关于磁环的选用

合集下载

can总线磁环参数

can总线磁环参数

can总线磁环参数
在选择CAN总线磁环参数时,应关注磁环的材料、尺寸、线径、内径、外径、孔径和匝数等参数。

1. 材料:磁环的材料决定了其磁导率和温度特性,常见的磁环材料有锰锌铁氧体、镍锌铁氧体和铁粉芯等。

2. 尺寸:磁环的尺寸决定了其能够通过的电流大小,应根据CAN总线的电流大小来选择合适的尺寸。

3. 线径:磁环的线径决定了其能够通过的频率大小,应根据CAN总线的信号频率来选择合适的线径。

4. 内径:磁环的内径应根据CAN总线电缆的外径来选择,以确保磁环能够紧密地套在电缆上。

5. 外径:磁环的外径应与连接器的外径相匹配,以确保磁环能够顺利连接。

6. 孔径:如果CAN总线电缆需要进行屏蔽,磁环的孔径应足够大,以方便将电缆放入磁环中。

7. 匝数:匝数决定了磁环的电感量,应根据CAN总线的阻抗来选择合适的匝数。

在选择CAN总线磁环参数时,应考虑上述因素,并确保磁环能够有效地抑制干扰和提高信号质量。

磁环挑选方法

磁环挑选方法

制作巴伦的磁环选择方法(大全)制作巴伦的磁环应该怎么选?磁环应该选择高频的,导磁率(不要很高的)100比较合适!现在高频磁环比较难找。

过去大家都到北京协会总部去买,大约5元一只,不知现在还有没有。

也有的火腿使用一般磁环绕制,只要芯线绞的比较紧密也能用,但频率高、功率大时会发热。

MTV推荐的空心巴仑也是很好的解决办法-。

磁环是高频铁氧体,具有高导磁(u大)和低损耗的特点。

磁芯类型一般有NXO镍锌铁氧体和MXO锰锌铁氧体两系列。

大直径的高频磁环,用粗芯线也可以大功率到1000瓦以上!广大无线电爱好者在制作巴伦,功率合成器(分配器)时经常在选择磁环,导线等问题大伤脑筋,且这些问题如果处理不当,必定效果不理想。

经常在频率上和网上听到或看到有人抱怨,加了巴伦还不如不加……为了解决这些问题,要从高频变压器问题解决。

本人根据一些资料,总结了一些关于传输线变压器的一些问题和大家共同探讨,有不当之处,请大家予以指正。

将高频传输线绕在具有高导磁率(u)低损耗的铁氧体磁环上就变成传输绝变压器,其电路从表面上看似乎与普通变压器没有多大差别,但实际上它们传递能量的方式是不相同的。

普通变压器信号电压加在初级绕组的1、2端,使初级线圈有电流流过,然后由此产生的磁力线在次级(3、4端)感应出相应的交变电压,能量就是这样由输入端传到负载。

而传榆线变压器的信号电压却加在1、3端,能量在两导线的介质间传播到负载。

传输线变压器能量传输原理如图l-a所示。

出于两根导线是紧靠绕在一起,所以导线任意点的线间电容都是很大的,而且在整个线长上是均匀分布的。

由于导线是绕在高u磁芯上,故导线每一小段Δl的电感量是很大的,而且均匀分布在整个线段上。

这些电容和电感量通常叫分布参数,由线间电容和导线电感组成的电路叫分布参数电路,如图1-b所示。

因此,传输钱可以看成由许多电感、电容组成的耦合链,从而产生了新的传输能量的方式。

当信号电压U1加在图2的输入端(1、3端)时,出于传输线间电容较大,因此信源向电容C1充电,使C1贮能。

屏蔽磁环的选择和屏蔽磁环的作用

屏蔽磁环的选择和屏蔽磁环的作用

屏蔽磁环的选择和屏蔽磁环的作用屏蔽磁环是一种用于屏蔽电磁干扰的装置,主要通过阻挡或吸收电磁波来减少干扰。

屏蔽磁环的选择和作用对于有效减少电磁干扰以及保护设备的正常运行非常重要。

本文将从选择屏蔽磁环的几个重要参数和屏蔽磁环的作用两个方面进行详细介绍。

一、选择屏蔽磁环的几个重要参数1.材料2.尺寸和形状3.屏蔽效能屏蔽效能是衡量屏蔽磁环性能的重要参数。

它表示屏蔽磁环能够阻挡电磁辐射的能力。

屏蔽效能一般通过屏蔽因子来表示,其数值越大表示屏蔽效能越好。

屏蔽因子可以通过实验或仿真计算得到,选用屏蔽磁环时需要参考其屏蔽因子值来确定其适用范围。

4.工作频率范围屏蔽磁环的工作频率范围决定了其适用于屏蔽的电磁波频率范围。

不同的屏蔽磁环材料和结构对不同频率的电磁波有不同的吸收效果。

因此,在选择屏蔽磁环时需要明确所需屏蔽的电磁波频段,并选择合适的屏蔽磁环材料和结构。

1.降低电磁辐射屏蔽磁环通过吸收或反射电磁波,减少其进入或离开设备的传播。

它可以有效降低设备产生的电磁辐射,从而减少对周围环境和其他设备的干扰。

这种屏蔽作用特别重要,尤其是在无线通信、雷达和电子设备等领域。

2.防护设备一些敏感的电子设备对外界电磁干扰非常敏感,这可能导致设备的正常运行受到影响甚至损坏。

屏蔽磁环可以提供一个对电磁波进行隔离的屏障,从而保护设备的正常运行。

它可以防止外界电磁波干扰设备内部的电路,保证设备的稳定性和可靠性。

3.减少串扰干扰在一些特殊的应用场景中,一些设备之间存在相互干扰的问题。

屏蔽磁环可以起到隔离和消除干扰的作用,减少设备之间的串扰干扰。

这对保证设备的精确度和准确度非常重要,例如在精密仪器、测量设备和医疗设备中常常使用屏蔽磁环进行干扰控制。

总结:屏蔽磁环的选择和作用对于减少电磁干扰和保护设备的正常运行具有重要意义。

在选择屏蔽磁环时需要考虑其材料、尺寸和形状、屏蔽效能以及工作频率范围等几个重要参数。

屏蔽磁环的作用包括降低电磁辐射、保护设备和减少串扰干扰。

磁环选取计算公式

磁环选取计算公式

磁环选取计算公式磁环是一种常见的磁性元件,广泛应用于电子、通信、电力等领域。

在磁环的选取过程中,需要根据具体的应用场景和要求,计算出合适的磁环尺寸和参数。

本文将介绍磁环选取的计算公式及其应用。

一、磁环的基本参数在进行磁环选取计算之前,需要了解磁环的基本参数。

磁环的主要参数包括内径、外径、高度、材料、磁导率等。

其中,磁导率是磁环的重要参数之一,它决定了磁环的磁性能。

磁导率的单位是H/m,常见的磁导率有铁氧体、镍锌铁氧体、钴铁氧体等。

二、磁环选取计算公式1. 磁环的磁场强度计算公式磁环的磁场强度是指在磁环内部产生的磁场强度。

磁环的磁场强度计算公式如下:H = (N * I) / L其中,H为磁场强度,单位为A/m;N为磁环匝数;I为磁环电流,单位为A;L为磁环平均磁路长度,单位为m。

2. 磁环的磁通量计算公式磁通量是指磁场通过磁环的总量。

磁环的磁通量计算公式如下:Φ = B * A其中,Φ为磁通量,单位为Wb;B为磁场强度,单位为T;A为磁环的横截面积,单位为m²。

3. 磁环的磁场能量计算公式磁场能量是指磁场在磁环中的能量。

磁环的磁场能量计算公式如下:W = (1/2) * Φ * H其中,W为磁场能量,单位为J;Φ为磁通量,单位为Wb;H为磁场强度,单位为A/m。

4. 磁环的磁场能量密度计算公式磁场能量密度是指单位体积内的磁场能量。

磁环的磁场能量密度计算公式如下:w = W / V其中,w为磁场能量密度,单位为J/m³;W为磁场能量,单位为J;V为磁环的体积,单位为m³。

三、磁环选取计算实例下面以一个具体的磁环选取实例来说明磁环选取计算公式的应用。

假设需要选取一个内径为10mm,外径为20mm,高度为5mm的铁氧体磁环,使其在电流为1A时,产生的磁场强度为1000A/m。

根据上述公式,可以计算出磁环的匝数、磁通量、磁场能量和磁场能量密度。

1. 计算磁环的匝数假设磁环的平均磁路长度为0.02m,根据磁场强度计算公式可得:H = (N * I) / LN = H * L / I = 1000 * 0.02 / 1 = 20因此,磁环的匝数为20。

磁环如何选择?EMC抗干扰相关名词解释

磁环如何选择?EMC抗干扰相关名词解释

磁环如何选择?EMC抗干扰相关名词解释磁环如何选择,磁环怎么选型我一般都会先了解下客户磁环用途,使用频率等等。

这里我简单分析下,如:碰到干扰时,一般使用非晶磁环,锰锌磁环或者镍锌磁环,当然这3种磁环使用的频率段各不相同。

高频干扰时则选择镍锌磁环,多大的线用多大的磁环,内孔一定要注意,线粗和磁环内孔一定要刚好,太大穿不进去,太小会漏磁,还有注塑模具要比磁环尺寸稍为要大些,但不要差距太大,这样在注塑时不容易把模具损坏。

还有就是性能不强时,线径又那么大,那么外径和内孔不变,但长度要选长一点的磁环。

一般选型磁环优先选择外径要大,内孔要小,长度要长,这样的磁环尺寸截面积越大效果越好。

磁环如何选择?下面我再介绍下夹扣式磁环又是如何选型,夹扣式磁环相对来说,比其它磁环型号要好很多,用起来方便,快捷,它是由两片式磁芯和塑胶壳组装而成,又被称为组装式磁环。

选用此类型号,它可以直接扣在干扰线上,无须注塑,在内径大的情况下,可以反复多绕1~2圈,绕的越多,阻抗效果越好。

目前我司这类规格已有适合1MM到19MM 线缆夹扣式磁环供客户选择。

1.1电磁环境electromagneTIc environment存在于给定场所的所有电磁现象的总和。

1.2电磁噪声electromagneTIc noise一种明显不传送信息的时变电磁现象,它可能与有用信号叠加或组合。

1.3无用信号unwanted signal,undesired signal可能损害有用信号接收的信号。

1.4干扰信号interfering signal损害有用信号接收的信号。

1.5电磁骚扰electromagneTIc disturbance任何可能引起装置、设备或系统性能降低或者对有生命或无生命物质产生损害作用的电磁。

磁环选型攻略及EMC整改技巧

磁环选型攻略及EMC整改技巧

磁环选型攻略及EMC整改技巧如下图所示,本文将从四个方面对磁环进行阐述:一、磁环的应用场景首先,我们来看几张图片:图1:显示屏VGA线图2:适配器连接线图3:USB通信线这三根线都是我们生活中常见的供电线或通信线,它们都有一个特点,就是连接线上都有很突出的一部分,这突出的部分是什么呢?毫无疑问这就是加的磁环。

磁环是电子产品中常用的抗干扰元件,对于高频噪声有很好的抑制作用。

一般使用铁氧体材料(Mn-Zn)制成。

磁环在不同的频率下有不同的阻抗特性,一般在低频时阻抗很小,当信号频率升高时,磁环表现的阻抗急剧升高,在EMC工程设计中,磁环作用显著而被广泛适用。

二、磁环的工作原理图4:磁环等效电路如图4所示,磁环在应用中的等效电路。

L为等效电感,R为线缆的等效直流阻抗,C为绕线之间产生的分布电容,这个分布电容要特别注意,它会降低高频滤波性能。

图5:磁环的阻抗曲线如图5所示,磁环在未饱和的情况下,信号频率越高,其对应的阻抗越高,当频率超过谐振点时,阻抗会呈现下降趋势。

图6:EMC整改常用的扣式磁环扣式磁环与铁氧体的最大区别在于它具有很大的损耗,用这种扣式磁环制作的电感,其特性更接近电阻。

它是一个电阻值随着频率增加而增加的电阻,当高频信号通过铁氧体磁环时,电磁能量以热的形式耗散掉。

三、磁环的分类1、铁氧体磁环一般锰锌环涂绿色;铁氧体磁环主要包括镍锌铁氧体磁环和锰锌铁氧体磁环。

按磁导率可分为两类:一是,镍锌铁氧体磁导率在100-1000之间,被称为低导磁环;二是,锰锌铁氧体磁环材料的磁导率一般在1000以上,被称为高导磁环。

图7:锰锌铁氧体高导率磁环镍锌铁氧体磁环一般用于各种线材,电路板端,电脑设备中抗干扰。

锰锌铁氧体磁环,磁导率很大,这种磁环,通常用来绕制共模电感,抑制电源接口低频共模传导干扰。

图8:共模电感一般共模电感抑制频段在500K-30M之间,滤波频段要比铁粉芯差模电感高。

通常情况下,材料磁导率越低,适用的频率范围越宽;材料磁导率越高,适用的频率范围越窄。

emc中磁环的选择

emc中磁环的选择

emc中磁环的选择
在电磁兼容(EMC)中,选择磁环的主要目的是抑制电磁干
扰(EMI)和提高电磁兼容性。

以下是选择磁环时需要考虑
的几个关键因素:
1. 频率范围:根据应用需求,确定所需的磁环工作频率范围。

不同类型的磁环在不同频率范围内具有不同的性能。

2. 材料选择:磁环通常由铁氧体材料制成,如NiZn(镍锌)和MnZn(锰锌)。

根据应用需求,选择适当的材料以实现
所需的电磁屏蔽效果。

3. 尺寸和形状:根据应用环境和空间限制,选择适当的磁
环尺寸和形状。

通常,磁环的外径、内径和高度会影响其
电磁屏蔽效果。

4. 阻抗匹配:根据系统的阻抗要求,选择具有适当阻抗特
性的磁环。

阻抗匹配可以提高电磁屏蔽效果,并减少信号
反射和传输损耗。

5. 安装和连接:考虑磁环的安装和连接方式,以确保其稳
固性和可靠性。

合适的安装和连接方法可以减少电磁干扰
和信号损耗。

在实际选择磁环时,建议与电磁兼容专家或供应商进行咨询,以确保选择的磁环符合特定应用的需求和要求。

磁环(铁芯)选用要点

磁环(铁芯)选用要点

磁環(鐵芯)選用要點Ferrite分類MnZnNiZnNiZnCu用途:High Frequency Swithcing Mode Power Supplies製造商:TDK、EPCOS型式:EFD15材質:MnZn錳鋅居里點,至少要高於200℃μi:2200± 25 % @T = 25 °CBS:390mT @T=100℃飽和磁通密度Bs:最大磁通密度Bm:Ae:15mm2AL:780 + 30/– 20 %Frequency range:25K~500KHz(要有最低和最高)ROHSCurie Temperature:>210℃Pv(Core lss):390kW/m3 @300kHz,100mT,100℃(Pcv)Bs儘量高,Br儘量低,才能達到小體積大功率選用高磁導率的CORE,使激磁電感盡量大,讓磁化電流盡可能低UP TO 500KHz(500K以下)名詞解釋:鐵損是由於在鐵芯中的變更磁場所造成,這個損失與操作頻率及總流動的磁通量有關,總鐵損由三個成份組成,磁滯損,渦流損及殘留損.這些損失因磁性材料不同而異,在如高功率及高頻率切換調整器和RF的設計需要小心選擇鐵芯種類以降低鐵損使電感的表現最佳.■ CURIE TEMPERATURE 居禮溫度The temperature above which a ferrite core loses its magnetic properties. The core's permeability typically increases dramatically as thecore temperature approaches the curie temperature which causes theinductance to increase. The permeability drops to near unity at the curie temperature which causes the inductance to drop dramatically. The curie point is the temperature at which the initial permeability has dropped to 10% of its original value at room temperature.在此一溫度以上鐵氧磁體鐵芯失去磁性質,鐵芯的磁導率一般在接近居禮溫度時會急速上升因而電感值亦上升,於居禮溫度時,導磁率約降至一,因而使電感值急速下降,當初導磁率下降為在室溫下之初導磁率的10%時,其溫度稱之為居禮溫度.■ DCR ( DC RESISTANCE ) 直流電阻The resistance of the inductor winding measured with no alternating current. The DCR is most often minimized in the design of aninductor. The unit of measure is ohms, and it is usually specified as a maximum rating.電感線圈在非交流電下量得之電阻.在電感設計中,直流電阻愈小愈好,其量測單位為歐姆,通常以其最大值為標註.■ DISTRIBUTED CAPACITANCE 分佈電容值In the construction of an inductor, each turn of wire or conductor acts as a capacitor plate. The combined effects of each turn can be represented as a single capacitance known as the distributed capacitance. This capacitance is in parallel with the inductor. This parallel combination will resonate at some frequency which is called theself-resonant frequency (SRF). Lower distributed capacitances for a given inductance value will result in a higher SRF value and vice versa. (Also see SRF.)在電感的結構中,每一圈的繞線或導體有如電容電板一般的作用.其每圈結合起來的效果,有如單一之電容值,稱之分佈電容值.與電感並聯的.如此並聯的結合使得電感在某頻率下會產生諧振,稱之自我共振頻率(SRF),在一定電感值下,較低的分佈電容值會有較高之自我共振,反之亦然.■ EDDY CURRENT LOSSES 渦流損Eddy current losses are present in both the magnetic core and winding of an inductor. Eddy currents in the winding (or conductor)contribute to two main types of losses: losses due to proximity effects and skin effects. As for the core losses, an electric field around the flux lines in the magnetic field is generated by alternating magnetic flux. This will result in eddy currents if the magnetic core material haselectrical conductivity. Losses result from this phenomenon since the eddy currents flow in a plane that is perpendicular to the magnetic flux lines.渦流損同時會出現在電感中的繞線及磁性鐵芯中,在繞線(導體)中的渦電流會促進兩種形式的損失:鄰近效應之損失及表面效應之損失,至於鐵損,可視為在一磁場中之磁力線周圍的一電場,是由交互的磁通量所產生,如果此磁性鐵芯具有導電性,則形成渦電流,因渦電流在一垂直於磁力線方向的平面流動,損失因而產生.■ FERRITE CORE 鐵氧磁體鐵芯Ferrite is a magnetic material which consists of a mixed oxide of iron and other elements that are made to have a crystalline molecular structure. The crystalline structure is created by firing the ferrite material at a very high temperature for a specified amount of time and profile. The general composition of ferrites is xxFe2O4where xx represents one or several metals. The most popular maetal combinations are manganese and zinc (MnZn)and nickel and zinc (NiZn). These metals can be easily magnetized.鐵氧磁體是一種磁性材料,組成包含鐵及其他元素的氧化物而具有結晶分子的構造.這種結晶構造可在高溫及特定的方式下燒結鐵氧磁體材料一段特定時間而得,其一般的組成為xx Fe2O4,其中xx代表一種或好幾種金屬,最為常見的金屬組合為錳和鋅(MnZn)及鎳和鋅(NiZn),這些金屬都很容易被磁化.■ IMPEDANCE 阻抗值The impedance of an inductor is the total resistance to the flow of current, including the AC and DC component. The DC component of theimpedance is simply the DC resistance of the winding. The AC component of the impedance includes the inductor reactance. Thefollowing formula calculates the inductive reactance of an ideal inductor (i.e., one with no losses) to a sinusoidal AC signal.一電感的阻抗值是指其在電流下所有的阻抗的總和,包含了交流及直流的部份,直流部份的阻抗值僅僅是繞線的直流電阻,交流部份的阻抗值則包括電感的電抗,下列的方程式用來計算一理想電感(沒有能量損失)在一正弦波交流訊號下的電抗:Z = XL = 2πfLL is in henries and f is in hertz. This equation indicates that higher impedance levels are achieved by higher inductance values or at higherfrequencies. Skin Effect and Core Losses also add to the impedance of an inductor. (Also see Skin Effect and Core Losses.)L的單位為亨利而f的單位為赫茲,此方程式說明一較高的阻抗值可由較高的電感值或在較高的頻率下得到,此外,表面效應及鐵損亦會增加一電感的阻抗值.(亦參閱表面效應及鐵損)初始導磁率:直流初導磁率是指在直流狀態下其磁化曲線於原點時所得之切線斜率(圖例2),其可以下列方程式表示之:有何意義磁通密度越高,loss越大頻率越高,core loss越高CORE LOSS與溫度非呈線性頻率高到一定時,初始導磁率驟降。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁环选用报告
影响节能灯质量的,磁环占重要因素,尤其110V直接电路,对磁环的选用特别敏感。

其中的原因我们以下面两副图加以说明:
图一中:
B为磁感应强度。

BS为饱和磁感应强度。

BM为最高磁感应强度。

H为磁场强度。

Br为剩磁。

He与Hc为矫顽力。

图二中:
曲线1为磁导率3K的B与温度的曲线。

曲线2为磁导率2.5K的B与温度的曲线。

不同的磁材会有不同的磁导率,不同的温度特性。

其中温度特性是最重要的,因为一支节能灯在工作中,磁环必须经历常温、高温(高达100℃)、低温,然后在高温当中恒定工作。

但是,不同材料的温度曲线会有很大的差别,磁导率低的会在前半端呈现得比较平坦,磁导率较高的会显得比较陡峭;不同的温度里,饱和磁感应强度BS的变化也会不同,假设在常温下3K材料的BS值为200,但是在100℃时BS值会上升至300.同样在常温下2.5K材料的BS值为200,但是在100℃时BS值才只有250。

温度的变化会引起BS值u、H、HC的变化;BS值的变化会引起节能灯线路工作状态的变化;BS值升高会引起三极管得到的驱动电流降低。

因此,在110V的线路中,如果选取用了BS值在高温时变化比较大的磁环,便
会引发灯在高温时,关掉再马上打开,灯便不能启动了;灯管两端灯丝发红,因为灯管不能启动;功率会是额定功率的两倍。

另由于灯管不能正常启动,两端灯丝的温度便会升得很高(将近300℃以上)这样便会把塑料件烧掉。

若选用了BS值随温度变化不大的磁环,即磁导率不高的磁环,便可解决上述问题。

但磁导率的高与低又有另外一个问题需考虑:就是它的损耗问题,一般磁导率高的象5K、10K的磁环,它的损耗都很小,做成成品脉冲变压器后,因为它的磁路阻抗比较小,延迟时间也比较小,它的输出波型可以做得很好,但它适应上述温度问题时就显得力不从心;选用磁导率较低时,它的表面性能虽不及5K、10K的好,但它不会出现灯启动时不能启动的现象。

江门粉末2.5K磁环适宜做110V直接驱动的灯;志通电子3K磁环适宜做220V的灯。

为什么呢?原因是110V 直接驱动电路容易引发热启动问题;而220V电路没有热启动问题。

江门粉末的磁环对温度的干扰变化不大,而220V的节能灯需要在高温时适当把功率降下来,就需要适当减小三极管的驱动电流,避免灯在高温,高压时烧掉。

假设温度升高,三极管的放大倍数升高,电流升高,灯功率加大。

这时就需要把功率适当调节下来,选用志通3K磁环,它对温度的升高比较敏感,温度升高时BS跟着升高,三极管的驱动电流减小,灯功率降低,保证温升与灯功率的矛盾。

以上报告纯属个人愚见,不足或错误之处请指正。

.谢谢!。

相关文档
最新文档