概率有关大题专练(重难点培优30题)-九年级数学上册尖子生培优必刷题(原卷版)【人教版】
圆(限时满分培优训练)-九年级数学上册尖子生培优必刷题(原卷版)【人教版】

【拔尖特训】2023-2024学年九年级数学上册尖子生培优必刷题(人教版)专题24.1圆(限时满分培优训练)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分100分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•大荔县期末)已知⊙O的半径是3cm,则⊙O中最长的弦长是()A.3cm B.6cm C.1.5cm D.√3cm2.(2022秋•郯城县校级期末)有下列四种说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中,错误的说法有()A.1种B.2种C.3种D.4种3.(2023•怀宁县一模)如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=87°,则∠E等于()A.42°B.29°C.21°D.20°4.(2022秋•郧西县期末)由所有到已知点O的距离大于或等于2,并且小于或等于3的点组成的图形的面积为()A.4πB.9πC.5πD.13π5.(2022秋•广水市期中)下列说法正确的是()A.直径是弦,弦是直径B.半圆是弧C.无论过圆内哪一点,只能作一条直径D.直径的长度是半径的2倍6.(2022春•莘县期末)下列说法:①直径是弦;②弦是直径;③半径相等的两个半圆是等弧;④长度相等的两条弧是等弧;⑤半圆是弧,但弧不一定是半圆.正确的说法有()A.1个B.2个C.3个D.4个7.(2021春•阳谷县期末)已知AB是⊙O的弦,⊙O的半径为r,下列关系式一定成立的是()A.AB>r B.AB<r C.AB<2r D.AB≤2r̂上的点,连接AD并延长与OB的延长线交于点C,8.(2022•广陵区二模)如图,在扇形AOB中,D为AB若CD=OA,∠O=72°,则∠A的度数为()A.35°B.52.5°C.70°D.72°9.(2021秋•莱阳市期末)东汉初年,我国的《周髀算经》里就有“径一周三”的古率,提出了圆的直径与̂)向右水平拉直(保持M端不动),根据该周长之间存在一定的比例关系.将图中的半圆弧形铁丝(MN古率,与拉直后铁丝N端的位置最接近的是()A.点A B.点B C.点C D.点D10.(2022秋•南岗区校级月考)如图,在⊙O中,AB为直径,CD⊥AB于C,四边形CDEF是正方形,连接BD,若CO=3,OF=1,则BD=()A.3√5B.4√5C.13D.2√10二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2022秋•夏邑县期中)下列说法中正确的有(填序号).①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④面积相等的两个圆是等圆.12.(2022秋•新罗区校级期中)如图,⊙O的半径为4cm,∠AOB=60°,则弦AB的长为cm.13.(2022秋•通榆县期中)如图,在⊙O中,点A在圆内,点B在圆上,点C在圆外,若OA=3,OC=5,则OB的长度可能为(写出一个即可).14.(2022秋•通榆县期中)如图,点B,E在半圆O上,四边形OABC,四边形ODEF均为矩形.若AB=3,BC=4,则DF的长为.15.(2021秋•延平区校级月考)如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,HN=c,则a、b、c三者间的大小关系为.16.(2022•望花区模拟)如图,数学知识在生产和生活中被广泛应用.下列实例所应用的最主要的几何知识为:①射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;②车轮做成圆形,应用了“圆上各点到圆心的距离相等”;③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;④地板砖可以做成矩形,应用了“矩形对边相等”.上述说法正确的是.(填序号)三、解答题(本大题共7小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.设AB=4cm,作出满足下列要求的图形(1)到点A的距离等于3cm,且到点B的距离等于2cm的所有点组成的图形;(2)到点A的距离小于3cm,且到点B的距离小于2cm的所有点组成的图形;(3)到点A的距离大于3cm,且到点B的距离小于2cm的所有点组成的图形.18.(2021秋•崆峒区期末)如图,CD是⊙O的直径,点A在DC的延长线上,∠A=20°,AE交⊙O于点B,且AB=OC.(1)求∠AOB的度数.(2)求∠EOD的度数.19.(2022秋•邗江区期中)如图,半圆O的直径AB=8,半径OC⊥AB,D为弧AC上一点,DE⊥OC,DF⊥OA,垂足分别为E、F,求EF的长.20.(2022秋•朝阳区校级月考)如图,在△ABC中,∠C=90°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E.若∠A=25°,求∠DCE的度数.21.(2021秋•东台市月考)如图,⊙O的半径OC⊥AB,D为BĈ上一点,DE⊥OC,DF⊥AB,垂足分别为E、F,EF=3,求直径AB的长.22.(2021秋•赣榆区校级月考)已知:如图,BD、CE是△ABC的高,M为BC的中点.试说明点B、C、D、E在以点M为圆心的同一个圆上.23.如图,AB是⊙O的直径,把AB分成几条相等的线段,以每条线段为直径分别画小圆,设AB=a,那么⊙O的周长L=πa.(1)计算:①把AB分成两条相等的线段,每个小圆的周长;②把AB分成三条相等的线段,每个小圆的周长L3=;③把AB分成四条相等的线段,每个小圆的周长L4=;…④把AB分成n条相等的线段,每个小圆的周长L n=;(2)请仿照上面的探索方法和步骤,计算并导出:当把大圆直径平均分成n等分时,以每条线段为直径画小圆,那么每个小圆的面积S n与大圆的面积S的关系是:S n=S.。
人教版九年级数学上册 第25章 25.1.2 概率 培优训练卷(含答案)

第二十五章 概率初步25.1.2概率培优训练卷一、选择题(共10小题,3*10=30)1.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是( )A .小亮明天的进球率为10%B .小亮明天每射球10次必进球1次C .小亮明天有可能进球D .小亮明天肯定进球2. 掷一枚质地均匀的硬币10次,下列说法正确的是( )A .每2次必有1次正面向上B .必有5次正面向上C .可能有7次正面向上D .不可能有10次正面向上3. 从-5,-103,-6,-1,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为( ) A.27 B.37C.47D.574. 在一个不透明的袋子中装有n 个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为13,那么n 的值是( ) A .6 B .7C .8D .95. 在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为( ) A.310 B.110C.19D.186. 现有四张扑克牌:红桃A 、黑桃A 、梅花A 和方块A ,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A 的概率为( )A .1 B.14C.12D.347. 下列事件中:①2020年在日本东京举办奥运会;②夜间12点有太阳;③吉林省长春市某年冬天的温度达32 ℃.其中概率为1的事件有( )A .0个B .1个C .2个D .3个 8.下列图形:任取一个是中心对称图形的概率是( )A.14B.12C.34D .1 9.如图,在4×4正方形网格中,任选一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是( )A.16B.14C.13D.11210. 如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =13,AC =5,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.π15B.2π15C.4π15D.π5二.填空题(共8小题,3*8=24)11在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为_________.12. 如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是_________.13.抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率是_________. 14. 笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1—10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是_______.15. 如图是一个转盘,转盘分成8个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向指针右边的扇形),则指针指向红色的概率是__________.16. 某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是________.17. 有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是________________18. 一个均匀的正方体各面上分别标有数字:1,2,3,4,5,6,这个正方体的表面展开图如图所示.抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是_____.三.解答题(共7小题,46分)19.(6分) 将下列事件发生的概率标在下图中.①|a|<0;②投一枚硬币正面朝上;③3个苹果分装2个果盘里,一定有1个果盘里至少装2个苹果.20. (6分)如图是一个转盘,小王和小赵在做游戏,两人各转动这个转盘一次,若指针落在红色上面,则小王得1分;若指针落在白色上面,则小赵得1分;若指针落在黄色上面,双方均不得分,重新再转.问这个规则对双方公平吗?21. (6分)掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为偶数;(2)点数大于2且小于5.22. (6分) 一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于13.问至少取出了多少个黑球?23.(6分) 一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是129. (1)求袋中红球的个数;(2)求从袋中任取一个球是黑球的概率.24.(8分) Windows 电脑中有一个有趣的游戏“扫雷”,如图是扫雷游戏的一部分:说明:图中数字2表示在以该数字为中心的8个方格中有2个地雷,小旗表示该方格已被探明有地雷,现在还剩下A ,B ,C 三个方格未被探明,其他地方为安全区(包括有数字的方格).(1)现在还剩下几个地雷?(2)A ,B ,C 三个方格中有地雷的概率分别是多大?25.(8分)小米准备了五张形状、大小完全相同的不透明卡片,上面分别写有整数-5,-4,-3,-2,-1,将这五张卡片写有整数的一面向下放在桌面上.(1)从中任意抽取一张,求抽到的卡片数字为偶数的概率;(2)从中任意抽取一张,以卡片上的数作为不等式ax+3>0中的系数a,求使该不等式有正整数解的概率.参考答案1-5 CCAAB6-10 BBCAB11. 3512. 1313. 1214.31015. 3816. 2317. 2518. 1319. 解:①因为a 取任何数时,|a|≥0,所以|a|<0出现的概率为0;②因为一枚硬币只有正反2面,所以投一枚硬币正面朝上的概率是12; ③因为3个苹果分装2个果盘里,一定有1个果盘里至少装2个苹果,所以这个事件出现的概率是1.如图:20. 解:由于在四个等可能结果中,红色占两种情况,白色占一种,所以小王获胜的概率为12,小赵获胜的概率为14,所以游戏不公平 21. 解:掷一个骰子,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等.(1)点数为偶数有3种可能,即点数为2,4,6,∴P(点数为偶数)=36=12(2)点数大于2且小于5有2种可能,即点数为3,4,∴P(点数大于2且小于5)=26=1322. 解:(1)摸出一个球是黄球的概率P =55+13+22=18(2)设取出3x 个黑球.由题意,得5+x 40≥13,解得x≥253,∴x 的最小正整数为9.即至少取出了9个黑球23. 解:(1) 袋中白球的个数是290×129=10(个), 袋中红球和黑球的个数是290-10=280(个),袋中黑球的个数是(280-40)÷(2+1)=80(个),故袋中红球的个数是280-80=200(个).(2)80÷290=829. 答:从袋中任取一个球是黑球的概率是82924. 解:(1)由于B ,C 下面标2,说明以其为中心的8个方格中有2个地雷, 而C 的右边已经有一个,∴A 就是一个地雷,还有一个在B 或C 的位置, ∴现在还剩下2个地雷(2)由(1)知,P(A 有地雷)=1,P(B 有地雷)=12,P(C 有地雷)=1225. 解:(1)因为5个数中偶数有2个,所以抽到偶数的概率P =25(2)当a =-1时,解不等式-x +3>0得x <3,不等式有正整数解;当a =-2时,解不等式-2x +3>0,得x <32,有正整数解; 当a =-3时,解不等式-3x +3>0得x <1,没有正整数解;当a =-4时,解不等式-4x +3>0得x <34,没有正整数解; 当a =-5时,解不等式-5x +3>0得x <35,没有正整数解, 所以使该不等式有正整数解的概率P′=25。
人教版九年级数学上册第二十五章概率初步同步训练题(基础与培优)【附答案】

人教版九年级数学上册第二十五章概率初步同步训练题(基础与培优)一、单选题1.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定会中奖D.“抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数2.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是()A.16B.29C.13D.233.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC的()A.三边中线的交点B.三条角平分线的交点C.三边中垂线的交点D.三边上高所在直线的交点4.一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是( )A.12B.13C.14D.165.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.23B.16C.13D.126.有A,B两只不透明口袋,每只品袋里装有两只相同的球,A袋中的两只球上分别写了“细”、“致”的字样,B袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A.13B.14C.23D.347.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.310B.15C.12D.7108.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是()A.116B.316C.14D.5169.已知a<0,则点P(-a2,-a+1)关于原点的对称点P′在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为()A.12B.13C.14D.18二、填空题11.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.12.“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是______.(填“必然事件”、“不可能事件”或“随机事件”)13.下列事件:①从装有1个红球和2个黄球的袋子中摸出的1个球是白球;②随意调查1位青年,他接受过九年制义务教育;③花2元买一张体育彩票,喜中500万大奖;④抛掷1个小石块,石块会下落.估计这些事件的可能性大小,并将它们的序号按从小到大排列:________.14.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,圆O是Rt△ABC的外接圆,如果在圆O内随意抛一粒小麦,则小麦落在△ABC内的概率为_____.15.已知一个口袋中装有六个完全相同的小球,小球上分别标有﹣3,﹣2,﹣1,0,1,2六个数,搅均后一次从中摸出一个小球,将小球上的数用a表示,则摸出小球上的a值恰好使函数y=ax的图象经过二、四象限,且使方程3311--=--x ax x,有实数解的概率是_____.三、解答题16.(2017·广东佛山禅城区期末)一个口袋中装有3个白球、5个红球,这些球除了颜色外完全相同,充分摇匀后随机摸出一球,发现是白球.(1)如果将这个白球放回,再摸出一球,它是白球的概率是多少?(2)如果将这个白球不放回,再摸出一球,它是白球的概率是多少?17.如图,一条直线上有两只蚂蚁,甲蚂蚁在点A处,乙蚂蚁在点B处,假设两只蚂蚁同时出发,爬行方向只能沿直线AB在“向左”或“向右”中随机选择,并且甲蚂蚁爬行的速度比乙蚂蚁快.(1)甲蚂蚁选择“向左”爬行的概率为;(2)利用列表或画树状图的方法求两只蚂蚁开始爬行后会“触碰到”的概率.18.某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.19.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率m n(结果保留小数点后两位)0.68 0.74 0.68 0.69 0.68 0.70(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.20.电子政务、数字经济、智慧社会一场数字革命正在神州大地激荡.在第二届数字中国建设峰会召开之际,某校举行了第二届“掌握新技术,走进数时代”信息技术应用大赛,将该校八年级参加竞赛的学生成绩统计后,绘制成如下统计图表(不完整):“掌握新技术,走进数时代”信息技术应用大赛成绩频数分布统计表组别成绩x(分)人数A 60≤x<70 10B 70≤x<80 mC 80≤x<90 16D 90≤x≤100 4请观察上面的图表,解答下列问题:(1)统计表中m=;统计图中n=,D组的圆心角是度.(2)D组的4名学生中,有2名男生和2名女生.从D组随机抽取2名学生参加5G体验活动,请你画出树状图或用列表法求:①恰好1名男生和1名女生被抽取参加5G体验活动的概率;②至少1名女生被抽取参加5G体验活动的概率.参考答案1.D解:A、应该是降雨的可能性有80%,而不是有80%的时间降雨,故A错误;B、每次试验都有随机性,2次就有1次出现正面朝上,不一定发生,故B错误;C、当购买彩票的次数不断增多时,中奖的频率逐渐稳定1%附近,故C错误;D、说法正确.故选:D.2.C解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)=26=13.故选C.3.C解:为使游戏公平,凳子应到点A、B、C的距离相等根据线段垂直平分线的性质,则凳子应放的最适当的位置是在ABC的三边中垂线的交点故选C.4.D根据题意,从这个袋中任取2个珠子,共有3×4=12种可能,(有顺序)而有2种结果都是蓝色的,所以都是蓝色的概率概率为16.故选D.5.D详解:∵共6个数,大于3的有3个,∴P(大于3)=3162.故选D.。
北师大版九年级数学上册:第三章 概率 培优过关测试题(含答案)

九上第三章《概率》培优专题过关训练一.知识梳理(一)事件的分类:1.频率=频数/总数,频率随着试验的不同而不同,它是一个不确定数。
2.事件发生的大小叫做概率。
事件的概率是一个确定的常数。
3.事件的分类:确定事件和随机事件。
确定事件包括必然事件和不可能事件4.必然事件的概率为1;不可能事件的概率为0;随机事件的概率位于0—1之间。
(二)概率的计算:当事件发生的结果具有有限性和等可能性时:(1)一步试验或几何图形,利用概率的定义直接计算(2)两步试验,且结果较少,用树状图和列表格求概率都可以;(3)两步试验,但每步结果较多,适合用列表法求概率;(4)三步或三步以上,适合用画树状图求概率。
(5)用画树状图或列表法求概率时应注意:要清楚所以结果有哪些?要清楚我们关注的是哪些结果?(三)用频率估计概率概率和频率的关系:通过试验获得事件发生的频率,而大量重复试验时的频率会稳定在概率的附近,所以可以用大量试验的频率估计概率;同时也可以利用概率预测事件发生的频率。
二.简单概率计算一步试验:十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,亮绿灯的概率是2.一个不透明的袋子中放入除颜色外均相同的2个白球和6个红球,从中任意抽取一个球,抽到红球的概率是3.在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其他无任何差别,搅匀后随机从中摸出一个求恰好是黄1,则放入口袋中的黄球总数是n=球的概率是3两步试验:仔细区分:(1)放回;(2)不放回1.在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色不同,从袋子中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次都摸到白球的概率为2.某校安排了3辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王和小菲都可以从这三辆车中任意选取1辆搭乘,则小王和小菲同车的概率是3.某校决定从2名男生和3名女生中选出2名同学作为兰州国际马拉松赛的志愿者,则选出1男1女的概率是4.袋子中放着型号,大小完全相同的红,白,黑三种颜色的衣服,红色2件,黑色1件,白色1件,小明随意从袋中取出2件衣服,则取出的是1红1白的概率是 三步试验:随机安排甲乙丙3人在3天节日中值班,每人值班一天,则按“乙,甲,丙”的先后顺序值班的概率是 三:概率与其他知识的综合1.在x 2口2xy 口y 2的“口”中分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是 A.1 B.43 C.21 D.412.已知a,b 可以取-2,-1,1,2中的任意一个值(a ≠b ),则直线y=ax+b 的图像不经过第四象限的概率是3.一个盒子里有完全相同的三个小球,球上分别标有数字-2,1,4,随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球其数字记为q,则满足关于x 的方程02=++q px x 有实数根的概率是4.如图,一个质地均匀的正四面体的四个面上依次标有数字 -2,0,1,2,连续抛掷两次,朝下一面的数字分别为a,b,将其作为M 点横,纵坐标,则点M(a,b )落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包括边界)的概率是5.一个不透明的袋子中有3个分别标有3,1,-2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的数字之和为负数的概率是6.在盒子里放有3张分别写有整式a+1,a+2,2的卡片,从中随机抽出2张卡片,把2张卡片上的整式分别作为分子和分母,则能组成分式的概率是7.有四根木棒,长度分别为2,3,4,5,从中任选3根,恰好能搭成一个三角形的概率是 .8.小明和小亮用如图所示的两个转盘做“配紫色”游戏,游戏规则是:分别转动两个转盘,若其中一个转盘转出红色,另一个转盘转出蓝色,则可以配成紫色,此时小明的1分,否则小亮的1分.(1)用树状图或列表求出小明获胜的概率;(2)这游戏对双方公平吗?请说明理由.若不公平,如何修改规则才能使游戏对双方公平?9.端午节前,小明爸爸去超市购买了大小,形状,重量等相同的火腿粽子和豆沙粽子若干,放入不透明的盒子中,此时从盒中随机取出火腿粽子的概率为31;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为52.(1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)四.样本估计总体1.一个口袋中有红球24个和绿球若干个,从口袋中随机摸出一个球记下其颜色,再把它放回口袋中摇匀,重复上述过程,实验200次,其中有125次摸到绿球,由此估计口袋中共有球个。
中考复习数学 尖子生培优训练 统计与概率(含答案)

中考数学尖子生培优训练——统计与概率一、选择题(本大题共10道小题)1. 从-2,-1,2这三个数中任取两个不同的数相乘,积为正数的概率是( )A.23B.12C.13D.142. 从同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.233. 在一个箱子里放有1个白球和2个红球,它们除颜色不同外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是( ) A .1B.23C.13D.124. 如图是一个可以自由转动的转盘,该转盘被平均分为8份,每份对应一种颜色,转动这个转盘,转出哪种颜色的可能性最小( )A .红色B .黄色C .绿色D .不确定5. 在有25名男生和20名女生的班级中,随机抽取1名学生做代表,则下列说法正确的是( )A .男、女生做代表的可能性一样大B .男生做代表的可能性大C .女生做代表的可能性大D .男、女生做代表的可能性大小不能确定6. 定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V 数”.若某三位数十位上的数字为5,从4,6,8中任选两数分别作为个位和百位上的数字,则与5组成“V 数”的概率是( ) A.16B.14C.13D.237. 一个不透明的布袋中装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出1个球,摸出红球的概率是( ) A.12B.23C.25D.358. 定义一种“十位上的数字比个位上的数字、百位上的数字都大”的三位数叫做“中高数”,如796就是一个“中高数”.若某三位数十位上的数字为7,从3,4,5,6,8,9中任选两数分别作为个位和百位上的数字,则与7组成“中高数”的概率是( ) A.12B.23C.25D.359. 如图,在4×4的正方形网格中,阴影部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂上阴影,使阴影部分的图形仍然构成一个轴对称图形的概率是( )A.613 B.513C.413D.31310. 如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =13,AC =5,BC =12,阴影部分是△ABC 的内切圆.一只自由飞翔的小鸟随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.115π B.215π C.415π D.π5二、填空题(本大题共10道小题)11. 某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差这四个统计量中,该鞋厂最关注的是.12. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中有10个黑球和若干个白球,这些球除颜色外,其他都一样,由此估计口袋中有个白球.13. 某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A,B,C,D,E五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D等级这一组人数较多的班是.14. 在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球,已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为.15. 一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德·摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数6140 4040 10000 36000 80640出现“正面朝上”的次数3109 2048 4979 18031 39699 频率0.506 0.507 0.498 0.501 0.492请根据以上数据,估计硬币出现“正面朝上”的概率为(精确到0.1).16. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球除颜色不同外,其他都一样,由此估计口袋中有________个白球.17. 有五张卡片(形状、大小、质地等均相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.18. 如图所示,一只蚂蚁从点A出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能地随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么蚂蚁从点A 出发到达E处的概率是________.19. 一个不透明的袋中装有除颜色不同外其余均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出1个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球有________个.20. 已知电路AB由如图所示的开关控制,闭合a,b,c,d,e五个开关中的任意两个,则能使电路形成通路的概率是________.三、解答题(本大题共6道小题)21. 某射箭队准备从王方、李明二人中选拔1人参加射箭比赛,在选拔赛中,两人各射箭10次的成绩(单位:环)如下:次 1 2 3 4 5 6 7 8 9 10数王7 10 9 8 6 9 9 7 10 10方李8 9 8 9 8 8 9 8 10 8明(1)根据以上数据,将下面两个表格补充完整:王方10次射箭得分情况环6 7 8 9 10数频数频率李明10次射箭得分情况环6 7 8 9 10数频数频率(2)分别求出两人10次射箭得分的平均数;(3)从两人成绩的稳定性角度分析,应选派谁参加比赛合适.22.班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如图的频数分布折线图.(1)请根据上图,回答下列问题:①这个班共有______名学生,发言次数是5次的男生有____人、女生有____人;②男、女生发言次数的中位数分别是__次和__次;(2)通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数的扇形统计图如下图求第二天发言次数增加3次的学生人数和全班增加的发言总次数.23. 2019·常州将图中的A型(正方形)、B型(菱形)、C型(等腰直角三角形)纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.根据以上信息,解决下列问题:(1)搅匀后从中摸出1个盒子,盒子中的纸片既是轴对称图形又是中心对称图形的概率是________;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的2个盒子中摸出1个盒子,把摸出的2个盒子中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率(不重叠、无缝隙拼接).24. (2019·甘肃天水)天水市某中学为了解学校艺术社团活动的开展情况,在全校范围内随机抽取了部分学生,在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,围绕你最喜欢哪一项活动(每人只限一项)进行了问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中,一共抽查了__________名学生.(2)请你补全条形统计图.(3)扇形统计图中喜欢“乐器”部分扇形的圆心角为__________度.(4)请根据样本数据,估计该校1200名学生中喜欢“舞蹈”项目的共多少名学生?25. (2019·浙江台州)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.26. 在学习“二元一次方程组的解”时,张老师设计了一个数学活动.有A,B两组卡片,每组各3张,A组卡片上分别写有0,2,3;B组卡片上分别写有-5,-1,1.每张卡片除正面所写数字不同外,其余均相同.甲从A组卡片中随机抽取1张,将正面的数字记为x,乙从B组卡片中随机抽取1张,将正面的数字记为y.(1)若甲抽出的数字是2,乙抽出的数字是-1,它们恰好是方程ax-y=5的解,求a的值;(2)在(1)的条件下,求甲、乙随机抽取一次的数恰好是方程ax-y=5的解的概率(请用画树状图法或列表法求解).。
九年级数学上册第二十五章概率初步考点专题训练(带答案)

九年级数学上册第二十五章概率初步考点专题训练单选题1、某批羽毛球的质量检验结果如下:.下列说法中,正确的是()A.如果继续对这批羽毛球进行质量检验,优等品的频率将在0.94附近摆动B.从这批羽毛球中任意抽取一只,一定是优等品C.从这批羽毛球中任意抽取50只,优等品有47只D.从这批羽毛球中任意抽取1100只,优等品的频率在0.940~0.941的范围内答案:A分析:根据频数和频率的关系进行判断即可A. 如果继续对这批羽毛球进行质量检验,优等品的频率将在0.94附近摆动,故此选项正确;B. 从这批羽毛球中任意抽取一只,不一定是优等品,故此选项错误;C. 从这批羽毛球中任意抽取50只,优等品有不一定为47只,故此选项错误;D. 从这批羽毛球中任意抽取1100只,优等品的频率不一定在0.940~0.941的范围内,故此选项错误.故选:A.小提示:本题主要考查利用频率估计概率的知识,熟练掌握利用频率估计概率的知识是解题的关键.2、在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有白球()A.10B.15C.20D.都不对答案:B分析:由摸到红球的频率稳定在0.25附近,可以得出摸到红球的概率,即可求出白球个数.∵摸到红球的频率稳定在0.25附近,∴摸到红球的概率为0.25,∴总球数:5÷0.25=20(个)∴白球个数:20-5=15(个)所以答案是:B.小提示:本题考查了用频率估计概率、已知概率求数量,得出摸到红球的概率是本题的关键.3、在有25名男生和24名女生的班级中,随机抽签确定一名学生代表,则下列说法正确的是(). A.男、女生做代表的可能性一样大B.男生做代表的可能性较大C.女生做代表的可能性较大D.男、女生做代表的可能性的大小不能确定答案:B分析:根据题意,只要求出男生和女生当选的可能性,再进行比较即可解答.∵某班有25名男生和24名女生,∴用抽签方式确定一名学生代表,男生当选的可能性为2525+24=25 49,女生当选的可能性为2425+24=24 49,∴男生当选的可能性大于女生当选的可能性.故选B.小提示:此题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.4、现有4张卡片,正面图案如图所示,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是()A .16B .18C .110D .112 答案:A分析:画树状图,共有12种等可能的结果,所抽取的卡片正面上的图形恰好是“天问”和“九章”的结果有2种,再由概率公式求解即可.解:把印有“北斗”、“天问”、“高铁”和“九章”的四张卡片分别记为:A 、B 、C 、D , 画树状图如图:共有12种等可能的结果,所抽中的恰好是B 和D 的结果有2种, ∴所抽取的卡片正面上的图形恰好是“天问”和“九章”的概率为212=16. 故选:A .小提示:本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.5、平行四边形ABCD 的对角线AC 、BD 相交于O ,给出的四个条件①AB=BC ;②∠ABC =90°;③OA=OB ;④AC ⊥BD ,从所给的四个条件中任选两个,能判定平行四边形ABCD 是正方形的概率是( )A .13B .12C .16D .23答案:D分析:先确定组合的总数,再确定能判定是正方形的组合数,根据概率公式计算即可. 一共有①②,①③,①④,②③,②④;③④6种组合数, 其中能判定四边形是正方形有①②,①③,②④,③④4种组合数, 所以能判定平行四边形ABCD 是正方形的概率是46=23, 故选D .小提示:本题考查了概率公式计算,熟练掌握正方形的判定是解题的关键.6、同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( ) A .14B .13C .12D .23 答案:C分析:根据题意可画出树状图,然后进行求解概率即可排除选项. 解:由题意得:∴一枚硬币正面向上、一枚硬币反面向上的概率是P =24=12;故选C .小提示:本题主要考查概率,熟练掌握利用树状图求解概率是解题的关键.7、①三点确定一个圆; ②平分弦的直径平分弦所对的弧;③同圆或等圆中,相等的弦所对的圆心角相等;④在半径为4的圆中,30°的圆心角所对的弧长为π3;⑤方程x 2-x +3=0的两根之积是3,从上述5个命题中任取一个,是真命题的概率是( ) A .1B .35C .25D .15 答案:C分析:先根据确定圆的条件对①进行判断;根据垂径定理的推论对②进行判断;根据圆心角、弧、弦的关系对③进行判断;根据弧长公式对④进行判断;利用根与系数关系对⑤进行判断.然后利用概率公式进行计算即可.解:①不在同一直线上的三点可以确定一个圆,故①说法错误,是假命题; ②平分弦(非直径)的直径平分弦所对的弧,所以②错误,是假命题; ③在同圆或等圆中,弦相等,所对的圆心角相等,所以③正确,是真命题; ④在半径为4的圆中,30°的圆心角所对的弧长为2π3,所以④错误,是假命题;⑤方程x 2-x+3=0的两根之积是3,正确,是真命题, 其中真命题有2个,所以是真命题的概率是:25,故选:C .小提示:本题考查了真假命题的判断及概率公式,解题的关键是:先判断命题的真假. 8、如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是( )A .23B .16C .13D .12 答案:D分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.∵共6个数,大于3的有3个, ∴P (大于3)=36=12.故选D .小提示:本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn .9、有4条线段,分别为3cm ,4cm ,5cm ,6cm ,从中任取3条,能构成直角三角形的概率是( ).A .12B .13C .14D .15答案:C分析:列举出所有情况,让能构成直角三角形的情况数除以总情况数即为所求的概率.解:4条线段的全部组合有3cm ,4cm ,5cm ;3cm ,4cm ,6cm ;3cm ,5cm ,6cm ;4cm ,5cm ,6cm ,共四组.能构成直角三角形的组合只有3cm ,4cm ,5cm 一组, ∴P (能构成直角三角形)=14. 故选:C .小提示:本题考查了用列举法求概率,解题关键是列出所有可能,能熟练运用概率公式求解. 10、将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )A .12B .13C .25D .35答案:A分析:随机事件A 的概率P (A )=事件A 发生时涉及的图形面积÷一次试验涉及的图形面积,因为这是几何概率.解:设正六边形边长为a ,过A 作AD ⊥BC 于D ,过B 作BE ⊥CE 于E ,如图所示:∵正六边形的内角为180°−360°6=120°,∴在RtΔACD 中,∠ADC =90°,∠CAD =60°,AC =a ,则AD =12a,CD =√32a , ∴BC =2CD =√3a ,∴在RtΔBCE中,∠BEC=90°,∠BCE=60°,BC=√3a,则CE=√32a,BE=32a,则灰色部分面积为3SΔABC=3×12BC⋅AD=3×12×√3a×12a=34√3a2,白色区域面积为2SΔBCE=2×12CE⋅BE=√32a×32a=3√34a2,所以正六边形面积为两部分面积之和为32√3a2,飞镖落在白色区域的概率P=34√3a232√3a2=12,故选:A.小提示:本题考查了几何概率,熟练掌握几何概率模型及简单概率公式是解决问题的关键.填空题11、小兰和小华两人做游戏,她们准备了一个质地均匀的正六面体骰子,骰子的六个面分别标有1,2,3,4,5,6,若掷出的骰子的点数为偶数,则小兰赢;若掷出的骰子的点数是3的倍数,则小华赢,游戏规则对______(填“小兰”或“小华”)有利.答案:小兰分析:根据所出现的情况,分别计算两人能赢的概率,即可解答.解:骰子的点数是偶数的有2,4,6,其概率为36=12,骰子的点数是3的倍数的有3,6,其概率为26=13,而12>13,∴游戏规则对小兰有利,所以答案是:小兰.小提示:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.12、某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加,现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是____________.答案:13分析:用初一(3)班报名学生人数除以总人数即可得.解:∵在这6名同学中,有2人来自初一(3)班,∴被选中的这名同学恰好是初一(3)班同学的概率是26=13,所以答案是:13.小提示:本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.13、巧板是我国古代劳动人民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组成.如图是利用七巧板拼成的正方形,随机向该图形内抛一枚小针,则针尖落在阴影部分的概率为 _____.答案:38分析:设大正方形的边长为2,先求出阴影区域的面积,然后根据概率公式即可得出答案.图,设小正方形的边长为1,根据等腰三角形和正方形的性质可求得AB=BE=2√2,FG=DC=√2,则空白的面积为:12×√2×√2+1×1+12×1×1×2+12×2×2=5;大正方形的面积是:2√2×2√2=8,阴影区域的面积为:8-5=3,所以针尖落在在阴影区域上的概率是:38.所以答案是:3.8小提示:本题考查几何概率,熟练掌握几何概率的计算方法是解题的关键.14、如图,在边长为1的小正方形组成的3×3网格中,A,B两点均在格点上,若在格点上任意放置点C,恰的概率为_________.好使得△ABC的面积为12##0.375答案:38分析:按照题意分别找出点C所在的位置,根据概率公式求出概率即可.的三角形,解:可以找到6个恰好能使△ABC的面积为12,则概率为:6÷16=38所以答案是:3.8小提示:此题主要考查了概率公式,解决此题的关键是正确找出恰好能使△ABC的面积为1的点.15、口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是___.答案:37分析:用袋子中编号为偶数的小球的数量除以球的总个数即可得.解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为3,7所以答案是:37.小提示:本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.解答题16、为落实“垃圾分类”,环保部门要求垃圾要按A,B,C,D四类分别装袋、投放,其中A类指废电池、过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收物,D类指其他垃圾.小明、小亮各投放了一袋垃圾.(1)小明投放的垃圾恰好是A类的概率为;(2)求小亮投放的垃圾与小明投放的垃圾是同一类的概率.答案:(1)14(2)14分析:(1)直接利用概率公式求出小明投放的垃圾恰好是A类的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.(1)解:∵垃圾要按A,B,C,D四类分别装袋,小明投放了一袋垃圾,∴小明投放的垃圾恰好是A类的概率为:14;所以答案是:14;(2)解:如图所示:由图可知,共有16种可能结果,其中小亮投放的垃圾与小明投放的垃圾是同一类的结果有4种,所以小亮投放的垃圾与小明投放的垃圾是同一类的概率为416=14.小提示:此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.17、一个不透明的口袋中装有6个红球,9个黄球,3个白球,这些球除颜色外其他均相同.从中任意摸出一个球,(1)求摸到的球是白球的概率,(2)如果要使摸到白球的概率为14,需要在这个口袋中再放入多少个白球?答案:(1)16(2)2分析:(1)直接利用概率公式求解即可;(2)根据绿球的概率公式得到相应的方程,求解即可.(1)解:根据题意分析可得:口袋中装有红球6个,黄球9个,白球3个,共18个球,故P(摸到白球)=318=16(2)设需要在这个口袋中再放入x个白球,得:3+x18+x =14,解得:x=2.经检验x=2符合题意,所以需要在这个口袋中再放入2个白球.小提示:本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.18、第一盒中有1个白球、1个黑球,第二盒中有1个白球,2个黑球.这些球除颜色外无其他差别,分别从每个盒中随机取出1个球,用画树状图或列表的方法,求取出的2个球都是白球的概率.答案:16分析:用列表法表示所有可能出现的结果情况,进而得出两次都是白球的概率即可.解:用列表法表示所有可能出现的结果情况如下:1种,所以取出的2个球都是白球的概率为16.答:取出的2个球都是白球的概率为16.小提示:本题考查简单事件的概率,正确列表或者画树状图是解题关键.。
2020-2021学年九年级数学上册尖子生课时培优题典 专题3

专题3.4第3章概率的进一步认识单元测试(培优卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019春•招远市期中)下列说法中,正确的是()A.口袋中有3个白球,2个黑球,1个红球,它们除颜色外都相同,因为袋中共有3种颜色的球,所以摸到红球的概率是B.掷一枚硬币两次,可能的结果为两次都是正面,一次正面一次反面,两次都是反面,所以掷出两次都是反面的概率为C.小明参加篮球投篮游戏,因为投篮一次,只有两种可能的结果,不是“投中”就是“未投中”,所以投中的概率为D.掷一枚只有六个面骰子,合数点朝上的概率是2.(2020•郑州一模)2019年9月8日第十一届全国少数民族传统体育运动会在郑州奥体中心隆重开幕,某单位得到了两张开幕式的门票,为了弘扬劳动精神,决定从本单位的劳动模范小李、小张、小杨、小王四人中选取两人去参加开幕式,那么同时选中小李和小张的概率为()A.B.C.D.3.(2020•牡丹江)现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是()A.B.C.D.4.(2019秋•德州期末)书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是()A.B.C.D.5.(2020•金牛区模拟)书架上放着三本古典名著和两本外国小说,小明从中随机抽取两本,两本都是古典名著的概率是()A.B.C.D.6.(2020•郑州模拟)太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程.根据规定,我市将垃圾分为了四类:可回收垃圾、餐厨垃圾、有害垃圾和其他垃圾.现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投入进两个不同的垃圾桶,投放正确的概率是()A.B.C.D.7.(2019秋•南充期末)如图,转盘的红色扇形圆心角为120°.让转盘自由转动2次,指针1次落在红色区域,1次落在白色区域的概率是()A.B.C.D.8.(2019秋•揭西县期末)口袋中有14个红球和若干个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,记下颜色后放回,多次实验后发现摸到白球的频率稳定在0.3,则白球的个数是()A.5 B.6 C.7 D.89.(2019•德州)甲、乙是两个不透明的纸箱,甲中有三张标有数字,,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.若a,b能使关于x的一元二次方程ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为()A.B.C.D.10.(2020•浙江自主招生)小甬最初站在平面直角坐标系的原点O处,然后他抛掷一枚硬币3次,并根据硬币抛掷情况做相应移动.每次当硬币数字朝上时,他就向x轴正方向移动一个单位;当硬币另一面朝上时,他就往x轴负方向移动一个单位.则他能够经过(2,0)的概率是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020•思明区校级二模)在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有个.12.(2020•长葛市一模)在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有个.13.(2020春•沙坪坝区校级月考)某农科所在相同条件下做某作物种子发芽率的实验,结果如下表所示:种子个数200 300 500 700 800 900 1000发芽种子个数187 282 435 624 718 814 901发芽种子频率0.935 0.940 0.870 0.891 0.898 0.904 0.901 根据实验所得数据,估计“发芽种子”的概率是.(结果保留小数点后一位)14.(2020•平顶山模拟)现有四张卡片,正面分别写有汉字“我”“爱”“中”“国”,反面是完全相同的五角星图案.现将背面朝上充分洗匀后,从中任意抽取2张,其正面文字恰好组成“爱国”字样的概率为.15.(2020•平房区二模)在一个不透明的袋子中装有3个红球和2个白球,它们除颜色外完全相同,现从中一次摸出两个球,摸到的恰好都为红球的概率为.16.(2020•成都模拟)在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入3个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,则袋中红球约有个.17.如图,从甲地到乙地有三条路线,从乙地到丙地有三条路线,某人任选一条从甲地到丙地的路线,它正好是最短的路线的概率是.18.(2019秋•渝中区校级期末)某班级准备举办“迎鼠年,闹新春”的民俗知识竞答活动,计划A、B两组对抗赛方式进行,实际报名后,A组有男生3人,女生2人,B组有男生1人,女生4人,若从两组中各随机抽取1人,则抽取到的两人刚好是1男1女的概率是.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2020•邗江区一模)某校举行趣味运动会共有三个项目:A.“协力竞走”、B.“快乐接力”、C.“摸石过河”.小明和小刚参与了该运动会的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到A.“协力竞走”项目组的概率为;(2)列表或画树状图求小明和小刚被分配到同一项目组的概率.20.(2020•金昌)2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A级旅游景区,分别为A:嘉峪关文物景区;B:平凉崆峒山风景名胜区;C:天水麦积山景区;D:敦煌鸣沙山月牙泉景区;E:张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩.(1)张帆一家选择E:张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E:张掖七彩丹霞景区,他们再从A,B,C,D四个景区中任选两个景区去旅游,求选择A,D两个景区的概率(要求画树状图或列表求概率).21.(2020•船营区校级一模)在这场疫情中,“新型冠状性病毒”拆散了许多家庭,也有不少人的生命戛然而止,令人心痛.小明为了纪念这场疫情,自己动手做了四张扑克牌,四张扑克牌的文字分别为“武”、“汉”、“加”、“油”.小明将4张扑克牌翻成反面,然后搅匀扑克牌,搅匀后从中随机抽取一张牌,记录字后然后放回去,接着抽取一张牌,记录第二张牌上的字.请用画树状图或列表的方法,求出摸到两次“武”字的概率.22.(2020•宿迁)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).23.(2019秋•东台市期末)在一个不透明的袋子里有1个红球,1个黄球和n个白球,它们除颜色外其余都相同.(1)从这个袋子里摸出一个球,记录其颜色,然后放回,摇均匀后,重复该实验,经过大量实验后,发现摸到白球的频率稳定于0.5左右,求n的值;(2)在(1)的条件下,先从这个袋中摸出一个球,记录其颜色,放回,摇均匀后,再从袋中摸出一个球,记录其颜色.请用画树状图或者列表的方法,求出先后两次摸出不同颜色的两个球的概率.24.(2020•盐城)生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数;(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为2×2的网格图,它可表示不同信息的总个数为;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示个人身份信息,若该校师生共492人,则n的最小值为.25.某中学八年级(8)班同学积极参加体育锻炼,该班班长在篮球场对自己进行篮球定点投球测试,下表示他的测试成绩及相关数据:第一回投球第二回投球第三回投球第四回投球第五回投球第六回投球每回的投球次5 10 15 20 25 30数n3 7 14 17 18每回的进球次数m每次投进频率0.6 0.7 0.4 0.68 0.6(1)请将表格补充完整;(2)根据表格画出班长每回投球时进球频率的折线统计图;(3)如果这个测试继续进行下去,每回的投球次数不断增加,根据上表数据,测试成绩的频率将稳定在他每回投球时进球的概率附近摆动,请你估计这个概率,并说明理由.(结果用分数表示)26.(2020•佛山模拟)某校为了解九年级全体学生物理实验操作的情况,随机抽取了30名学生的物理实验操作考核成绩,并将数据进行整理,分析如下:(说明:考核成绩均取整数,A级:10分,B级:9分,C级:8分,D级:7分及以下)收集数据10,8,10,9,5,10,9,9,10,8,9,10,9,9,8,9,8,10,7,9,8,10,9,6,9,10,9,10,8,10整理数据整理、描述样本数据,绘制统计表如下:抽取的30名学生物理实验操作考核成绩频数统计表成绩等级A B C D人数(名)10 m n 3根据表中的信息,解答下列问题:(1)m=,n=;(2)若该校九年级共有800名学生参加物理实验操作考核,成绩不低于9分为优秀,试估计该校九年级参加物理实验操作考核成绩达到优秀的学生有多少名?(3)甲、乙、丙、丁是九年级1班物理实验考核成绩为10分的四名学生,学校计划从这四名学生中随机选出两名学生代表学校去参加全市中学生“物理实验操作”竞赛,用列表法或画树状图法,求甲、乙两名学生中至少有一名被选中的概率.。
人教版九年级数学上册 25.3 用频率估计概率 培优训练卷(含答案)

第二十五章 概率初步 25.3 用频率估计概率培优训练卷一、选择题(共10小题,3*10=30)1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( ) A .频率就是概率 B .频率与试验次数无关 C .概率是随机的,与频率无关D .随着试验次数的增加,频率一般会越来越接近概率2.已知抛一枚均匀硬币正面朝上的概率为 ,下列说法错误的是( ) A .连续抛一枚均匀硬币2次必有1次正面朝上 B .连续抛一枚均匀硬币10次都可能正面朝上C .大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的 3.抛掷一枚普通的正方体骰子,四位同学各自发表了如下见解: ①出现“点数为奇数”的概率等于出现“点数为偶数”的概率; ②只要连掷6次,一定会“出现1点”;③抛掷前默念几次“出现6点”,抛掷结果“出现6点”的可能性就会加大; ④连续抛掷3次,出现的点数之和不可能等于19. 其中正确的见解有( ) A .1个B .2个C .3个D .4个4.某人做抛硬币试验时,抛掷n 次,正面朝上m 次(即正面朝上的频率P =mn ),则下列说法正确的是( )A .P 一定等于12B .P 一定不等于12C .多抛一次,P 更接近12D .抛掷次数逐渐增加,P 稳定在1附近下面有三个推断:①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;②根据上表,估计绿豆发芽的概率是0.95;③若n为4 000,估计绿豆发芽的粒数大约为3 800粒.其中推断合理的是( )A.①B.①②C.①③D.②③6.做重复试验:抛掷一枚啤酒盖1000次,经过统计得“凸面向上”的次数为420次,则可以由估计抛掷这枚啤酒盖出现“凸面向上”的概率约为( )A.0.22 B.0.42 C.0.50 D.0.587. 某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过98. 某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球9.为了估计水塘中的鱼的条数,养鱼者首先得从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把鱼可估计为( )A.3 000条B.2 200条C.1 200条D.600条10. 如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此试验,则当投掷次数为10 000时,“钉尖向上”的频率一定是0.620.其中合理的是( )A.①B.②C.①②D.①③二.填空题(共8小题,3*8=24)11.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”和“6”,如果试验的次数增多,出现数字“6”的频率的变化趋势是接近____12. 下表记录了一名球员在罚球线上投篮的结果,那么这名球员投篮一次,投中的概率约是________.13. 在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_______.14. 如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是__________m2.子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为_________.16. 某瓷砖厂在相同条件下抽取部分瓷砖做耐磨实验,结果如下表所示:则这个厂生产的瓷砖是合格品的概率估计值是______.(精确到0.01)17. 如图,这是一幅长为3 m,宽为2 m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为______m2.18. 在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为____.三.解答题(共7小题,46分)19.(6分) 儿童节期间,某公园游戏场举行一场活动.有一种游戏规则是在一个装有8个红球和若干个白球(每个球除颜色不同外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个玩具.已知参加这种游戏的儿童有40000人次,公园游戏场发放玩具8000个.(1)求参加此次活动得到玩具的频率;(2)请你估计袋中白球的数量接近多少.20. (6分)在一个不透明的袋子里有1个红球,1个黄球和n个白球,它们除颜色外其余都相同.(1)从这个袋子里摸出一个球,记录其颜色,然后放回,摇均匀后,重复该试验,经过大量试验后,发现摸到白球的频率稳定于0.5左右,求n的值;(2)在(1)的条件下,先从这个袋中摸出一个球,记录其颜色,放回,摇均匀后,再从袋中摸出一个球,记录其颜色.请用画树状图或者列表的方法,求出先后两次摸出不同颜色的两个球的概率.21. (6分) 某中学为了科学建设“学生健康成长工程”,随机抽取了部分学生家庭对其家长进行了主题“周末孩子在家您关心了吗?”的调查问卷,将收回的调查问卷进行了分析整理,得到了如下的样本统计图表和扇形统计图:代号情况分类家庭数A带孩子玩且关心其作业完成情况8B只关心其作业完成情况mC只带孩子玩4D既不带孩子玩也不关心其作业完成情况n(1)求m,n的值;(2)该校学生家庭总数为500,学校决定按比例在B、C、D类家庭中抽取家长组成培训班,其比例为B类20%,C、D类各取60%,请你估计该培训班的家庭数;22. (6分) 为了了解初中生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:A.只愿意就读普通高中;B.只愿意就读中等职业技术学校;C.就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了如图所示的尚不完整的统计图,请根据相关信息,解答下列问题:(1)本次活动共调查了多少名学生?(2)补全图①,并求出图②中B区域的圆心角的度数;(3)若该校八、九年级的学生共有2800名,请估计该校八、九年级学生中只愿意就读中等职业技术学校的人数.23.(6分)为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目长跑短跑跳绳跳远学生数200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;24.(8分)小颖和小红两名同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验.(1)她们在一次试验中共掷骰子60次,试验的结果如下:①填空:此次试验中“5点朝上”的频率为________;②小红说:“根据试验,出现5点的概率最大.”她的说法正确吗?为什么?(2)小颖和小红在试验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表法或画树状图法加以说明,并求出其概率.25.(8分)某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了多少名学生?(2)补全条形统计图;(3)若该校共有1500名,估计爱好运动的学生有多少人?(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是多少?参考答案1-5 DABDD 6-10 BDDCB 11. 1612. 0.5 13. 100 14. 1 15.30 16. 0.95 17. 2.4 18. 2019. 解:(1)参加此次活动得到玩具的频率m n =800040000=15(2)设袋中共有a 个球,则摸到红球的概率P(红球)=8a ,∴8a ≈15,解得a≈40,所以白球接近40-8=32(个) 20. 解:(1)根据题意,得n 2+n =12,解得n =2(2)画树状图如下:由树状图知,共有16种等可能结果,其中先后两次摸出不同颜色的两个球的结果数为10, ∴先后两次摸出不同颜色的两个球的概率为1016=5821. 解:(1)参与调查的家庭数=820%=40(个).B 所占的百分比=234º360º=65%,所以m=65%×40=26(个), n=40﹣(8+26+4)=2(个);(2)C 、D 所占的百分比=1﹣20%﹣65%=15%, 培训班家庭数=500×65%×20%+500×15%×60%=110(个) 答:该培训班的家庭数是110个;22. 解:(1)C 部分所占的百分比为36360×100%=10%,(2)只愿意就读中等职业技术学校的学生人数为800-480-80=240, 补全图形如下图所示.图②中B 区域的圆心角的度数是240800×360°=108°.(3)估计该校八、九年级学生中只愿意就读中等职业技术学校的人数为240800×2800=840.23. 解:(1)同时喜欢短跑和跳绳的概率=1501000=320;(2)同时喜欢三个项目的概率=200+15.1000= 7200;(3)喜欢长跑的有700人中,有150人选择了短跑,550人选择了跳绳,200人选择了跳远,于是喜欢长跑的学生又同时喜欢跳绳的可能性大.24. 解:(1)①∵试验中“5点朝上”的次数为20,总次数为60, ∴此次试验中“5点朝上”的频率为2060=13.②小红的说法不正确.理由:∵利用频率估计概率的试验次数必须比较多,重复试验,频率才会慢慢接近概率.而她们的试验次数太少,没有代表性,∴小红的说法不正确. (2)列表如下:由表格可以看出,共有36种等可能的结果,其中点数之和为7的结果数最多,有6种, ∴两枚骰子朝上的点数之和为7时的概率最大,为636=16.∴共调查人数为:40÷40%=100(2)爱好上网的人数所占百分比为10%∴爱好上网人数为:100×10%=10,∴爱好阅读人数为:100﹣40﹣20﹣10=30,补全条形统计图,如图所示,(3)爱好运动所占的百分比为40%,∴估计爱好运用的学生人数为:1500×40%=600 (4)爱好阅读的学生人数所占的百分比30%,∴用频率估计概率,则选出的恰好是爱好阅读的学生的概率为3 10,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【拔尖特训】2023-2024学年九年级数学上册尖子生培优必刷题(人教版)专题25.4概率有关大题专练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:一.解答题(共30小题)1.(2023•四平模拟)箱子里有4瓶牛奶,其中有一瓶是过期的.设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.2.(2023•吉安模拟)为了落实“双减”精神,弘扬非遗(非物质文化遗产)传统文化,某校在课外兴趣班中拟开展如下活动:A(瑞昌剪纸)、B(瑞昌竹编)、C(九江山歌)、D(德安潘公戏).小明和小涵随机报名参加其中的一项兴趣活动.(1)“小明参加九江山歌兴趣活动”这一事件是;(请将正确答案的序号填写在横线上)①必然事件;②不可能事件;③随机事件;(2)请用列表或画树状图的方法,求小明和小涵参加的兴趣活动都是端昌的非物质文化遗产的概率.3.(2023•淮阴区三模)泰州的旅游景点很多,现有A、B、C三个景点.(1)若小明任选一个景点游玩,问选中A景点的概率是多少?(2)若小明任选两个景点游玩,问选中A和B两个景点的概率是多少?(用列表法或树状图求解)4.(2023•长春模拟)12月18日卡塔尔世界杯闭幕.小明搜集到三张如图所示的不透明的卡片,正面图案分别是吉祥物la’eeb,足球ALRIHLA和大力神杯,依次记为A、B、C,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀.小明从中随机抽取一张,记录图案放回,重新洗匀后再从中随机抽取一张.用画树状图(或列表)的方法,求小明两次抽到图案不相同的概率.5.(2023•番禺区校级二模)为落实“垃圾分类”,环卫部门要求垃圾要按A、B、C三类分别装袋投放,其中A类指废电池、过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾,甲、乙各投放了一袋垃圾.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求甲乙投放的垃圾恰好是同类垃圾的概率(要求画出树状图).6.(2023•天台县一模)初中数学课程内容包含数与代数、图形与几何、统计与概率、综合与实践四个学习领域,每个学习领域包含各自课程子内容.某校为了解九年级学生对数学知识的掌握情况,随机调查了100名九年级学生在一次数学模拟考试中三个领域子内容的得分率,获得数据并整理成下表.(得分率=实际得分÷考核分×100%)三个学习领域课程子内容的得分率统计表课程内容数与代数图形与几何统计与概率数与式方程与不等式函数图形的性质图形的变化图形与坐标抽样与数据分析随机事件的概率得分率90%80%70%70%60%80%95%95%(1)请估计该校九年级学生在八项课程子内容中,哪一项内容得分率最低?(2)小明说:“样本中“数与代数”领域的得分率为80%.”请判断小明的说法是否合理,并说明理由;(3)你认为该校九年级下阶段在“数与代数”、“图形与几何”和“统计与概率”这三个领域中应更侧重于哪一个领域的复习?并选择合适的统计量说明理由.7.(2023•衡水模拟)如图1,有一个质地均匀且四个面上分别标有数字“1”“2”“3”“4”的正四面体骰子,小明与小红按照以下规则进行游戏活动:两人轮流掷这枚骰子,骰子着地的数字是几,就将棋子前进几格,开始棋子在数字“1”的那一格.例如:小明先掷骰子,所掷骰子着地一面所示数字为3,则棋子前进到数字4那一格.(1)小明掷出骰子,数字“6”着地是;A.不可能事件B.必然事件C.随机事件(2)小明先掷骰子,小红再掷.补全图2中的树状图,并分析第一轮结束后,棋子前进到数字“6”那一格的概率.8.(2023•宿城区二模)有四张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到标有负数的卡片的概率;(2)设平面直角坐标系内点A(x,y),现随机抽取一张卡片,将卡片上的数字记作x,然后不放回,再随机抽取一张卡片,将卡片上的数字记作y.请求出点A在第二象限的概率.9.(2023•碑林区校级模拟)某校为了弘扬国学经典,激发学生对传统文化的兴趣举办了“诗词大赛”,每班选2名参赛学生,某班有1名女生和3名男生报名参加.(1)要从这4名学生中随机选取1名学生参加比赛,则选取的恰好是男生的概率为;(2)若要从这4名学生中随机选取2名学生参加比赛,请用列表或画树状图的方法,求选取的2名学生恰好是1名男生、1名女生的概率.10.(2022•青岛)2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享.游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球,若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.11.(2022秋•钦南区校级月考)小月和小浩分别旋转两个转盘(如图),若其中一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小月得2分,否则小浩得1分.(1)用画树状图或列表法,求配成紫色的概率;(2)这个游戏对双方公平吗?若你认为不公平,如何修改规则才能使游戏对双方公平?12.(2022秋•顺德区校级月考)某校数学实验小组举行了“数学即生活大赛”,每位参赛选手共提供身边数学100个数例.现从参加比赛的男女选手中分别随机抽取部分学生进行调查,对答对的情况进行分组如下:A组:x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100.并绘制了如下不完整的统计图:请根据以上信息解答下列问题:(1)本次调查共抽取了多少名学生,并将条形统计图补充完整;(2)求出A组所对的扇形圆心角的度数;(3)若从D、E两组中分别抽取一位学生进行采访,请用画树状图或列表法求出恰好抽到两位女学生的概率.13.(2022•淮安)一只不透明的袋子中装有3个大小、质地完全相同的乒乓球,球面上分别标有数字1、2、3,搅匀后先从袋子中任意摸出1个球,记下数字后放回,搅匀后再从袋子中任意摸出1个球,记下数字.(1)第一次摸到标有偶数的乒乓球的概率是;(2)用画树状图或列表等方法求两次都摸到标有奇数的乒乓球的概率.14.(2022•淮阴区模拟)五一期间,甲、乙两人在附近的景点游玩,甲从A、B两个景点中任意选择一个游玩,乙从A、B、C三个景点中任意选择一个游玩.(1)乙恰好游玩A景点的概率为;(2)用列表或画树状图的方法列出所有等可能的结果.并求甲、乙恰好游玩同一景点的概率.15.(2023秋•李沧区期中)在校内课后托管服务实施过程中,某校设置了多种社团活动供同学们选择.小明喜欢的社团有:篮球社团、足球社团、书法社团、科技社团.分别用字母A,B,C,D依次表示,并写在四张完全相同的不透明的卡片的正面,然后将这四张卡片背面朝上,洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B的概率是;(2)由于受资源的限制,学校规定,本学期每人最多可报两个社团参加活动.小明打算从四张卡片中一次性抽取两张卡片决定自己的最终志愿.请你用列表法或画树状图法,求出小明抽取的卡片中有一张是科技社团D的概率.16.(2023秋•莲湖区期中)杭州亚运会吉祥物“琮琮”“莲莲”和“宸宸”,是一组承载深厚底蕴和充满时代活力的机器人,组合名为“江南忆”,出自唐朝诗人白居易的名句“江南忆,最忆是杭州”.三个吉祥物的设计灵感分别来自杭州的三大世界文化遗产——良渚古城遗址、西湖和京杭大运河.小婷同学购买了一些杭州亚运会吉祥物,她想把其中的两只送给小琪和小雨同学,于是,她把“琮琮”“莲莲”和“宸宸”分别写在三张卡片上,三张卡片除了吉祥物的名字以外,其他全部相同,每张卡片被抽到的可能性相同,且每次抽出以后放回,将卡片洗匀继续抽取.请你用画树状图或列表的方法求出小琪和小雨同学抽到不同吉祥物的概率.17.(2023秋•太原期中)2023年10月8日,第十九届亚洲运动会正式落下帷幕.山西运动健儿取得优异成绩,其中取得金牌的选手分别是周泽琪、赵楠、郑妮娜力、李亚杰、李赫.为了让同学们走近亚运,了解奥运健儿背后的故事,老师设计如下活动:如图是获得金牌的五位运动员的图片(依次记为A,B,C,D,E,除正面图片外,其余完全相同),然后背面朝上放置,洗匀后每位同学从中随机抽取一张,记下标号后放回,再次洗匀.老师要求每位同学依据抽到的图片上的标号查找相应的运动员资料制作小报,求小华和小刚查找同一位运动员资料的概率.18.(2023秋•拱墅区校级期中)如图是小杭和小益共同设计的自由转动的转盘,转盘被等分成6份,上面写有6个自然数.转动转盘,若指针指向两个扇形的交线时,则重转一次,直到指针指向某个扇形区域为止.(1)求指针指向偶数的概率;(2)若指针指向的数小于6的数则小杭胜,指针指向其他数,则小益胜,这个游戏对双方公平吗?说明理由.19.(2023秋•南山区期中)为全面增强中学生的体质健康,七中育才学校开展“阳光体育活动”,开设了足球、篮球、乒乓球、羽毛球、排球等球类活动.为了解学生对这五项活动的喜爱情况,随机调查了一些学生(每名学生必选且只能选择这五项活动中的一种),根据以下统计图提供的信息,请解答下列问题:(1)本次被调查的学生有名;(2)扇形统计图中“排球”对应的扇形的圆心角度数是;(3)学校准备推荐甲、乙、丙、丁四名同学中的2名参加全市中学生排球比赛,请用列表法或树状图法分析甲和乙同学同时被选中的概率.20.(2023秋•天桥区期中)有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M的坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率.21.(2023•石峰区二模)我校九年级为庆祝毕业典礼开展了文艺汇演活动,需要从九年级挑选出汇演活动的主持人.(1)若有三名候选人A,B,C竞选主持人,要求九年级的每名学生只能从这三人中选一人(候选人也参与投票),经统计,三名候选人A,B,C的得票数之比为6:3:1,若候选人B所得票数为150票,问九年级共有多少人?(2)若有2名男生,2名女生为候选人,从这4名学生中随机抽取2名学生作为主持人,请用列举法或树状图法求恰好抽到1名男生和1名女生的概率.22.(2022秋•临海市期末)如图是科学兴趣小组在做电路实验时设计的一个电路图,3个开关S1,S2,S3都有断开和闭合两种状态,现在都是断开状态,随机闭合两个开关.(1)用画树状图或列表的方法列出所以可能的情况;(2)求电路形成通路(灯泡亮)的概率.23.(2023秋•高新区期中)从一副扑克牌中选出五张牌,牌面数字分别为2,5,6,7,9,将这些牌背面朝上洗匀.(1)从这五张牌中随机抽出一张牌,这张牌上的牌面数字是偶数的概率是;(2)小明从这五张牌中随机抽出一张牌,记下牌面数字后,不放回,然后,小华从中随机抽出一张牌,请用画树状图或列表的方法,求小华抽出的牌上的牌面数字比小明抽出的牌上的牌面数字大的概率.24.(2023秋•青秀区校级期中)为了提高同学们的学习积极性,某校九年级举行了“数学知识竞赛”活动,并随机抽查了部分参赛同学的成绩,整理并制作图表如:分数段频数频率60≤x<70300.170≤x<8090n80≤x<90m0.490≤x<100600.2请根据图表提供的信息,解答下列问题:(1)请求出:m=,n=,抽查的总人数为人;(2)抽查成绩的中位数应落在分数段内;(3)若满分人数有甲、乙、丙、丁四人,现决定从这四名同学中任选两名参加市里的决赛,求恰好选中甲、乙两位同学的概率.(用树状图或列表法解答)25.(2023秋•五华区期中)国庆节期间,明明、亮亮两家人一起去旅行.他们入住了某酒店相邻的两间客房,客房分别记为a ,b .每间客房配有两张房卡,其中客房a 的房卡分别记为A 1,A 2,客房b 的房卡分别记为B 1,B 2,这4张房卡外观完全相同.(1)明明从4张房卡中随机取出一张,只试一次就能打开一间客房的概率为 ;(2)爸爸外出购物时告诉亮亮他带走了房卡B 2,亮亮从剩下的3张房卡中随机取出一张,请用列表法或画树状图法中的一种方法,求他只试一次就能打开一间客房的概率.26.(2023秋•从江县校级月考)在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球试验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如表是试验中的一组统计数据:摸球的次数n100 200 300 500 800 1000 3000 摸到白球的次数m70 128 171 302 481 599 1806 摸到白球的频率m n 0.7 0.64 0.57 0.604 0.601 0.599 0.602(1)请估计当n 很大时,摸到白球的概率为(精确到0.1).(2)估算盒子里有白球 个.(3)若向盒子里再放入x 个除颜色以外其他完全相同的球,这x 个球中白球只有1个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在0.5,那么可以推测出x 最有可能是多少?27.(2023秋•南山区校级月考)在一个不透明的口袋里装有黑、白两种颜色的球共4个.某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回口袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n2048 4040 10000 12000 摸到白球的次数m1061 2048 4979 6019 摸到白球的频率m n0.518 0.5069 0.4979 0.5016 (1)请估计:当n 很大时,摸到白球的频率将会接近 (精确到0.1);(2)试估算口袋中白球有多少个?(3)若从中摸出一个球后不放回,再从余下的球中摸出一个,请用列表法或画树状图的方法(只需要选其中一种),求两次摸到的球的颜色相同的概率.28.(2023春•盐湖区期末)某市林业局积极响应习总书记“青山绿水就是金山银山”的号召,特地考察一种花卉移植的成活率,对本市这种花卉移植成活的情况进行了调查统计,并绘制了如图所示的统计图. 请你根据统计图提供的信息,回答下列问题:(1)这种花卉成活的频率稳定在 附近,估计成活概率为 .(精确到0.1)(2)该林业局已经移植这种花卉20000棵.①估计这批花卉成活的棵数;②根据市政规划共需要成活90000棵这种花卉,估计还需要移植多少棵?29.(2023春•芝罘区期中)投掷一枚质地均匀的正方体骰子.(1)下列说法中正确的有 .(填序号)①向上一面点数为1点和3点的可能性一样大;②投掷6次,向上一面点数为1点的一定会出现1次;③连续投掷2次,向上一面的点数之和不可能等于13.(2)如果小明连续投掷了10次,其中有3次出现向上一面点数为6点,这时小明说:投掷正方体骰子,向上一面点数为6点的概率是310.你同意他的说法吗?说说你的理由.(3)为了估计投掷正方体骰子出现6点朝上的概率,小亮采用转盘来代替骰子做实验.下图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上红、白两种颜色,使得转动转盘,当转盘停止转动后,指针落在红色区域的概率与投掷正方体骰子出现6点朝上的概率相同.(友情提醒:在转盘上用文字注明颜色和扇形圆心角的度数.)30.(2023春•牟平区期末)投掷一枚质地均匀的正方体骰子.(1)下列事件是确定事件的有.(填序号)①向上一面点数为2点和5点的可能性一样大;②投掷12次,向上一面点数为6点的一定会出现2次;③连续投掷3次,向上一面的点数之和不可能等于19;(2)如果小明连续投掷了20次,其中有6次出现向上一面点数为5点,这时小明说:投掷正方体骰子,向上一面点数为5点的概率是310,你同意他的说法吗?说明理由;(3)为了估计投掷正方体骰子出现5点朝上的概率,小亮采用转盘来代替骰子做实验.如图是一个可以自由转动的转盘,请将转盘分为2个扇形区域,分别涂上红、白两种颜色,使得转动转盘,当转盘停止转动后,指针落在红色区域的概率与投掷正方体骰子出现5点朝上的概率相同.(注:在转盘上用文字注明颜色和扇形圆心角的度数.)。