整理高考数学知识点的方法有哪些

合集下载

高三数学复习方法整理归纳

高三数学复习方法整理归纳

高三数学复习方法整理归纳高三数学复习方法整理1第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。

难度比较小。

第三:数列数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

第六:解析几何解析几何是比较头疼的问题,是整个试卷里难度比较大,计算量的题,这一类题有以下五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。

考生应该掌握它的通法,第二类是动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时计算量十分大。

第七:压轴题考生在备考复习时,应该重点不等式计算的方法,虽然说难高三数学复习方法整理2数列是高中数学的重要内容,又是学习高等数学的基础。

高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。

有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。

高考知识点归纳总结(汇总5篇)

高考知识点归纳总结(汇总5篇)

高考知识点归纳总结第1篇1.整理公式数学的内容更加灵活一些,不需要去背诵,只是会应用就可以了。

首先可以把,这段时间学习到的公式整理一下,对于知识点有大概的了解。

考试也是针对这些知识点进行出题考查的,了解了这些公式,才能更加快速、精确地答题。

2.复习错题这个是数学科目复习的重点,拿出自己的错题本,可以把自己错的题再做一遍,重新巩固自己所学的知识点。

并且,达到能够解这一类型的题目,避免在期中考试中再犯相同的错误。

错题本重在理解。

3.多做练习数学考查的还是同学们运用的能力。

平常多刷题(可以重复刷自己会做错的题,直到做对为止),能够提高自己的做题速度,并且可以见到更多不同题型的考查方法,能够真正地提高自己的数学成绩。

“题海战术”虽然古老,但是一直很好用!高考数学答题注意事项答题时应遵循“先易后难勿恋战”的原则。

高考试题编制上一般都有先易后难的特点,这样比较符合心理学原理。

刚进考场时,绝大部分考生都会感到情绪比较紧张,其感知、记忆、思维等心理过程都还未完全适应考场的紧张氛围,没有达到思维的最佳状态。

解答了几道比较容易的试题后,心情渐趋稳定,智力活动恢复常态,思维的灵活性和批判性大大提高,解题速度明显加快。

而且,容易题做得越多,拿到的分数就越高,底气越足,自信心大大增强。

遭遇难题时,若屡试不爽,则干脆跳过去,千万不能纠缠不休。

试想想,一道15分的题目,你花了半个多小时才解答出来,即使正确,而因为你已付出了全场考试1/4的时间,却只得到了总分的1/10的回报,实在是得不偿失。

这时候,说不定你已急得如热锅上的蚂蚁,方寸大乱了。

高考知识点归纳总结第2篇1. 名词单复数用错,可数与不可数名词的混用。

大多数短文改错都会有此类的错误。

2.动词:时态和语态,常出现在总体时态为过去或现在时,中间杂有不适的另一时态的现象;或是及物动词后无宾语,或是不及物动词后加了宾语;需要接ing形式的接了to,或相反等。

3. 形容词副词:常出现需形容词的地方用了副词或相反;关系副词where, when,why等的缺失或错用。

复习高中数学的5种方法

复习高中数学的5种方法

复习高中数学的5种方法复习高中数学的方法一、课后及时回忆如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。

可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。

一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。

在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。

二、定期重复巩固即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。

可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。

从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。

三、科学合理安排复习一般可以分为集中复习和分散复习。

实验证明,分散复习的.效果优于集中复习,特殊情况除外。

分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。

分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。

四、重点难点突破对所学的素材要进行分析、归类,找出重、难点,分清主次。

在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点和易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。

五、复习效果检测随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。

检测时必须独立,限时完成,保证检测出的效果的真实性,如果存在问题,应该找到错误的根源,并适时采取补救措施进行校正。

有哪些可以总结归纳的数学方法?

有哪些可以总结归纳的数学方法?

有哪些可以总结归纳的数学方法?
数学是一门需要系统性学习的学科,总结归纳数学方法有助于更好地理解和掌握数学知识。

以下是一些可以总结归纳的数学方法:
- 分类讨论法:在求解数学问题时,根据题目的条件和要求,将问题分成若干类,然后逐类进行讨论,最终得出问题的答案。

- 数形结合法:通过将数学问题转化为图形问题,利用图形的直观性来帮助理解和解决问题。

- 函数思想法:用函数的观点来研究和解决数学问题,通过建立函数关系式来表示和研究变量之间的关系。

- 方程思想法:通过将数学问题转化为方程问题,利用方程的性质来解决问题。

- 转化与化归思想法:在求解数学问题时,通过转化和化归的方法,将复杂的问题转化为简单的问题,将未知的问题转化为已知的问题。

这些数学方法在数学学习和解题中都有着广泛的应用,通过总结归纳这些方法,可以提高数学的解题能力和思维能力。

高考重要数学答题技巧归纳

高考重要数学答题技巧归纳

高考重要数学答题技巧归纳高中数学常考题型答题技巧1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:4、换元法解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:①设②列③解④写6、复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把√m化成完全平方式。

即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11、解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。

解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12、恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

2024年高考数学知识点总结整理

2024年高考数学知识点总结整理

2024年高考数学知识点总结整理一、函数与方程1. 函数的概念和性质- 函数的定义:函数是一个将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)的规则。

- 函数的表示:函数可以用函数式表示、图像表示、数据表格表示等。

- 函数的性质:奇偶性、周期性、单调性、极值、零点等。

2. 平面直角坐标系- 坐标系的建立:确定坐标轴的正方向和原点的位置。

- 直角坐标的表示法:点在平面上的位置可以用有序数对表示。

- 直线的方程:点斜式、两点式、截距式等。

3. 一元二次方程- 一元二次方程的定义:形如ax^2 + bx + c = 0的代数方程,其中a、b、c都是已知的实数,a ≠ 0。

- 一元二次方程的解:实数解、复数解、无解等。

- 一元二次方程的求解方法:配方法、公式法、图解法等。

4. 不等式- 不等式的概念:比大小关系不是等号的代数式。

- 不等式的性质:加减、乘除等运算规则。

- 不等式的解集:解集可以用数轴图、区间表示等。

二、数列与数学归纳法1. 等差数列- 等差数列的定义:数列中相邻两项之差相等。

- 等差数列的通项公式:an = a1 + (n - 1)d,其中an是第n项,a1是首项,d是公差。

- 等差数列的性质:求和公式、前n项和等。

2. 等比数列- 等比数列的定义:数列中相邻两项之比相等。

- 等比数列的通项公式:an = a1 * r^(n - 1),其中an是第n项,a1是首项,r是公比。

- 等比数列的性质:求和公式、前n项和等。

3. 数列的求和- 等差数列的前n项和公式:Sn = n/2 * (a1 + an),其中Sn是前n项和,a1是首项,an是第n项。

- 等比数列的前n项和公式:Sn = (a1 * (1 - r^n))/(1 - r),其中Sn是前n项和,a1是首项,r是公比。

4. 数学归纳法- 数学归纳法的基本思想:证明某个命题对于一切自然数n 都成立,先证明对n=1成立,然后假设对n=k成立,再证明对n=k+1成立。

高考数学热点问题专题解析——数学归纳法

高考数学热点问题专题解析——数学归纳法

数学归纳法一、基础知识:1、数学归纳法适用的范围:关于正整数n 的命题(例如数列,不等式,整除问题等),则可以考虑使用数学归纳法进行证明2、第一数学归纳法:通过假设n k =成立,再结合其它条件去证1n k =+成立即可。

证明的步骤如下:(1)归纳验证:验证0n n =(0n 是满足条件的最小整数)时,命题成立 (2)归纳假设:假设()0,n k k n n N =≥∈成立,证明当1n k =+时,命题也成立 (3)归纳结论:得到结论:0,n n n N ≥∈时,命题均成立 3、第一归纳法要注意的地方:(1)数学归纳法所证命题不一定从1n =开始成立,可从任意一个正整数0n 开始,此时归纳验证从0n n =开始(2)归纳假设中,要注意0k n ≥,保证递推的连续性(3)归纳假设中的n k =,命题成立,是证明1n k =+命题成立的重要条件。

在证明的过程中要注意寻找1n k =+与n k =的联系4、第二数学归纳法:在第一数学归纳法中有一个细节,就是在假设n k =命题成立时,可用的条件只有n k =,而不能默认其它n k ≤的时依然成立。

第二数学归纳法是对第一归纳法的补充,将归纳假设扩充为假设n k ≤,命题均成立,然后证明1n k =+命题成立。

可使用的条件要比第一归纳法多,证明的步骤如下: (1)归纳验证:验证0n n =(0n 是满足条件的最小整数)时,命题成立 (2)归纳假设:假设()0,n k k n n N ≤≥∈成立,证明当1n k =+时,命题也成立 (3)归纳结论:得到结论:0,n n n N ≥∈时,命题均成立二、典型例题例1:已知等比数列{}n a 的首项12a =,公比3q =,设n S 是它的前n 项和,求证:131n n S n S n++≤ 思路:根据等比数列求和公式可化简所证不等式:321n n ≥+,n k =时,不等式为321k k ≥+;当1n k =+时,所证不等式为1323k k +≥+,可明显看到n k =与1n k =+中,两个不等式的联系,从而想到利用数学归纳法进行证明 证明:()11311n nn a q S q -==--,所证不等式为:1313131n n n n+-+≤-()()()1313131n n n n +∴-≤+- 1133331n n n n n n n ++⇔⋅-≤⋅+-- 321n n ⇔≥+,下面用数学归纳法证明: (1)验证:1n =时,左边=右边,不等式成立(2)假设()1,n k k k N =≥∈时,不等式成立,则1n k =+时,()()133332163211k k k k k +=⋅≥+=+>++ 所以1n k =+时,不等式成立n N *∴∀∈,均有131n n S n S n++≤ 小炼有话说:数学归纳法的证明过程,关键的地方在于寻找所证1n k =+与条件n k =之间的联系,一旦找到联系,则数学归纳法即可使用例2(2015,和平模拟):已知数列{}n a 满足0n a >,其前n 项和1n S >,且()()112,6n n n S a a n N *=++∈ (1)求数列{}n a 的通项公式(2)设21log 1n n b a ⎛⎫=+ ⎪⎝⎭,并记n T 为数列{}n b 的前n 项和,求证:233log ,2n n a T n N *+⎛⎫>∈ ⎪⎝⎭解:(1)2632n nn S a a =++ ① ()21116322,n n n S a a n n N *---=++≥∈ ②①-②可得:()222211116333n n n n n n n n n a a a a a a a a a ----=-+-⇒+=-0n a > 所以两边同除以1n n a a -+可得:13n n a a --={}n a ∴是公差为3的等差数列()131n a a n ∴=+-,在2632n nn S a a =++中令1n =可得: 211116321S a a a =++⇒=(舍)或12a =31n a n ∴=-(2)思路:利用(1)可求出n b 和n T ,从而简化不等式可得:33633225312n n n +⎛⎫⋅⋅⋅> ⎪-⎝⎭,若直接证明则需要进行放缩,难度较大。

数学高考几大知识点总结

数学高考几大知识点总结

数学高考几大知识点总结在数学高考中,有几大重要的知识点,它们是考生备考的重点和难点。

下面将对这几大知识点进行总结,帮助考生复习备考。

一、函数和方程函数和方程是数学高考中的重要内容,也是考试中的必考点。

在这一部分中,考生需要了解各种类型的函数和方程,包括一元一次函数、二次函数、指数函数、对数函数等。

考生需要掌握函数的性质、图像和变化规律,以及方程的解法和应用。

二、数列与数学归纳法数列是数学高考中的另一个重要知识点。

考生需要了解数列的概念、性质和常用的数列类型,如等差数列、等比数列和特殊的递推数列等。

考生还需要学会使用数学归纳法证明数列的性质和定理。

三、几何与向量几何与向量是数学高考中考察的重点之一。

考生需要熟悉各种几何图形的性质和特点,包括点、线、面的性质,以及三角形、四边形、圆等的性质。

此外,考生还需要掌握向量的概念和运算法则,并能灵活运用向量解决几何问题。

四、概率与统计概率与统计是数学高考中的一大知识点。

考生需要了解基本的概率概念和方法,包括事件、样本空间、概率计算等。

此外,考生还需掌握统计学中的数据整理、分析和解释方法,包括频数表、频率分布表、直方图等。

五、三角函数与解三角形三角函数与解三角形也是数学高考中的必考内容。

考生需要掌握基本的三角函数的定义和性质,包括正弦、余弦、正切等。

同时,考生还需要学会应用三角函数解决实际问题,解三角形的各种问题。

以上就是数学高考几大知识点的总结。

考生在备考过程中,应该注重掌握这几大知识点的概念、性质和解题方法,并通过大量的练习来加强自己的能力。

希望考生们能够通过努力,取得优异的成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整理高考数学知识点的方法有哪些
对其他的整个知识体系的版块有一个基本认识,可分为以下板块:函数的基本题型、函数与导数、三角函数相关内容、平面向量和空间向量、立体几何、数列、不等式、解析几何初步、圆锥曲线、统计与概率,选修内容不同省份安排不一样:极坐标、不等式、平面几何等。

知道了整个知识体系框架,就可以考虑在这一个学期里把哪些板块安排在哪一个月、哪一周,同时参考老师带领复习的进度,互为补充。

每一周上课前,可以把老师上一周带动复习的内容再给自己计划一下,计划这一周在以前老师讲过的基础上再给自己添加哪些内容,无论是做新题,还是整理做过的题型来寻找考试方向,都要提前安排好,六天(可能高三时期周六都要拿出一些时间给学习吧)时间每天给自己规定额外的几个小时的自习时间来完成自己的数学计划。

比如说,老师上周带我们复习了三角函数中与解三角形有关的内容,如果发现自己这些方面还有一些不会做的题或者不熟练的方法或者题型,就在资料上寻找相关的题目来试试,并且按时总结,找出这些题型的共同点,摸索高考命题方式。

如果觉得自己在解三角形这些方面比较熟练了,就可以考虑赶在老师前面,把老师接下来要带着复习的方面先复习一遍。

总之就是要使两个进度互为补充,这样才会一直有一个合理的顺序,不至于到了某一个星期就觉得乱了。

最后的结果就是,别人是复习了一轮,而自己在同样的时间可以使自己的知识掌握更加牢固。

另一方面,给自己准备几个笔记本。

对于理科生来说,尤其又是
数学这种学科,在笔记本上整理总结题型是很有用的。

一轮复习做到的一些错题可能是很有代表性的,高中数学,自己要学会分章节把错题或者自己觉得经典的题目记录下来,这些可能就是高考的某一些思路。

不过,这些经典的题目并不一定是那些怪题偏题,高考范围内的数学还是比较中规中矩的,除了压轴题会有一些特殊的思路或者灵感之外,大多数题目都是常规题型。

同时,说到做题,一轮复习是可以尝试开始做一些综合题或者高考题的。

可选择本省前几年的题目来做,不必求数量,尝试一下高考题即可,建议周末的时候找两个小时的时间按照高考的感觉来做一套题。

记住,不求做太多,只是看一看高考题的难度和综合性,给自己一个参考。

还有一个小小的建议,可以为自己准备一个小本子,用来写一些任务。

因为高三每天都会有各种繁杂的学习任务,可能有时候自己一时会忙得忘了某个任务,直到第二天老师提起来的时候才想起,哇,我这个作业竟然没做。

所以每次出现任务时就记录下来,完成之后就划去,既可以作为任务提醒,也可以作为任务计划小册子。

有时候在高三的时候会觉得自己有很多任务但是又不知道从什么开始,这是一种很常见但是必须要改变的现象,所以有一个小本子就会立刻知道自己要做什么,会有效利用高三的时间。

最后,在给学弟学妹带来一点感性一点的内容吧。

高三是一场持久战,当你走过来了,才发现高三真的好快。

同时,你会感激高三这一段奋斗的时光,十二年寒窗苦读这是第一次在学习上心无旁骛、花
如此重大的精力冲刺一个目标,最后无论如何,不要让自己高考之后后悔。

精心整理,仅供学习参考。

相关文档
最新文档