第七章线性规划新
线性规划PPT课件

线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义
线性规划(上课课件)

基变量的检验数: CB- CB B-1B = 0
C - CB B-1A =(0, CN - CB B-1N )
定理:若检验数全小于等于零,且某一个非基变量 的检验数为0,则线性规划问题有无穷多最优解。 (无穷多最优解情况)
xmk , mk 0. 证明:某个非基变量 xm k 换入基变量中,得到基可行解 X
•从可行域中某个基可行解(一个顶点) 开始(称为初始基可行解)。
线性规划(2)-单纯形方法
单纯形方法基本思路:
•从可行域中某个基可行解(一个顶点) 开始(称为初始基可行解)。 •如可能,从可行域中求出具有更优目标 函数值的另一个基可行解(另一个顶点), 以改进初始解。
线性规划(2)-单纯形方法
单纯形方法基本思路:
Z= 9+2 x1 -(3/4)x5 令新的非基变量( x1,x5 )=(0,0)T 得到新的基可行解: x(2)=(0,3,2, 16 , 0) T S2= 9 经济含义:生产乙产品3个,获得利润9 百元。
其中(1)—1/2(3)
这个方案比前方案好,但是否是最优?
这个方案比前方案好,但是否是最优? 分析: Z= 9+2 x1 -(3/4)x5 非基变量x1系数仍为正数,确定x1为换 入变量。在保证正消去系统的情况下, 确定x3为换出变量。得到新的消去系统:
•从可行域中某个基可行解(一个顶点) 开始(称为初始基可行解)。 •如可能,从可行域中求出具有更优目标 函数值的另一个基可行解(另一个顶点), 以改进初始解。
•继续寻找更优的基可行解,进一步改进 目标函数值。当某一个基可行解不能再改 善时,该解就是最优解。
第三节
线性规划-单纯形方法
单纯形方法基本思路:
增加单位产品乙(x2)比甲对目标函数 的贡献大(检验数最大),把非基变量 x2换成基变量,称x2为换入基变量,而 把基变量x5换成非基变量,称x5为换出 基变量。 (在选择出基变量时,一定保证消去系 统为正消去系统)(最小比值原则)
线性规划 ppt课件

8 25 x1 8 15 x2 1800 8 25 x 1800 1 8 15 x2 1800 x1 0, x2 0
6
线性规划模型:
min z 40 x1 36 x2
5 x1 3 x2 45 x 9 1 s.t. x2 15 x1 0, x2 0
2
两个引例 问题一 : 任务分配问题:某车间有甲、乙两台机床,可用
于加工三种工件.假定这两台车床的可用台时数分别为800和 900,三种工件的数量分别为400、600和500,且已知用二种 不同车床加工单位数量不同工件所需的台时数和加工费用如 下表.问怎样分配车床的加工任务,才能既满足加工工件的要 求,又使加工费用最低?
注:lingo的灵敏度分析需要激活(系统默认是不激活的)为了激活灵敏性分析, 运行LINGO|Options…,选择General Solver Tab, 在Dual Computations列表 框中,选择Prices and Ranges选项。 确认并运行LINGO|Ranges或快捷键 ctrl+R.
在LINGO模型 min 13* x1 9* x 2 10* x3 11* x 4 12* x5 8* x6; 窗口输入: x1 x 4 400;
x 2 x5 600; x3 x6 500; 0.4* x1 1.1* x 2 x3 800; 0.5* x 4 1.2* x5 1.3* x6 900;
Cost
X1 X2 X3 X4 X5 X6 Row Price
影子价格
Slack or Surplus
1 2 3 4 5 6
13800.00 0.000000 0.000000 0.000000 140.0000 50.00000
高三数学高考基础复习课件:第七章第3课时线性规划

延伸·拓展
4. 设 x≥0 , y≥0 , z≥0 , p=-3x+y+2z , q=x-2y+4z ,
x+y+z=1求点P(p,q)的活动范围.
【解题回顾】本题实际上是借助二元一次不等式表 示平面区域有关知识求解.不能将其转化为二元一次 不等式表示的平面区域问题是出错主要原因.
返回
5.某人上午7时,乘摩托艇以匀速V海里/时(4≤V≤20) 从A港出发到距50海里的B港去,然后乘汽车以匀速 W千米/时(30≤W≤100)自B港向距300千米的C市驶去, 应该在同一天下午4至9点到达C市.设汽车、摩托艇所
【解题回顾】(1)用线性规划的方法解题的一般步 骤是:设未知数、列出约束条件及目标函数、作 出可行域、求出最优解、写出答案.
(2)本例的关键是分析清楚在哪一个点取最大值. 可
以先将z=7x+12y化成 y- 7 x z ,利用直线的 12 12
斜截式方程可以看出在何处取得最大值.
3.要将两种大小不同的钢板截成A,B,C三种规 格,每张钢板可同时截成三种规格小钢板块数如下 表:
块数 规格
A
种类
第一种钢板
1
B
C
2
1
第二种钢板
1
1
3
每块钢板面积第一种1平方单位,第二种2平方单位, 今需要A,B,C三种规格的成品各式各12,15,27 块,问各截这两种钢板多少张,可得到所需三种规 格成品,且使所用钢板面积最小.
【解题回顾】由于钢板的张数为整数,所以必须寻 找最优整数解.调优的办法是在以z取得最值的附近 整数为基础通过解不等式组可以找出最优解.
2.线性规划 (1)对于变量x,y的约束条件,都是关于x,y的一次不 等式,称为线性约束条件,z=f(x,y)是欲达到最值 所涉及的变量x,y的解析式,叫做目标函数.当f(x,y) 是关于x,y的一次解析式时,z=f(x,y)叫做线性目标 函数. (2)求线性目标函数在约束条件下的最值问题称为 线性规划问题,满足线性约束条件的解(x,y)称为可 行解.由所有解组成的集合叫可行域,使目标函数 取得最值的可行解叫最优解.
线性规划PPT课件

基解:令所为 有 0, 非求 基出 变的 (1量 .2)的 满解 足 称为基解。
基可行解与可行 足基 (1.3): 的满 基解称为基可 对应基可行解的 为基 可, 行称 基。基 显可 然 解的数目 基解的数 C目 nm
基本最优解与最优基 满: 足(1.1) 的基可行解称为基本 优最 解,
对应m,如果 B是矩A中 阵的一 mm个 阶非奇异 (|B子 |0)矩 ,则阵 称 B是线性规 题的一个基。
基向量与非基向B量 中: 的基 列向量称为,基向 矩阵A中除B之外各列即为非,基 A中 向共 量 有nm个非基向量。
基变量与非基 基变 向P量 j量 对: 应与 的xj变 称量 为基变量;否 基则 变称 量为 。非
将文件存储并命名后,选择菜单 “Solve” 并对提示 “ DO RANGE(SENSITIVITY)ANALYSIS? ”回答“是”,即 可得到如下输出:
“资源” 剩余 为零的约束为 紧约束(有效 约束)
OBJECTIVE FUNCTION VALUE
1)
3360.000
VARIABLE VALUE REDUCED COST
可行解 基 解
基可行解
1.4 线性规划问题的图解法
下面结合例1的求解来说明图解法步骤。
例1
max Z 4 x1 3 x2
2 x1 3 x2 24
s. t 3 x1 2 x2 26
x2
x1, x2 0
Q3(6,4)
第一步:在直角坐标系中分
别作出各种约束条件,求出
3x1+2x2=26
Q2(6,4)
B
条 件
3x1 100
x1,x2 0
l3:3x1 100 l4
l4:x10,l5:x200
高考文数一轮复习经典教案(带详解)第七章 第2节:线性规划

第2节二元一次不等式(组)与简单的线性规划问题【最新考纲】 1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.【高考会这样考】 1.考查二元一次不等式组表示的区域面积和目标函数最值(或取值范围);2.考查约束条件、目标函数中的参变量的取值范围;3.利用线性规划方法设计解决实际问题的最优方案.要点梳理1.二元一次不等式(组)表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧的所有点组成的平面区域(半平面)不含边界直线.不等式Ax+By+C≥0所表示的平面区域(半平面)包括边界直线.(2)对于直线Ax+By+C=0同一侧的所有点(x,y),使得Ax+By+C的值符号相同,也就是位于同一半平面内的点,其坐标适合同一个不等式Ax+By+C>0;而位于另一个半平面内的点,其坐标适合另一个不等式Ax+By+C<0.(3)由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.2.线性规划的有关概念[友情提示]1.画二元一次不等式表示的平面区域的直线定界,特殊点定域:(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值.基 础 自 测1.思考辨析(在括号内打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( ) (2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( )(4)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( )解析 (1)不等式x -y +1>0表示的平面区域在直线x -y +1=0的下方. (4)直线ax +by -z =0在y 轴上的截距是zb . 答案 (1)× (2)√ (3)√ (4)×2.下列各点中,不在x +y -1≤0表示的平面区域内的是( ) A .(0,0)B .(-1,1)C .(-1,3)D .(2,-3)解析 把各点的坐标代入可得(-1,3)不适合,故选C. 答案 C3.不等式组⎩⎨⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )解析 x -3y +6≥0表示直线x -3y +6=0及其右下方部分,x -y +2<0表示直线x -y +2=0左上方部分,故不等式表示的平面区域为选项B. 答案 B4.设x ,y 满足约束条件⎩⎨⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为________.解析不等式组⎩⎨⎧x +2y ≤1,2x +y ≥-1,x -y ≤0表示的平面区域如图所示.由z =3x -2y 得y =32x -z 2,当直线y =32x -z2过图中点A 时,纵截距最大,此时z 取最小值.由⎩⎨⎧2x +y =-1,x +2y =1解得点A 坐标为(-1,1),此时z =3×(-1)-2×1=-5.答案 -55.若x ,y 满足约束条件⎩⎨⎧x -y +1≥0,x -2≤0,x +y -2≥0,则z =yx的最大值为________.解析 作出不等式组表示的平面区域,如图所示阴影部分,z =y x =y -0x -0,表示区域内的点与原点连线的斜率,易知z max =k OA ,由⎩⎨⎧x -y +1=0,x +y -2=0,得A ⎝⎛⎭⎫12,32,k OA =3212=3,∴z max =3.答案 3题型分类 考点突破考点一 二元一次不等式(组)表示的平面区域【例1】 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的()(2)若不等式组⎩⎨⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( ) A .-3B .1C.43D .3解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎨⎧x -2y +1≥0,x +y -3≤0或⎩⎨⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有C 符合题意.(2)如图,要使不等式组表示的平面区域为三角形,则-2m <2,则m >-1,由⎩⎨⎧x +y -2=0,x -y +2m =0,解得⎩⎨⎧x =1-m ,y =1+m ,即A (1-m ,1+m ). 由⎩⎨⎧x +2y -2=0,x -y +2m =0,解得⎩⎨⎧x =23-43m ,y =23+23m ,即B ⎝⎛⎭⎫23-43m ,23+23m ,所围成的区域为△ABC ,则S △ABC =S △ADC -S △BDC =12(2+2m )(1+m )-12(2+2m )·23(1+m )=13(1+m )2=43, 解得m =-3(舍去)或m =1.故选B. 答案 (1)C (2)B规律方法 1.二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域. 2.求平面区域的面积:(1)首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;(2)对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和.【变式练习1】 若不等式x 2+y 2≤2所表示的平面区域为M ,不等式组⎩⎨⎧x -y ≥0,x +y ≥0,y ≥2x -6表示的平面区域为N ,现随机向区域N 内抛一粒豆子,则豆子落在区域M 内的概率为________.解析 作出不等式组与不等式表示的可行域如图阴影部分所示,平面区域N 的面积为12×3×(6+2)=12,区域M 在区域N 内的面积为14π(2)2=π2,故所求概率P =π212=π24.答案 π24考点二 求目标函数的最值问题(多维探究) 命题角度1 求线性目标函数的最值【例2-1】设x ,y 满足约束条件⎩⎨⎧x +3y ≤3,x -y ≥1,y ≥0,则z =x +y 的最大值为()A .0B .1C .2D .3解析 根据约束条件画出可行域,如图中阴影部分(含边界),则当目标函数z =x +y 经过A (3,0)时取得最大值,故z max =3+0=3,故选D.答案 D命题角度2 求非线性目标函数的最值【例2-2】 (1)若变量x ,y 满足⎩⎨⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是()A .4B .9C .10D .12(2)已知实数x ,y 满足⎩⎨⎧y ≤x -1,x ≤3,x +5y ≥4,则xy 的最小值是________.解析 (1)作出不等式组所表示的平面区域,如图中阴影部分所示(包括边界),x 2+y 2表示平面区域内的点与原点的距离的平方.由图易知平面区域内的点A (3, -1)与原点的距离最大,所以x 2+y 2的最大值是10,故选C.(2)作出不等式组表示的平面区域,如图所示,又xy 表示平面区域内的点与原点连线所在直线的斜率的倒数.由图知,直线OA 的斜率最大,此时x y 取得最小值,所以⎝⎛⎭⎫x y min =1k OA =32.答案 (1)C (2)32命题角度3 求参数的值或范围【例2-3】 已知实数x ,y 满足:⎩⎨⎧x +3y +5≥0,x +y -1≤0,x +a ≥0,若z =x +2y 的最小值为-4,则实数a =( ) A .1B .2C .4D .8解析 作出不等式组表示的平面区域,如图中阴影部分所示,当直线z =x +2y 经过点C ⎝⎛⎭⎪⎫-a ,a -53时,z 取得最小值-4,所以-a +2·a -53=-4,解得a =2,选B.答案 B规律方法 1.先准确作出可行域,再借助目标函数的几何意义求目标函数的最值. 2.当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义:(1)x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;(2)yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率.3.当目标函数中含有参数时,要根据临界位置确定参数所满足的条件.【变式练习2】 (1)已知x ,y 满足约束条件⎩⎨⎧x -y +3≤0,3x +y +5≤0,x +3≥0,则z =x +2y 的最大值是()A .0B .2C .5D .6(2)若实数x ,y 满足⎩⎨⎧2x -y +2≥0,2x +y -6≤0,0≤y ≤3,且z =mx -y (m <2)的最小值为-52,则m 等于()A.54B .-56C .1D.13解析 (1)由已知得约束条件的可行域如图中阴影部分所示,故目标函数z =x +2y 经过点C (-3,4)时取最大值z max =-3+2×4=5.(2)作出约束条件所表示的可行域如图中阴影部分所示,z =mx -y (m <2)的最小值为-52,可知目标函数的最优解过点A ,由⎩⎨⎧y =3,2x -y +2=0,解得A ⎝⎛⎭⎫12,3,∴-52=m2-3,解得m =1.答案 (1)C (2)C考点三 实际生活中的线性规划问题【例3】 某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析 设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *,目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,z max =2 100×60+900×100=216 000(元).答案 216 000规律方法 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.【变式练习3】 一个小型加工厂用一台机器生产甲、乙两种桶装饮料,生产一桶甲饮料需要白糖4千克,果汁18千克,用时3小时;生产一桶乙饮料需要白糖1千克,果汁15千克,用时1小时.现库存白糖10千克,果汁66千克,生产一桶甲饮料利润为200元,生产一桶乙饮料利润为100元,在使用该机器用时不超过9小时的条件下,生产甲、乙两种饮料利润之和的最大值为________.解析 设生产甲、乙两种饮料分别为x 桶、y 桶,利润为z 元,则得⎩⎪⎨⎪⎧4x +y ≤10,18x +15y ≤66,3x +y ≤9,x ≥0,y ≥0.即⎩⎪⎨⎪⎧4x +y ≤10,6x +5y ≤22,3x +y ≤9,x ≥0,y ≥0.目标函数z =200x +100y .作出可行域(如图阴影部分所示),当直线z =200x +100y 经过可行域上点B 时,z 取得最大值,解方程组⎩⎨⎧4x +y =10,6x +5y =22,得点B 的坐标(2,2),故z max =200×2+100×2=600. 答案 600错误! 课后练习A 组 (时间:30分钟)一、选择题1.不等式组⎩⎨⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为()A .1B.12C.13D.14解析 作出不等式组对应的区域为△BCD ,由题意知x B =1,x C =2.由⎩⎨⎧y =-x +2,y =x -1,得y D=12,所以S △BCD =12×(x C -x B )×12=14.答案D2.若x ,y 满足⎩⎨⎧x ≤3,x +y ≥2,y ≤x ,则x +2y 的最大值为()A .1B .3C .5D .9解析 画出可行域,设z =x +2y ,则y =-12x +z 2,当直线y =-12x +z2过B (3,3)时,z 取得最大值9,故选D. 答案 D3.设x ,y 满足约束条件⎩⎨⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是()A .-15B .-9C .1D .9解析 作出不等式组表示的可行域,结合目标函数的几何意义可得函数在点B (-6,-3)处取得最小值z min =-12-3=-15.故选A.答案 A4.设x ,y 满足约束条件⎩⎨⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是()A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析 画出不等式组表示的可行域(如图阴影部分所示),结合目标函数的几何意义可得函数在点A (0,3)处取得最小值z =0-3=-3,在点B (2,0)处取得最大值z =2-0=2.答案 B5.设变量x ,y 满足约束条件⎩⎨⎧x -y -1≤0,x +y ≥0,x +2y -4≥0,则z =x -2y 的最大值为()A .-12B .-1C .0D.32解析 作出可行域,如图阴影部分,作直线l 0:x -2y =0,平移直线l 0,可知经过点A 时,z =x -2y 取得最大值,由⎩⎨⎧x +2y -4=0,x -y -1=0,得A (2,1),所以z max =2-2×1=0, 故选C.答案 C6.若1≤log 2(x -y +1)≤2,|x -3|≤1,则x -2y 的最大值与最小值之和是( ) A .0B .-2C .2D .6解析 1≤log 2(x -y +1)≤2,|x -3|≤1即变量x ,y 满足约束条件⎩⎨⎧2≤x -y +1≤4,2≤x ≤4,即⎩⎨⎧x -y -3≤0,x -y -1≥0,2≤x ≤4,作出可行域(图略),可得x -2y 的最大值、最小值分别为4,-2,其和为2. 答案 C7.若x ,y 满足⎩⎨⎧x +y ≥1,mx -y ≤0,3x -2y +2≥0且z =3x -y 的最大值为2,则实数m 的值为()A.13B.23C .1D .2解析 若z =3x -y 的最大值为2,则此时目标函数为y =3x -2,直线y =3x -2与3x -2y +2=0和x +y =1分别交于A (2,4),B ⎝⎛⎭⎫34,14,mx -y =0经过其中一点,所以m =2或m =13,当m =13时,经检验不符合题意,故m =2,选D. 答案 D8.若变量x ,y 满足约束条件⎩⎨⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为()A.322B. 5C.92D .5解析 作出不等式组对应的平面区域如图中阴影部分所示.设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方,由图知C ,D 间的距离最小,此时z 最小.由⎩⎨⎧y =1,x -y +1=0得⎩⎨⎧x =0,y =1,即C (0,1),此时z min =(x -2)2+y 2=4+1=5,故选D. 答案 D 二、填空题9.若x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解析 画出可行域如图阴影部分所示. 由z =3x -4y ,得y =34x -z4,作出直线y =34x ,平移使之经过可行域,观察可知,当直线经过点A (1,1)处取最小值,故z min =3×1-4×1=-1.10.已知O 是坐标原点,点M 的坐标为(2,1),若点N (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≤2,x ≥12,y ≥x 上的一个动点,则OM →·ON →的最大值是________.解析 依题意,得不等式组对应的平面区域如图中阴影部分所示,其中A ⎝⎛⎭⎫12,12,B ⎝⎛⎭⎫12,32,C (1,1). 设z =OM →·ON →=2x +y ,当目标函数z =2x +y 过点C (1,1)时,z =2x +y 取得最大值3. 答案 311.(一题多解)已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________(答案用区间表示).解析 法一 设2x -3y =a (x +y )+b (x -y ),则由待定系数法可得⎩⎨⎧a +b =2,a -b =-3,解得⎩⎨⎧a =-12,b =52,所以z =-12(x +y )+52(x -y ).又⎩⎨⎧-2<-12(x +y )<12,5<52(x -y )<152,所以两式相加可得z ∈(3,8). 法二 作出不等式组⎩⎨⎧-1<x +y <4,2<x -y <3表示的可行域,如图中阴影部分所示.平移直线2x -3y =0,当相应直线经过x -y =2与x +y =4的交点A (3,1)时,z取得最小值,z min =2×3-3×1=3;当相应直线经过x +y =-1与x -y =3的交点B (1,-2)时,z 取得最大值,z max =2×1+3×2=8.所以z ∈(3,8).12.x ,y 满足约束条件⎩⎨⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________.解析 如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1. 答案 2或-1B 组 (时间:15分钟)13.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 B .16万元 C .17万元D .18万元解析 设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,则有⎩⎨⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎨⎧x +2y =8,3x +2y =12得A (2,3).则z max =3×2+4×3=18(万元). 答案 D14.已知实数x ,y 满足⎩⎨⎧x -2y +1≥0,x <2,x +y -1≥0,z =|2x -2y -1|,则z 的取值范围是()A.⎣⎡⎦⎤53,5B .[0,5)C .[0,5]D.⎣⎡⎭⎫53,5解析 作出可行域如图所示:易求得A ⎝⎛⎭⎫2,32,B ⎝⎛⎭⎫13,23,C (2,-1),令u =2x -2y -1,则y =x -u +12,当直线y =x-u +12过点C (2,-1)时,u 有最大值5,过点B ⎝⎛⎭⎫13,23时,u 有最小值-53,因为可行域不包括x =2的边界,所以z =|2x -2y -1|的取值范围是[0,5).故选B. 答案 B15.已知变量x ,y 满足约束条件⎩⎨⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是________. 解析 画出x ,y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12. 答案 ⎝⎛⎭⎫12,+∞16.已知实数x ,y 满足⎩⎨⎧y ≤ln x ,x -2y -3≤0y +1≥0,,则z =y +1x 的取值范围为________.解析 作出不等式组对应的平面区域,如图阴影部分.z =y +1x 表示区域内的点(x ,y )与A (0,-1)连线的斜率k ,由图可知,k min =0,k max =k AP ,P 为切点,设P (x 0,ln x 0),k AP =1x 0,∴ln x 0+1x 0=1x 0,∴x 0=1,k AP =1,即z =y +1x 的取值范围为[0,1].答案 [0,1]。
高考数学一轮复习第七章不等式推理与证明1二元一次不等式与简单的线性规划问题课件新人教A版22

标函数的几何意义是斜率问题还是距离问题,依据几何意义可求得
最值.
-27考点1
考点2
考点3
对点训练 2(1)(2020 河北唐山二模)已知 x,y 满足约束条件
- + 2 ≥ 0,
-2 + 1 ≤ 0,则 z=x-y 的最大值为( B )
包括
标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应_____
实线
边界直线,则把边界直线画成
.
(2)因为对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)
代入Ax+By+C,所得的符号都 相同
,所以只需在此直线的同
一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的 符号 即
-1 ≤ 0,
- + 1 ≥ 0
为( D )
A.-5
B.1
C.2
D.3
(2)如图,阴影部分表示的区域可用二元一次不等式组表示
+ -1 ≥ 0,
为 -2 + 2 ≥. 0
-17考点1
考点2
考点3
+ -1 ≥ 0,
解析: (1)不等式组 -1 ≤ 0,
所围成的平面区域如图所示.
3
3
7
A.1
B.
C.
D.
2
4
4
- ≥ 0,
2 + ≤ 2,
(2)若不等式组
表示的平面区域是一个三角形,则
≥ 0,
+ ≤
a 的取值范围是( D )
线性规划

约束方程
约束方程的标准型
(1)目标函数最大 (2)约束条件为等式方程 (3)决策变量非负 (4)资源限量非负
3
三、线性规划的关键技术
(2)4X1-2X2-3X3=-6
-4X1+2X2+3X3=6
4
方程→矩阵
三、线性规划的关键技术
图解法
5
三、线性规划的关键技术
6
三、线性规划的关键技术
解
X1
X2
线性规划简介
一、什么是线性规划
二、线性规划的特征
三、线性规划的关键技术
1
一、什么是线性规划
针对一定规划基于线性约束的实现一些特定目标。
二、线性规划的特征
1.目标函数
2.线性约关键技术
1.确定决策变量 2.模型建立——目标函数建立 3.约束方程 4.线性规划求解 线性规划单纯形法 目标函数
X3
X4
X5
Z
基可行解
1 2 3 4 5 6 7 8
0 0 5 0 10 5 5 2
0 4 0 5 0 2.5 4 4
5 5 0 5 -5 0 0 3
10 2 5 0 0 0 -3 0
4 0 4 -1 4 1.5 0 0
5 17 10 20 15 17.5 22 19
√ √ √ × × √ × √
7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变量xij与教师 i 以及课程 j 的关系如下:
i j 语文 数学 物理 化学
张 王
李 赵
x11 x21
x31 x41
x12 x22
x32 x42
x13 x23
x33 x43
x14 x24
x34 x44
max z= 92x11+68x12+85x13+76x14+82x21+91x22+77x23+63x24 +83x31+90x32+74x33+65x34+93x41+61x42+83x43+75x44 s.t. x11+x12+x13+x14=1 (1) x21+x22+x23+x24=1 (2) x31+x32+x33+x34=1 (3) x41+x42+x43+x44=1 (4) x11+x21+x31+x41=1 (5) x12+x22+x32+x42=1 (6) x13+x23+x33+x43=1 (7) x14+x24+x34+x44=1 (8) xij=0, 1 这个问题的变量只能取值0或1,这样的线性规划问题成为0-1规划。
min( z ) 2 x1 3 x2
x1 2 x2 8 4 x 16 1 s .t . 4 x2 12 x1 0, x2 0
MATLAB求解线性规划问题的命令
命令函数 linprog()
命令格式
⑴X=linprog(f,A,b)
求解LP问题
min f X
eq
⑵[X,fval]=linprog(f,A,b,Aeq,Beq,LB,UB)
求解LP问题
min f X
一般的指派问题线性规划模型如下: 设:
0 第i个人不从事第 j项任务 x ij 1 第i个人被指派完成第 j项任务
得到以下的线性规划模型:
min(max) z
n
c x
i 1 j 1 ij
n
n
ij ij
s.t.
x x
j1 i 1 n
1
j 1,2,, n
ij
1 i 1,2,, n
函数说明
(6)线性规划问题没有可行解时,系统提示 Warning: The constraints are overly stringent;there is no feasible solution.
如果优化成功,系统将会提示: Optimization terminated successfully
函数说明
(4)返回值output有3个分量,iterations表示优化过程 的叠代次数,cgiterations表示PCG叠代次数, algorithm表示优化采用的运算规则。 (5)返回值lambda有4个分量,ineqlin是线性不等式约 束条件, eqlin是线性等式约束条件,upper是变量 的上界约束条件, lower是变量的下界约会条件。 它们的返回值分别表示相应的约束条件在优化过程 中是否有效,本例中可以看到,三个不等式约束中 的后两个是有效的。
可行解(feasible solution)
使得约束条件成立的决策变量的一组值
可行域(feasible region)
全体可行解组成的集合(经常记为S)
最优解(optimal solution)
可行域中使目标函数达到所需最大或最小的可行解
3、用MATLAB软件求解线性规划问题
线性规划问题的求解方法包括图解法、单纯 形法、矩阵法等. 但在决策变量个数较多,求解过程都比较复 杂时,用MATLAB软件求解线性规划问题则 比较简单.
案例二(生产计划的问题)某工厂在计划期内要安 排生产Ⅰ、Ⅱ的两种产品,已知生产单位产品所需 的设备台时,A、B两种原材料的消耗以及每件产品 可获的利润如下表所示。问应如何安排计划使该工 厂获利最多?
Ⅰ
设备 原材料A 原材料B 单位产品利润 (万元) 1 4 0 2
Ⅱ
2 0 4 3
资源限量
8(台时) 16(kg) 12(kg)
x ij 0,1
由以上3个例子,我们可以归纳出线性规划问题的一般形式:
max(min) z c1x1 c 2 x 2 c jx j c n x n s.t. a11x1 a12 x 2 a1 jx j a1n x n (, )b1 a 21x1 a 22 x 2 a 2 jx j a 2n x n (, )b 2 a m1x1 a m 2 x 2 a mjx j a mn x n (, )b m x1 x2 xj xn 0
设备能 每件产品占用的 力 机时数(小时/ 产品甲 产品乙 产品丙 产品丁 (小时 件) ) 设备A 设备B 设备C 1.5 1.0 1.5 1.0 5.0 3.0 2.4 1.0 3.5 1.0 3.5 1.0 2000 8000 5000
利润(元/件)
5.24
7.30
8.34
4.18
设变量xi为第i种产品的生产件数(i=1,2,3,4), 目标函数z为相应的生产计划可以获得的总利润。在加工 时间以及利润与产品产量成线性关系的假设下,可以建立 如下的线性规划模型:
线性规划的不等式约束条件 线性规划的等式约束条件
A X b
Aeq X Beq
函数说明
(2)运用linprog()命令时,系统默认为它的各种 linprog(f,A,b, Aeq, Beq,LB,UB,X0,options)都存 在,且按固定顺序排列。本例中,在存在约束LB的 情况下,它后面的参数没给出,可以不声明,但是 LB前面的参数即使没给出(例如等式约束条件)也 要用空矩阵“[ ]”的方式给出声明,不能省略。 (3)返回值exitflag有3种情况: 表示优化结果已经超过函数的估计值 或者已声明的最大叠代次数; exitflag=1 表示优化过程中变量收敛于解X。 exitflag= -1 表示优化结果不收敛。 exitflag=0
函数说明(1) f 目标函数的系数组成的向量 X 目标函数取得极值的决策变量组成的列向量 A 矩阵 线性规划的不等式约束条件 A X b b 向量
Aeq 矩阵 线性规划的等式约束条件 Aeq X Beq Beq 向量
LB
UB
变量的下界约束
变量的上界约束
变量的初始值 X0 Options 控制规划过程的参数系列
四位教师每人只能教一门课,每一门课只能 由一个教师来教。要确定哪一位教师上哪一门课, 使四门课的平均成绩之和为最高。 设xij(i=1, 2, 3, 4;j=1, 2, 3, 4)为第i个教师是 否教第j门课,xij只能取值0或1,其意义如下:
0 第i个教师不教第 j门课 x ij 1 第i个教师教第 j门课
背包问题
例1.2 一只背包最大装载重量为50公斤。现有三种物品, 每种物品数量无限。每种物品每件的重量、价值如下表 所示: 物品1 重量(公斤/ 件) 价值(元/件) 物品2 物品3
10
17
41
72
20
35
要在背包中装入这三种物品各多少件,使背包中的物品价值最高 。
设装入物品1,物品2和物品3各为x1,x2,x3 件,由于物品的件数必须是整数,因此背包问题 的线性规划模型是一个整数规划问题:
fval 优化结束后得到的目标函数值
目标函数取得极值的决策变量组成的列向量 优化结束后得到的目标函数值 控制规划过程的参数系列
[X,fval,exitflag,output,lambda]
=linprog(f,A,b,Aeq,Beq,LB,UB,X0,options)
目标函数的系数组成的向量 矩阵 向量 变量的初始值 变量的上界约束 矩阵 向量 变量的下界约束
max s.t. z= 5.24x1 +7.30x2 +8.34x3 +4.18x4 1.5x1 +1.0x2 +2.4x3 +1.0x4 ≤2000 1.0x1 +5.0x2 +1.0x3 +3.5x4 ≤8000 1.5x1 +3.0x2 +3.5x3 +1.0x4 ≤5000 x1, x2, x3, x4
线性规划
线性规划简介
线性规划问题最早是前苏联学者康德洛维奇(L.V. Kantorovich)于1939年提 出的,但他的工作当时并未广为人知。 第二次世界大战中,美国空军的一个研究小组SCOOP(Scientific Computation of Optimum Programs)在研究战时稀缺资源的最优化分配这 一问题时,提出了线性规划问题。并且由丹泽(G.B.Dantzig)于1947年提 出了求解线性规划问题的单纯形法。 50年代初,电子计算机研制成功,较大规模的线性规划问题的计算已经成为 可能。因此,线性规划和单纯形法受到数学家、经济学家和计算机工作者的 重视,得到迅速发展,很快发展成一门完整的学科并得到广泛的应用。 1952年,美国国家标准局(NBS)在当时的SEAC电子计算机上首次实现单 纯形算法。 1976年IBM研制成功功能十分强大、计算效率极高的线性规划软件MPS,后 来又发展成为更为完善的MPSX。这些软件的研制成功,为线性规划的实际 应用提供了强有力的工具。 随着计算机硬件和软件技术的发展,目前用微型计算机就可以求解变量个数 达106,约束个数达104的巨大规模的问题,并且计算时间也不太长。
X
T