直线的方程。
高中数学教案【6篇】

高中数学教案【6篇】篇一:中学数学优秀教案篇一教学目标:1、理解并驾驭曲线在某一点处的切线的概念;2、理解并驾驭曲线在一点处的切线的斜率的定义以及切线方程的求法;3、理解切线概念实际背景,培育学生解决实际问题的实力和培育学生转化问题的实力及数形结合思想。
教学重点:理解并驾驭曲线在一点处的切线的斜率的定义以及切线方程的求法。
教学难点:用无限靠近、局部以直代曲的思想理解某一点处切线的斜率。
教学过程:一、问题情境1、问题情境。
如何精确地刻画曲线上某一点处的改变趋势呢?假如将点P旁边的曲线放大,那么就会发觉,曲线在点P旁边看上去有点像是直线。
假如将点P旁边的曲线再放大,那么就会发觉,曲线在点P旁边看上去几乎成了直线。
事实上,假如接着放大,那么曲线在点P旁边将靠近一条确定的直线,该直线是经过点P的全部直线中最靠近曲线的一条直线。
因此,在点P旁边我们可以用这条直线来代替曲线,也就是说,点P旁边,曲线可以看出直线(即在很小的范围内以直代曲)。
2、探究活动。
如图所示,直线l1,l2为经过曲线上一点P的两条直线,(1)试推断哪一条直线在点P旁边更加靠近曲线;(2)在点P旁边能作出一条比l1,l2更加靠近曲线的直线l3吗?(3)在点P旁边能作出一条比l1,l2,l3更加靠近曲线的直线吗?二、建构数学切线定义:如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。
随着点Q沿曲线C向点P运动,割线PQ在点P旁边靠近曲线C,当点Q无限靠近点P时,直线PQ 最终就成为经过点P处最靠近曲线的直线l,这条直线l也称为曲线在点P处的切线。
这种方法叫割线靠近切线。
思索:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?三、数学运用例1 试求在点(2,4)处的切线斜率。
解法一分析:设P(2,4),Q(xQ,f(xQ)),则割线PQ的斜率为:当Q沿曲线靠近点P时,割线PQ靠近点P处的切线,从而割线斜率靠近切线斜率;当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。
高中教学教案(精选7篇)

高中教学教案(精选7篇)高中教学教案篇一一、教材分析1.《指数函数》在教材中的地位、作用和特点《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。
通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。
此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。
本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。
2.教学目标、重点和难点通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。
技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。
素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。
鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;(2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。
高中数学教学设计(精选7篇)

高中数学教学设计(精选7篇)高中数学教学设计精选篇1一、指导思想:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。
具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学中的作用。
通过不同形式的自主学、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教材特点:我们所使用的教材是人教版《普通高中课程标准实验教科书?数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学_。
2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学数学地思考问题的方式,提高数学思维能力,培育理性精神。
4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
三、教法分析:1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
高中数学教学设计优秀14篇

高中数学教学设计优秀14篇高中数学教学设计篇一一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图。
三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规四、教学思路(一)创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。
强调斜二测画法的步骤。
练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学教案(精选7篇)高中数学教案篇一一、教学内容分析圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象。
恰当地利用定义解题,许多时候能以简驭繁。
因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
二、学生学习情况分析我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
三、设计思想由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。
在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。
四、教学目标1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3.借助多媒体辅助教学,激发学习数学的兴趣。
五、教学重点与难点:教学重点1.对圆锥曲线定义的理解2.利用圆锥曲线的定义求“最值”3.“定义法”求轨迹方程教学难点:巧用圆锥曲线定义解题六、教学过程设计【设计思路】(一)开门见山,提出问题一上课,我就直截了当地给出——例题1:(1) 已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。
(a)椭圆(b)双曲线(c)线段(d)不存在(2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。
(a)椭圆(b)双曲线(c)抛物线(d)两条相交直线【设计意图】定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。
为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。
【学情预设】估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。
但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2这样,很快就能得出正确结果。
如若不然,我将启发他们从等式两端的式子|3x4y|入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。
在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。
以深化对概念的理解。
高中数学教案篇二教学准备教学目标数列求和的综合应用教学重难点数列求和的综合应用教学过程典例分析3.数列{an}的前n项和Sn=n2-7n-8,(1)求{an}的通项公式(2)求{|an|}的前n项和Tn4.等差数列{an}的公差为,S100=145,则a1+a3+a5+…+a99=5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=6.数列{an}是等差数列,且a1=2,a1+a2+a3=12(1)求{an}的通项公式(2)令bn=anxn,求数列{bn}前n项和公式7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数8.在等差数列{an}中,a1=20,前n项和为Sn,且S10=S壹五,求当n为何值时,Sn有最大值,并求出它的最大值.已知数列{an},an∈N,Sn=(an+2)2(1)求证{an}是等差数列(2)若bn=an-30,求数列{bn}前n项的最小值0.已知f(x)=x2-2(n+1)x+n2+5n-7(n∈N)(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.11.购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)12.某商品在最近100天内的价格f(t)与时间t的函数关系式是f(t)=销售量g(t)与时间t的函数关系是g(t)=-t/3+109/3(0≤t≤100)求这种商品的日销售额的最大值注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值高中数学教案篇三1.1.1 任意角教学目标(一)知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念。
(二)过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三)情感与态度目标1.提高学生的推理能力;2.培养学生应用意识.教学重点任意角概念的理解;区间角的集合的书写.教学难点终边相同角的集合的表示;区间角的集合的书写.教学过程一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角。
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.二、新课:1.角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.②角的名称:③角的分类:A正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角④注意:∈在不引起混淆的情况下,“角α ”或“∈α ”可以简化成“α ”;∈零角的终边与始边重合,如果α是零角α =0°;∈角的概念经过推广后,已包括正角、负角和零角.⑤练习:请说出角α、β、γ各是多少度?2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.∈ 60°;∈ 120°;∈ 240°;∈ 300°;∈ 420°;∈ 480°;答:分别为1、2、3、4、1、2象限角.3.探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α +k·360° ,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.注意:∈ k∈Z∈ α是任一角;∈ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;∈ 角α + k·720°与角α终边相同,但不能表示与角α终边相同的所有角.例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.∈-120°;∈640°;∈-950°12’.答:∈240°,第三象限角;∈280°,第四象限角;∈129°48’,第二象限角;例4.写出终边在y轴上的角的集合(用0°到360°的角表示) .解:{α | α = 90°+ n·180°,n∈Z}.例5.写出终边在y?x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.4.课堂小结①角的定义;②角的分类:正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角③象限角;④终边相同的角的表示法.5.课后作业:①阅读教材P2-P5;②教材P5练习第1-5题;③教材P.9习题1.1第1、2、3题思考题:已知α角是第三象限角,则2α,解:??角属于第三象限,? k·360°+180°<α<k·360°+270°(k∈Z)因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z) 故2α是第一、二象限或终边在y轴的非负半轴上的角.又k·180°+90°<各是第几象限角?<k·180°+一三5°(k∈Z) .<n·360°+一三5°(n∈Z) ,当k为偶数时,令k=2n(n∈Z),则n·360°+90°<此时,属于第二象限角<n·360°+3壹五°(n∈Z) ,当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<此时,属于第四象限角因此属于第二或第四象限角.1.1.2弧度制(一)教学目标(二)知识与技能目标理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.(三)过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题(四)情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明.教学难点“角度制”与“弧度制”的区别与联系.教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的?规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.二、新课:1.引入:由角度制的定义我们知道,角度是用来度量角的,角度制的度量是60进制的,运用起来不太方便。
在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?2.定义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下,1弧度记做1rad.在实际运算中,常常将rad单位省略.3.思考:(1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳:弧度制的性质:①半圆所对的圆心角为②整圆所对的圆心角为③正角的弧度数是一个正数.④负角的弧度数是一个负数.⑤零角的弧度数是零.⑥角α的弧度数的绝对值|α|= .4.角度与弧度之间的转换:①将角度化为弧度:②将弧度化为角度:5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式,不必写成小数.② 弧度与角度不能混用.弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.例1.把67°30’化成弧度.例2.把?rad化成度.例3.计算:(1)sin4(2)tan1.5.8.课后作业:①阅读教材P6 –P8;②教材P9练习第1、2、3、6题;③教材P10面7、8题及B2、3题.高中数学教案篇四高中数学教案参考1如何在高二这一关键性的一年中与这些同学一齐共同进步缩小差距,我选取了从课堂教学、作业布置、评价方式这三个方面入手,激发学生的学习用心性,尽量向学生带给从事数学活动的机会,帮忙他们在自主探索和合作交流的过程中真正理解和掌握基础的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。