带电粒子在圆形边界匀强磁场中的圆周运动例析

带电粒子在圆形边界匀强磁场中的圆周运动例析
带电粒子在圆形边界匀强磁场中的圆周运动例析

带电粒子在圆形边界匀强磁场中的圆周运动例析

(浙江永康二中 吕未寒 321300)

带电粒子以一定速度垂直射入匀强磁场中,洛伦兹力充当向心力,粒子将做匀速圆周运动。解决带电粒子在圆形匀强磁场中的偏转解题基本思路:(四项基本原则)

●画轨迹——根据初速度和受力方向画 ●定圆心——根据两条直径相交在圆心定

●找关系——找力学关系、线度关系、角度关系

●求变量——求半径或长度、周期或时间、其它物理量

解题时画好辅助线(半径、速度、轨迹圆的圆心、连心线)。偏转角度θ可由R

r

=2

tan θ求出,经历时间由qB

m t θ=得出。注意:带电粒子运动具有对称性,射出线的反向

延长线必过磁场圆的圆心。

带电粒子在磁场中做匀速圆周运动的三个基本公式:

①洛伦兹力提供向心力 r

m v qvB 2

=

②轨迹半径 ,qB

m v r =

③周期 qB

m T π2= (T 与r ,v 无关)

一、 临界值问题

例题1.如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向外的匀强磁场,磁感应强度为B 。圆心O 放射源,放出粒子的质量为m ,带电量为q ,假设粒子速度方向都和纸面平行。

(1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A 则初速度的大小是多少?

(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少? 解:(1)如图所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得

331r R =

(2分) 由1

2

11R v m B qv =(2分)

得m

Bqr

v 331=

(2分) (2)设粒子在磁场中的轨道半径为R 2,

则由几何关系 22

222)2(r R R r +=- (1分)

得r R 4

3

2=

(1分) 由 2

22

2R v m B qv = (2分)

得m

Bqr

v 432=

(1分) 例题2.甲图为质谱仪的原理图.带正电粒子从静止开始经过电势差为U 的电场加速后,从G 点垂直于MN 进入偏转磁场.该偏转磁场是一个以直线MN 为上边界、方向垂直于纸面向外的匀强磁场,磁场的磁感应强度为B ,带电粒子经偏转磁场后,最终到达照相底片上的H 点.测得G 、H 间的距离为 d ,粒子的重力可忽略不计.

(1)设粒子的电荷量为q ,质量为m ,试证明该粒子的比荷为:22

8q U m B d =;

(2)若偏转磁场的区域为圆形,且与MN 相切于G 点,如图乙所示,其它条件不变。要保证上述粒子从G 点垂直于MN 进

入偏转磁场后不能..打到MN 边界上(MN 足够长),求磁场区域的半径应满足的条件。

解:(1)粒子经过电场加速,进入偏转磁场时速度为v 有

221mv qU =

① (1分)

进入磁场后做圆周运动,轨道半径为r

r

v m qvB 2

= ② (2分)

打到H 点有 2d

r =

③ (1分) 由①②③得

228d B U m q = (2)要保证所有粒子都不能打到MN 边界上,粒子在磁场中运动偏角小于90°,临界状态为90°,如图所示,磁场区半径

N

M

G

2

d

r R =

= (2分) 所以磁场区域半径满足2

d

R ≤ (2分)

二、重复性问题

例题3.如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a 、b 、c 和d ,外筒的外半径为r ,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的

大小为B 。在两极间加上电压,使两圆筒之间的区

域内有沿半径向外的电场。一质量为m、带电量为

+q 的粒子,从紧靠内筒且正对狭缝a 的S 点出发,

初速为零。如果该粒子经过一段时间的运动之后恰

好又回到出发点S ,则两电极之间的电压U 应是多少?(不计重力,整个装置在真空中)

解析:如图所示,带电粒子从S 点出发,在两筒之间的电场作用下加速,沿径向穿过狭缝a 而进入磁场区,在洛伦兹力作用下做匀速圆周运动。粒子再回到S 点的条件是能沿径向穿过狭缝d .只要穿过了d ,粒子就会在电场力作用下先减速,再反向加速,经d 重新进入磁场区,然后粒子以同样方式经过c 、b ,再回到S 点。设粒子进入磁场区的速度大小为v ,根据动能定

理,有 22

1mv qU =

设粒子做匀速圆周运动的半径为R ,由洛伦兹力公式和牛顿第二定律,有

R

v m

qvB 2=

由前面分析可知,要回到S 点,粒子从a 到d 必经过

43圆周,所以半径R 必定等于筒的外半径r ,即R=r 。由以上各式解得m

qr B U 222=。 例题4.如图所示,一个质量为m 、电量为q 的正离子,从A 点正对着圆心O 以速度v 射入半径为R 的绝缘圆筒中。圆筒内存在垂直纸面向里的匀强磁场。要使带电粒子与圆筒内壁碰撞多次后仍从A 点射出,设粒子与圆筒内壁碰撞时无能量和电量损失,不计粒子的重力。 求:(1)磁感应强度的大小B 为多大? (2)正离子在磁场中运动的时间t . 解析:(1)设粒子与圆筒内壁碰撞n 次(2≥n )

a

c

r

v m B q 2

v =(力学关系)

则每相邻两次碰撞点之间圆弧所对的圆心角为2π/(n+1)(角度关系)

1tan +=n R r π

(线度关系)

得:1

tan

+=

n qR mv B π

(2)根据周期公式 qB

m

T π2=

粒子每碰撞一次运动时间 T t π

θ20= 几何关系得 1

2+-

=n π

πθ 粒子在磁场中运动时间 0)1(t n t += 得qB

m

n m t ππ)1(2+-=

点评:临界值问题中由于粒子运动轨迹半径与粒子运动速度为正比关系,带电粒子不能穿出磁场的临界条件是其运动轨迹圆与磁场边界圆相切。对于解决这类问题关键在于运动图景的描绘,利用几何法求解极值。重复性问题中由于粒子受到电场作用或者碰撞作用,使粒子速度方向,导致粒子运动偏转方向改变。只要抓住带电粒子运动的对称性,其射出线的反向延长线必过磁场圆的圆心。遵循解题四原则:画轨迹,定圆心,找关系(力学关系、线度关系、角度关系),求变量,即可求解。

带电粒子在有界磁场中的运动(含答案)

带电粒子在有界磁场中的运动 带电粒子在磁场中的运动是高中物理的一个难点,也是高考的热点。在历年的高考试题中几乎年年都有这方面的考题。带电粒子在有界磁场中的运动问题,综合性较强,解这类问题既要用到物理中的洛仑兹力、圆周运动的知识,又要用到数学中的平面几何中的圆及解析几何知识。下面按照有界磁场的形状对这类问题进行分类解析。 1、一个基本思路:定圆心、找半径、画轨迹、求时间 (1)圆心的确定:因为洛伦兹力F 指向圆心,根据F ⊥v 画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点)的F 的方向,沿两个洛伦兹力F 画其延长线,两延长线的交点即为圆心。或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置。 (2)半径的确定和计算:qvB=m R v 2, R=Bq mv 或是利用平面几何关系,求出该圆的可能半径(或圆心角)。 并注意以下两个重要几何特点: ①粒子速度的偏向角(φ)等于回旋角(α),并等于AB 弦与切线的夹角(弦切角θ)的2倍(如图所示),即φ=α=2θ=ωt 。 ②相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,即θ+θ′=180°。 (3)粒子在磁场中运动时间的确定:利用回旋角(即圆心角α)与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,由公式qB m T π2= ,T t π α 2=或v R t θ = 。可求出粒子在磁场中的运动时间。 2、一个重要结论 如右图, 带电粒子以速度v 指向圆形磁场的圆心入射,出磁场时速度方向的反向延长线肯定经过圆形磁场的圆心 3、一个重要方法 对于一些可向各个方向发射的带电粒子进入有边界的匀强磁场后出射 问题,可以用假设移动圆法:假设磁场是足够大的,则粒子的运动轨迹是一个完整的圆,当粒子的入射速度方向改变时,相当于移动这个圆。 当带电粒子在足够大的磁场中以速度v 向某一方向射出时,其运动轨迹都是一个圆;若射出粒子的初速度方向转过θ角时,其运动轨迹相当于以入射点为轴,直径转动θ得到的圆的轨迹,如图所示;用这种方法可以解决: a.带电粒子在磁场中在同一点向各个方向射出的问题。 b.粒子在不同的边界射出的问题。 【例1】 在以坐标原点O 为圆心,半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速率v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷 m q ; R

带电粒子在圆形磁场中运动的规律

带电粒子在磁场中的运动 例1.如图所示,在宽度为d磁感应强度为B、水平向外的匀强磁场矩形区域内,一带电粒子以初速度v入射,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A.带电粒子的比荷 B.带电粒子在磁场中运动的周期 C.带电粒子的质量 D.带电粒子在磁场中运动的半径 变式.若带电粒子以初速度v从A点沿直径入射至磁感应强度为B,半径为R的圆形磁场,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 应用1、如图所示,长方形abcd 长ad = 0.6m ,宽ab = 0.3m , O、e分别是ad、bc 的中点,以ad为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度B=。一群不计重力、质量m=3 ×10-7 kg 、电荷量q=+2×10-3C 的带电粒子以速度v=5×l02m/s 沿垂直ad方向且垂直于磁场射入磁场区域( ) A.从Od边射入的粒子,出射点全部分布在Oa边B.从aO边射入的粒子,出射点全部分布在ab边C.从Od 边射入的粒子,出射点分布在Oa 边和ab边 D.从aO边射入的粒子,出射点分布在ab边和bc边 应用2.在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图10所示。一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B′多大此次粒子在磁场中运动所用时间t是多少 例2.如图所示,一束电子流以不同速率,由边界为圆形的匀强磁场的边界上一点A,沿直 径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:() A轨迹长的运动时间长B速率大的运动时间长

带电粒子在圆形磁场中运动的规律.

带电粒子在磁场中的运动 例 1. 如图所示,在宽度为 d 磁感应强度为 B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度 v 入射, 粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A. 带电粒子的比荷 B. 带电粒子在磁场中运动的周期 C. 带电粒子的质量 D. 带电粒子在磁场中运动的半径变式 . 若带电粒子以初速度 v 从 A 点沿直径入射至磁感应强度为 B , 半径为 R 的圆形磁场, 粒子飞出时偏离原方向 60°,利用以上数据可求出下列物理量中的哪几个 应用 1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、 e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场 ,磁感应强度 B =0.25T 。一群不计重力、质

量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度 v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域( A . 从 Od 边射入的粒子, 出射点全部分布在 Oa 边 B . 从 aO 边射入的粒子, 出射点全部分布在 ab 边 C .从 Od 边射入的粒子,出射点分布在 Oa 边和 ab 边 D .从 aO 边射入的粒子,出射点分布在 ab 边和 bc 边 应用 2. 在以坐标原点 O 为圆心、半径为 r 的圆形区域内,存在磁感应强度大小为 B 、方向垂直于纸面向里的匀强磁场,如图 10所示。一个不计重力的带电粒子从磁场边界与 x 轴的交点 A 处以速度 v 沿 -x 方向射入磁场,恰好从磁场边界与 y 轴的交点 C 处沿 +y方向飞出。 (1请判断该粒子带何种电荷,并求出其比荷 q/m; (2若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了 60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间 t 是多少? 例 2. 如图所示, 一束电子流以不同速率, 由边界为圆形的匀强磁场的边界上一点 A , 沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场

带电粒子在有界磁场中运动的分析方法

带电粒子在有界磁场中运动的分析方法

一、带电粒子在有界磁场中运动的分析方法 1.圆心的确定 因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。 2.半径的确定和计算 2

利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点: ①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。 ②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。 3.粒子在磁场中运动时间的确定 3

若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大 小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。 4.带电粒子在两种典型有界磁场中运动情况的分析 ①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。 4

a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标) b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标) c、带电粒子在磁场中经历的时间由 得出。 ②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。 5

带电粒子在磁场中运动(I)

3.6 带电粒子在磁场中的运动(二) 主编:金生华 主审:张国平 班级 姓名 学号 教学目标: 1.学会寻找带电粒子在匀强磁场中做匀速圆周运动的圆心、半径 2.能够处理带电粒子在匀强磁场中做非完整匀速圆周运动时间 教学重难点: 1.如何确立带电粒子在匀强磁场中做匀速圆周运动的圆心、半径及运动时间 难点解析 1、如何确立带电粒子在匀强磁场中做匀速圆周运动的圆心、半径及 运动时间? (1)圆心的确定。因为洛伦兹力f 指向圆心,根据f ⊥v ,画出粒子运动轨迹上任意两 点(一般是射入和射出磁场的两点)的f 的方向,其延长线的交点即为圆心。 (2)半径的确定和计算。圆心找到以后,自然就有了半径(一般是利用粒子入、出磁 场时的半径)。半径的计算一般是利用几何知识,常用解三角形的方法及圆心角等于圆弧上弦切角的两倍等知识。 (3)在磁场中运动时间的确定。利用圆心角与弦 切角的关系,或者是四边形内角和等于360° 计算出圆心角θ的大小,由公式t=ο360 θ×T 可求出运动时间。有时也用弧长与线速度的比。 如图所示,还应注意到: ①速度的偏向角?等于弧AB 所对的圆心角θ。 ②偏向角?与弦切角α的关系为:?<180°,?=2α;?>180°,?=360°-2α; (4)注意圆周运动中有关对称规律 如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等; 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。 典型例题 【例1】如图所示,一束电子(电量为e)以速度v 垂直射入磁感应强度为B ,宽度为d 的匀强 磁场中,穿过磁场时速度方向与电子原来入射方向的夹角是300,则电子的质量是多少?电子穿过磁场的时间是多少? 【例2】如图所示,匀强磁场的磁感应强度为B ,宽度为d ,边界为CD 和EF 。一电子从 CD 边界外侧以速率V 0垂直射入匀强磁场,入射方向与CD 边界间夹角为θ。已知电子的质量为m ,电荷量为e ,求: (1)为使电子能从磁场的另一侧EF 射出,电子的速率v0至少多大? (2)若电子从磁场的CD 一侧射出, 则电子在磁场中的运动时间是多少? 【例3】如图所示,分布在半径为r 的圆形区域内的匀强磁 场,磁感应强度为B ,方向垂直纸面向里。电量为 q 、质量为m 的带正电的粒子从磁场边缘A 点沿圆 的半径AO 方向射入磁场,离开磁场时速度方向偏 转了60°角。试确定:

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题 当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。如何分析这类相关的问题是本文所讨论的内容。 一、带电粒子在有界磁场中运动的分析方法 1.圆心的确定 因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。 2.半径的确定和计算 利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点: ①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。 ②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。 3.粒子在磁场中运动时间的确定

若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出 圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T 即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t 与运动轨迹的长短无关。 4.带电粒子在两种典型有界磁场中运动情况的分析 ①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。 a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标) b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标) c、带电粒子在磁场中经历的时间由得出。 ②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

带电粒子在有界磁场中运动解题方法总结

带电粒子在有界磁场中运动解题方法总结 此类问题的解题关键是寻找临界点,寻找临界点的有效方法是: ①轨迹圆的缩放: 当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R)不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”. 例1一个质量为m,带电量为+q的粒子(不计重力), 从O点处沿+y方向以初速度射入一个边界为矩形的匀强 磁场中,磁场方向垂直于xy平面向里,它的边界分别是 y=0,y=a,x=-1.5a,如图所示,那么当B满足条件_________ 时,粒子将从上边界射出:当B满足条件_________时, 粒子将从左边界射出:当B满足条件_________时,粒子 将从下边界射出: 例2 如图9-8所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成θ角的速度V0垂直射入磁场中。要使粒子必能从EF射出,则初速度V0应满足什么条件?EF上有粒子射出的区域? 【审题】如图9-9所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何知识即可求解速度的临界值;对于射出区域,只要找出上下边界即可。 【解析】粒子从A点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF射出,则 相应的临界轨迹必为过点A并与EF相切的轨迹如图9-10所示,作出A、P点速度的垂线相交于O/即为该临界轨迹的圆心。 临界半径R0由 d Cosθ R R0 = + 有: θ + = Cos 1 d R0 ; 故粒子必能穿出EF的实际运动轨迹半径R≥R0 即: θ + ≥ = Cos 1 d qB mv R0 有: ) Cos 1( m qBd v0 θ + ≥ 。 图9-8 图9-9 图 9-10

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度) 分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。 分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆 ──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。P为屏上的一小孔,PC与MN垂直。一群质量为m、带电荷量为-q的粒子(不计重力),

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中, 如“圆周运动中小球能过最高点的速度条 件” “动量中的避免碰撞问题”等等, 这类题目中往往含有“最大”、 “最高”、“至少”、 “恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁 场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 、解题方法 画图T 动态分析T 找临界轨迹。 (这类题目关键是作图,图画准了,问题就解决了一大 半,余下的就只有计算了——这一般都不难。 ) 、常见题型 (B 为磁场的磁感应强度,V 。为粒子进入磁场的初速度) r ①旳方向一定,大小不确定一第一类 I 』确宦 < ②V 。犬小 一亦方向不确定——第二类 ■③旳大小、方向都不确定一第三类 分述如下: 第一类问题: 例1如图1所示,匀强磁场的磁感应强度为 B,宽度为d ,边界为CD 和EF 。一电子从 CD 边界 外侧以速率 V 。垂直匀强磁场射入,入射方向与CD 边界夹角为0。已知电子的质量为 m 电荷量为e ,为使电子能从磁场的另一侧 EF 射出,求电子的速率 v o 至少多大? 2.行不确宦 -①巾确定 ——第四类 {——五类

例2如图3所示,水平线 MN 下方存在垂直纸面向里的磁感应强度为 B 的匀强磁场,在 MN 线上某点O 正下方与之相距 L 的质子源S,可在纸面内360°范围内发射质量为 m 电量 为e 、速度为 V o =BeL / m 的质子,不计质子重力,打在 MN 上的质子在 O 点右侧最远距离 OP ,打在O 点左侧最 远距离 OO 。 分析:首先求出半径得r =L ,然后作出临界轨迹如图 4所示(所有从 S 发射出去的质子 做圆周运动的轨道圆心是在以 S 为圆心、以r =L 为半径的圆上,这类问题可以先作出这一圆 ——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆) ,O 諒L , OQL 。 【练习】如图5所示,在屏MN 勺上方有磁感应强度为 B 的匀强磁场,磁场方向垂直纸面 向里。P 为屏上的一小孔,PC 与MN 垂直。一群质量为 m 带电荷量为一q 的粒子(不计重力), 分析:如图2,通过作图可以看到:随着 界EF 相切,然后就不难解答了。 第二类问题: V o 的增大,圆半径增大,临界状态就是圆与边

带电粒子在磁场中的圆周运动教案1

带电粒子在磁场中的圆周运动 教学目标: 1.掌握带电粒子在磁场中运动问题的分析方法 2.提高运用数学知识解决物理问题的能力 教学重点: 建立带电粒子在磁场中运动的物理情景 教学难点: 物理情(图)景与几何知识有机结合,将物理问题化归为数学问题 思想方法: 数理结合,建模和化归的思想方法 教学过程: 1、带电粒子在磁场中做匀速圆周运动的基本规律是:洛仑兹力提供向心力 所以 由此得到 圆周运动的周期 2、带电粒子做匀速圆周运动的分析方法 (1)圆心的确定 方法一:已知入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图所示,图中P 为入射点,M 为出射点)。 方法二:已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图示, P 为入射点,M 为出射点). r mv qvB 2 =qB mv r =qB m v r T ππ22= =P M v v O -q P M v O -q

(2)半径的确定和计算 利用平面几何关系(圆的相关知识),求出该圆的可能半径 (3)运动时间的确定 粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示: 3、带电粒子在磁场中做圆周运动的基本类型 (1)进入半无边界磁场 如图所示,一带正电粒子质量为m ,带电量为q ,从隔板ab 上一个小孔P 处与隔板成45°角垂直于磁感线射入磁感应强度为B 的匀强磁场区,粒子初速度大小为v ,则 (1)粒子经过多长时间再次到达隔板? (2)到达点与P 点相距多远?(不计粒子的重力) 变式训练:如图直线MN 上方有磁感应强度为B 的匀强磁场。正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?在磁场中运动的时间差是多少? (2)进入平行边界磁场 如图,一束电子(电荷量e)以速度v 垂直射入磁感应强度为B ,宽度为d 的匀强磁场中,穿出磁场时速度方向与入射方向间的夹角为30O 。求电子的质量和穿过磁场的时间。 b P v 45° O M N B O v

带电粒子在圆形磁场中的运动

带电粒子在圆形磁场中的运动 1.如图所示,在真空中半径为r=3×10-2m的圆形区域内,有一匀强磁场,磁场的磁感应强度B=0.2T,方向垂直纸面向外.一带正电粒子以v0=1.2×106m/s的初速度从磁场边界上的直径AB一端a点射入磁场,已知该粒子的比荷q/m=1.0×108C/kg,不计粒子的重力, (1)若已知初速度方向AB方向,求粒子通过磁场的偏向角和时间。 (2)如果不改变磁场,你有哪些方法改变偏向角? (3)粒子以什么角度入射,在磁场中运动的时间最长?最长时间是多少? 请总结:带电粒子通过圆形磁场的轨迹特点和解题策略。 (4)如果磁场不变,粒子正对AB射入,要使粒子射出场区时的速度与入射方向的夹角为90°,则需要具备什么条件? (5)在上一问题的前提下,如果粒子以任意角度从A点射入磁场,则正离子射出磁场区域的方向有什么特点? (6)设在某一平面内有M、N两点,由M点向平面内各个方向发射速率均为的电子,请设计一种匀强磁场的分布,使所有从M点出射的电子均能汇集到N点。

2.(09年浙江卷)25.(22分)如图8.5-11所示,x轴正方向水平向右,y轴正方向竖直向上。在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。发射时,这束带电微粒分布在0

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)

分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2 如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN 线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN 上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向

带电粒子在圆形磁场区域的运动规律

带电粒子在圆形磁场区域的运动规律 处理带电粒子在匀强磁场中的圆周运动问题,关键就是综合运用平面几何知识与物理知识。最重要的是,画出准确、清晰的运动轨迹。对于带电粒子在圆形磁场区域中做匀速圆周运动,有下面两个规律,可以帮助大家准确、清晰画出带电粒子的圆周运动的轨迹。 规律一:带电粒子沿着半径方向射入圆形边界内的匀强磁场,经过一段匀速圆周运动偏转后,离开磁场时射出圆形区域的速度的反向延长通过边界圆的圆心。 规律二:入射速度方向(不一定指向区域圆圆心)与轨迹圆弧对应的弦的夹角为θ(弦切角),则出射速度方向与入射速度方向的偏转角为2θ,轨迹圆弧对应的圆心角也为θ2,并且初末速度方向的交点、轨迹圆的圆心、区域圆的圆心都在弧弦的垂直平分线上。 以上两个规律,利用几何知识很容易证明,在解题时,可以直接应用,请看下面的两个例子: 例1如图1所示,在平面坐标系xoy 内,第Ⅱ、Ⅲ象限内 存在沿y 轴正方向的匀强电场,第I 、Ⅳ象限内存在半径为L 的圆形匀强磁场,磁场圆心在M (L ,0)点,磁场方向垂直于坐标平面向外.一带正电粒子从第Ⅲ象限中的Q (一2L ,一L )点以速度0v 沿x 轴正方向射出,恰好从坐标原点O 进入磁场,从P (2L ,O )点射出磁场.不计粒子重力,求: (1)电场强度与磁感应强度大小之比 (2)粒子在磁场与电场中运动时间之比 解析:(1)设粒子的质量和所带正电荷分别为m 和q ,粒子在电场中运动,由平抛运动规律得:102t v L = 2 12 1at L = ,又牛顿运动定律得:ma qE = 粒子到达O 点时沿y +方向分速度为 0v at v y ==,1tan 0 == v v y α 故045=α,粒 子在磁场中的速度为02v v = ,应用规律二,圆 心角为:0 902=α,画出的轨迹如图2所示, 由r m v Bqv 2 =,由几何关系得L r 2= 得: 2 v B E = (2)在磁场中运动的周期v r T π2= 粒子在磁场中运动时间为0 2241v L T t π== 图 2 图1

带电粒子在磁场中的圆周运动经典练习题(含答案详解).

电粒子在磁场中的圆周运动 1.处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将该粒子的运动等效为环形电流,那么此电流值( ) A .与粒子电荷量成正比 B .与粒子速率成正比 C .与粒子质量成正比 D .与磁感应强度成正比 答案 D 解析 假设带电粒子的电荷量为q ,在磁场中做圆周运动的周期为T =2πm qB ,则等效电流i =q T =q 2B 2πm ,故答案选D. 带电粒子在有界磁场中的运动 2.如图377所示,在第Ⅰ象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速率沿与x 轴成30°角的方向从原点射入磁场,则正、负电子在磁场中运动的时间之比为( ) 图377 A .1∶2 B .2∶1 C .1∶ 3 D .1∶1 答案 B 解析 正、负电子在磁场中运动轨迹如图所示,正电子做匀速圆周运动在磁场中的部分对应圆心角为120°,负电子圆周部分所对应圆心角为60°,故时间之比为2∶1. 回旋加速器问题

图378 3.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底面的匀强磁场中,如图378所示,要增大带电粒子射出时的动能,下列说法中正确的是( ) A .增加交流电的电压 B .增大磁感应强度 C .改变磁场方向 D .增大加速器半径 答案 BD 解析 当带电粒子的速度最大时,其运动半径也最大,由牛顿第二定律q v B =m v 2r ,得v =qBr m . 若D 形盒的半径为R ,则R =r 时,带电粒子的最终动能E km =12m v 2=q 2B 2R 2 2m .所以要提高加 速粒子射出的动能,应尽可能增大磁感应强度B 和加速器的半径R .

带电粒子在磁场中做圆周运动

带电粒子在磁场中做圆周运动 相关公式: (1) 洛伦兹力充当向心力:r mv qvB 2= (2)轨道半径:qB mE qB p qB mv r K 2=== (3)周 期: qB m v r T ππ22== (4)角 速 度:m qB ω= (5)频 率:m qB T f π21== (6)动 能: m (qBr)mv E k 22122== 带电粒子在匀强磁场中运动,不考虑其他场力(重力)作用 ,可能会做哪些运动 解这类题的方法或规律: 1话轨迹 2找圆心 3定半径 注意:当粒子方向正对圆形磁场圆心O 点射入磁场时 射出的方向的反向延长线一定经过O 因为洛伦兹力为qvB,提供向心力,m(V^2)/r 或者其他的两个公式m(w^2)*r 又由于w=2∏/T 可以计算T=2∏m/(qB),r=mv/(qB) 角AOC 120度, 该带电粒子在磁场中运动时间为t=(120/360)*T=2∏m/(3qB) r=mv/(qB) 为什么带电粒子垂直射入匀强磁场中作匀速圆周运动,请给予证明 洛伦兹力与速度方向垂直. 匀速圆周运动公式有 a=V2/R 洛伦兹力大小不变【需要证说下】粒子质量不变 所以a=F/m a 也不变 又因为洛伦兹力与速度方向垂直 所以只改变速度方向 不改变速度大小 所以V2也不变 所以R 是一个定值 也就是说运动有一个半径是不变的 也就是圆周运动。 带电粒子在匀强电场中是否能做圆周运动

如果只考虑粒子受到匀强电场的作用力,因是恒力,所以粒子不能做圆周运动。如果考虑重力呢? 如果考虑重力,也不能做圆周运动,因为在所有力是恒力时,不可能做圆周运动的,只能做抛体运动或直线运动。 在匀强磁场和电厂一起的作用下能做什么运动呢? 如果电场是点电荷产生的电场,且电场方向与匀强磁场垂直,则在不考虑粒子重力时,只要粒子速度与磁场垂直,速度也与电场方向垂直,粒子可以做匀速圆周运动(圆心在点电荷处)。 如果电场是匀强电场,且考虑粒子重力,电场力与重力平衡(二者的合力为0),那么只要粒子速度与磁场垂直,粒子可以做匀速圆周运动。 如果是其他电场,粒子的运动较复杂。 带电粒子在复合场内做匀速圆周运动 如右图所示,水平放置的平行金属板间距为d,两板间电势差为U,水平方向的匀强磁场为B。今有一带电粒子在AB间竖直平面内作半径为R的匀速圆周运动,则带电粒子转动方向为____时针,速率为____。 解答:能做匀速圆周运动,又因为磁场力不做功,只能是电场力和重力抵消。 从而说明粒子带负电, 从而根据左手定责,说明粒子是顺时针旋转的。 速度根据 mv^2/R=Bqv Eq=mg,E=U/d得到 v=BqR/m=BRgd/U 高频考点:法拉第电磁感应定律、右手定则 动态发布:2011广东理综卷第15题、2010新课标理综第21题、2010全国理综17题、2010山东理综第21题、2011浙江理综第23题 命题规律:法拉第电磁感应定律、右手定则是高考考查的重点和热点,考查法拉第电磁感应定律、右手定则可能为选择题,也可能为计算题,计算题常常以压轴题出现,综合性强、难度大、分值高、区分度大。

带电粒子在磁场中的圆周运动

“带电粒子在磁场中的圆周运动”解析 处理带电粒子在匀强磁场中的圆周运动问题,其本质是平面几何知识与物理知识的综合运用。重要的是正确建立完整的物理模型,画出准确、清晰的运动轨迹。下面我们从基本问题出发对“带电粒子在磁场中的圆周运动”进行分类解析。 一、“带电粒子在磁场中的圆周运动”的基本型问题 找圆心、画轨迹是解题的基础。带电粒子垂直于磁场进入一匀强磁场后在洛仑兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。 【例1】图示在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁场的磁感应强度为B;一带正电的粒子以速度V0从O点射入磁场中,入射方向在xy平面内,与x轴正方向的夹角为θ;若粒子射出磁场的位置与O点的距离为L。求① 该粒子的电荷量和质量比;②粒子在磁场中的运动时间。 分析:①粒子受洛仑兹力后必将向下偏转,过O点作速度V0的垂线必过粒子运动轨迹的圆心O’;由于圆的对称性知粒子经过点P时的速度方向与x轴正方向的夹角必为θ,故点P作速度的垂线与点O处速度垂线的交点即为圆心O’(也可以用垂径定理作弦OP的垂直平分线与点O处速度的垂线的交点也为圆心)。由图可知粒子圆周运动 的半径由有。再由洛仑兹力作向心力得出粒子在磁场中的运动半径为故有,解之。

②由图知粒子在磁场中转过的圆心角为,故粒子在磁场中的运动时间为。 【例2】如图以ab为边界的二匀强磁场的磁感应强度为B1=2B2,现有一质量为m 带电+q的粒子从O点以初速度V0沿垂直于ab方向发射;在图中作出粒子运动轨迹,并求出粒子第6次穿过直线ab所经历的时间、路程及离开点O的距离。(粒子重力不计) 分析:粒子在二磁场中的运动半径分别为,由粒子在磁场中所受的洛仑兹力的方向可以作出粒子的运动轨迹如图所示。粒子从点O出发第6次 穿过直线ab时的位置必为点P;故粒子运动经历的时间为,而粒子的运动周期代入前式有。粒子经过的路程 。点O与P的距离为。 二、“带电粒子在磁场中的圆周运动”的范围型问题 寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R与R0的大小关系确定范围。 【例3】如图所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m 带电-q的粒子以与CD成θ角的速度V0垂直射入磁场中;要使粒子必能从EF射出则初速度V0应满足什么条件?EF上有粒子射出的区域?

解决带电粒子在有界磁场中运动的临界问题的两种方法

解决带电粒子在有界磁场中运动的临界问题的两种方法 此类问题的解题关键是寻找临界点,寻找临界点的有效方法是: ①轨迹圆的缩放: 当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R)不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”. 例1一个质量为m,带电量为+q的粒子(不计重力), 从O点处沿+y方向以初速度射入一个边界为矩形的匀强 磁场中,磁场方向垂直于xy平面向里,它的边界分别是 y=0,y=a,x=-1.5a,如图所示,那么当B满足条件_________ 时,粒子将从上边界射出:当B满足条件_________时, 粒子将从左边界射出:当B满足条件_________时,粒子 将从下边界射出: 例2 如图9-8所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成θ角的速度V0垂直射入磁场中。要使粒子必能从EF射出,则初速度V0应满足什么条件?EF上有粒子射出的区域? 【审题】如图9-9所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何知识即可求解速度的临界值;对于射出区域,只要找出上下边界即可。 【解析】粒子从A点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF射出,则 相应的临界轨迹必为过点A并与EF相切的轨迹如图9-10所示,作出A、P点速度的垂线相交于O/即为该临界轨迹的圆心。 临界半径R0由 d Cosθ R R0 = + 有: θ + = Cos 1 d R0 ; 故粒子必能穿出EF的实际运动轨迹半径R≥R0 即: θ + ≥ = Cos 1 d qB mv R0 有: ) Cos 1( m qBd v0 θ + ≥ 。 图9-8 图9-9 图 9-10

带电粒子在磁场中运动之圆形磁场边界问题

4. 3. A. B. C. D. 带电粒子 带电粒子 带电粒子 带电粒子 的比荷与带电粒子 的比荷与带电粒子 2的比荷比值为3 : 2的比荷比值为 与带电粒子2在磁场中运动时间比值为 与带电粒子2在磁场中运动时间比值为 如图所示,半径为R 的绝缘筒中为匀强磁场区域, 磁感应强度为 一个质量为 m 电荷量为q 的正离子,以速度v 从圆筒上 果离子与圆筒碰撞三次(碰撞时不损失能量,且时间不计 从C 孔飞出,则离子在磁场中运动的时间为 () A . 2 n R/7 B .n C. 2 n m qB D . n mqB B 、磁感线垂直纸面向里 考点4.3 圆形磁场边界问题 考点4.3.1 “粒子沿径向射入圆形磁场”边界 问题 特点:沿径向射入必沿径向射出, 如图所示。对称性:入射点与出射点关于 磁场圆圆心与轨迹圆圆心连线对称, 两心连线将轨迹弧平分、 弦平分,圆心 角平分。 [来源 :学 1. 如图所示,一半径为R 的圆内有垂直纸面的匀强磁场, 磁感应强度为 B, CD 是该圆一直径.一质量为m 电荷量为q 的带电粒子(不计重力),自 A 点沿指向0点方向垂直射入磁场中, 恰好从D 点飞出磁场,A 点到 R CD 勺距离为?根据以上内容() A. 可判别圆内的匀强磁场的方向垂直纸面向里 B. 不可求出粒子在磁场中做圆周运动的轨道半径 C. 可求得粒子在磁场中的运动时间 D. 不可求得粒子进入磁场时的速度 2. 如图所示,为一圆形区域的匀强磁场,在 0点处有一放射源,沿半径方向射 出速度为 v 虑带电粒子的重力,则( 的不同带电粒子,其中带电粒子 1从A 点飞出磁场,带电粒子 2从B 点飞出磁场,不考 A Q 如

带电粒子在磁场中的运动解题技巧

带电粒子在磁场中的运动 带电粒子在匀强磁场中作圆周运动的问题是近几年高考的热点,这些考题不但涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。只要确定了带电粒子的运动轨迹,问题便迎刃而解。下面举几种确定带电粒子运动轨迹的方法。 一、对称法 带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。 例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少? 解析:正、负电子的半径和周期是相同的。只是偏转方向相反。先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。所以两个射出点 相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。

例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。 解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。 由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°= 又带电粒子的轨道半径可表示为:故带电粒子运动周期: 带电粒子在磁场区域中运动的时间 二、旋转圆法 在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

带电粒子在圆形磁场中运动

带电粒子在“圆形磁场区域”中的运动 粒子沿圆形磁场区的半径方向垂直磁场射入,由对称性可知出射线 的反向延长线必过磁场圆的圆心。由几何关系可得: 偏向角与两圆半径间的关系:t a n r R θ =2 偏转时间的关系式:m t T qB θθπ=?=2 O 、O ′分别为 磁场圆与轨迹圆的圆心;r 、R 分别为 磁场圆与轨迹圆的半径 。 例1、如图所示,在圆心为O ,半径为r 的圆形区域内,有匀强磁场, 磁感应强度为B ,方向垂直纸面向里.一个带电粒子以速度v 射入磁场,初 速度方向指向圆心O ,它穿过磁场后,速度方向偏转α角,则该带电粒子的荷质比______=m q . 例2、 在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小 变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场 时的速度方向相对于入射方向改变了60°角,求:磁感应强度B ′ 多大?此次粒子在磁场中运动所用时间t 是多少? 例3、如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿 直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成 60°角。现将带电粒子的速度变为,仍从A 点沿原方向射入磁场, 不计重力,则粒子在磁场中的运动时间变为( ) A.Δt B.2Δt C.Δt D.3Δt 例4、如图所示,在纸面内半径为R 的圆形区域中充满了垂直于纸面向里、磁感应强度为B 的匀强磁场,一点电荷从图中A 点以速度v 0垂直磁场射入, 当该电荷离开磁场时,速度方向刚好改变了180°,不计电荷 的重力,下列说法正确的是( )

相关文档
最新文档