3.1单纯形法的矩阵描述 PPT课件
合集下载
单纯性法的矩阵描述.ppt

记为:σN= CN-CBB-1N
基变量XB检验数为0,实质上是σB =CB-CBB-1B=0
XB=B-1b-B-1NXN
Z=CBB-1b+σNXN
令非基变量XN=0,得到如下公式(经过迭代后):
由于B是可行基,则得到:
基变量的取值:XB =B -1b ≥0 ; 基可行解: X =(XB,XN)T = (B-1b,0)T ; 目标函数值: z =CB B -1b ;
XB 0
I
-Z 1 0
B-1N
B-1b
CN -CBB-1N
-CBB-1b
将增广矩阵左乘B-1并令非基变量XN=0后
得到下列计算公式:
-z XB
XN
RHS
1 CB
CN
0
0
I
B-1N
B-1b
0B
N
b
1
0
CN -CBB-1N
-CBB-1b
1.
X B B1b, XN = 0 , X =(XB ,XN)T = (B-1b ,0)T
=CBXB+CNXN
=CB (B-1b - B-1NXN) +CNXN
=CBB-1b +(CN - CBB-1N)XN =CBB-1b +σNXN 式中:CBB-1b是z的常数项,
σA= C-CBB-1A σj=cj-CBB-1Pj
(当非基变量XN=0时,Z=CBB-1b)
CN-CBB-1N是非基变量XN 的系数,也是XN的检验数.
x5
20
已知可行基
2
B1
此表达式是用非基变量来表达的
注意:两边左乘B-1 ,相当于对增广矩阵(A,b)进行了初等行 变换, 即相当于对原来的单纯形表进行了一次迭代,
运筹学讲义-单纯形方法(ppt 78页)

为变量xj关于基B的判别数,j=1,2, -------, n。
7 2020/11/2
五、 单纯形方法
2、判别向量与判别数: (的b)判λ别N=向CN量-C,BB其-1中N为任对一应分基量Bλ的j=c所j-C有BB非-1基Aj变量XN 为-非---基-, 变n。量xj关于基B的判别数,j=m+1,m+2, ----(c)所有基变量的判别向量是零向量,所有基变
(一)人工变量消除法——M法 2、M法的辅助线性规划问题:
原问题:
Max z=c1x1+c2x2+……+cnxn s.t. a11x1+a12x2+……+a1nxn=b1 a21 x1+ a22x2+…… +a2nxn =b2
……
am1x1+am2x2+……+amnxn=bm x1,x2, ……,xn ≥ 0
函数值Z/ >0,则原问题无解。 [证明](请同学们自己做一做)。 (3)辅助问题在最优基B下目标函数的值Z/=0,此时有 两种情况:第一种情况,若辅助问题的最优基B对应的 基变量中无人工变量,则该最优基也是原问题的可行 基,这时候只要在单纯形表中去掉人工变量所在的列 和最后一行,即可得到原问题的初始可行单纯形表。
9 2020/11/2
五、 单纯形方法
(三)单纯形方法:表上作业法
1、单纯形表的构造
方法1:C-CBB-1A=(CB,CN)-CBB-1(B,N) =(0,CN-CBB-1N)
两边同乘上X得:
(C-CBB-1A)X= (0,CN-CBB-1N)X,化简得: Z=CBB-1b+(CN-CBB-1N) XN
3 X2 1.5 0.5 1 0.25 0
7 2020/11/2
五、 单纯形方法
2、判别向量与判别数: (的b)判λ别N=向CN量-C,BB其-1中N为任对一应分基量Bλ的j=c所j-C有BB非-1基Aj变量XN 为-非---基-, 变n。量xj关于基B的判别数,j=m+1,m+2, ----(c)所有基变量的判别向量是零向量,所有基变
(一)人工变量消除法——M法 2、M法的辅助线性规划问题:
原问题:
Max z=c1x1+c2x2+……+cnxn s.t. a11x1+a12x2+……+a1nxn=b1 a21 x1+ a22x2+…… +a2nxn =b2
……
am1x1+am2x2+……+amnxn=bm x1,x2, ……,xn ≥ 0
函数值Z/ >0,则原问题无解。 [证明](请同学们自己做一做)。 (3)辅助问题在最优基B下目标函数的值Z/=0,此时有 两种情况:第一种情况,若辅助问题的最优基B对应的 基变量中无人工变量,则该最优基也是原问题的可行 基,这时候只要在单纯形表中去掉人工变量所在的列 和最后一行,即可得到原问题的初始可行单纯形表。
9 2020/11/2
五、 单纯形方法
(三)单纯形方法:表上作业法
1、单纯形表的构造
方法1:C-CBB-1A=(CB,CN)-CBB-1(B,N) =(0,CN-CBB-1N)
两边同乘上X得:
(C-CBB-1A)X= (0,CN-CBB-1N)X,化简得: Z=CBB-1b+(CN-CBB-1N) XN
3 X2 1.5 0.5 1 0.25 0
运筹学之单纯形法.ppt

x1 ,x2 ,… ,xn ≥ 0
2.基本过程:
1)加入人工变量;
2)通过单纯形法的迭带,将虚拟的人 工变量从原来的基变量中替换出去, 变成非基变量,使每一个人工变量都 等于0.反之,如果不能都变为非基变 量,表明原问题无可行解.
(一)、大M法:
2.4 单纯形法补遗
2.4.1 进基变量的相持及其突破
Y
结束
N
沿边界找新
的基本可行解
2.1 单纯形法的基本思想
单纯形法的三种形式:1)方程组形式; 2)表格形式;3)矩阵形式。
2.1.1 方程组形式的单纯形法
maxZ=3X1 +5X2
X1
+X3
=8
2X2 +X4 =12
3X1+4X2
+X5 =36
X1 … X5 0
解:(1)、确定初始可行解
B=(a3 a4 a5)=I Z -3X1-5X2 =0 X3 =8- X1 X4=12-2X2
此时可以确定X5为离基变量
Z
+1/2X4 +X5 =42
X3 +2/3X4 -1/3X5 =4
X2 +1/2X4 =6
X1 -2/3X4+1/3X5=4
令X4 =X5 =0
X =(4, 6, 4, 0, 0)T Z =42
。此时4=1/2, 5=1, Z值不
再增大了,X值是最优基本解
即:X*=(4,6)T,Z*=42
X6
X7
CB XB -36 M -M -6 -M -4 0
0
M
0
0
0
X3 100
2
3
1
00
0
2.基本过程:
1)加入人工变量;
2)通过单纯形法的迭带,将虚拟的人 工变量从原来的基变量中替换出去, 变成非基变量,使每一个人工变量都 等于0.反之,如果不能都变为非基变 量,表明原问题无可行解.
(一)、大M法:
2.4 单纯形法补遗
2.4.1 进基变量的相持及其突破
Y
结束
N
沿边界找新
的基本可行解
2.1 单纯形法的基本思想
单纯形法的三种形式:1)方程组形式; 2)表格形式;3)矩阵形式。
2.1.1 方程组形式的单纯形法
maxZ=3X1 +5X2
X1
+X3
=8
2X2 +X4 =12
3X1+4X2
+X5 =36
X1 … X5 0
解:(1)、确定初始可行解
B=(a3 a4 a5)=I Z -3X1-5X2 =0 X3 =8- X1 X4=12-2X2
此时可以确定X5为离基变量
Z
+1/2X4 +X5 =42
X3 +2/3X4 -1/3X5 =4
X2 +1/2X4 =6
X1 -2/3X4+1/3X5=4
令X4 =X5 =0
X =(4, 6, 4, 0, 0)T Z =42
。此时4=1/2, 5=1, Z值不
再增大了,X值是最优基本解
即:X*=(4,6)T,Z*=42
X6
X7
CB XB -36 M -M -6 -M -4 0
0
M
0
0
0
X3 100
2
3
1
00
0
3.1单纯形法的矩阵描述

故所有检验数可表示 C C B B1 A与 C B B1
§3.1 单纯形法的矩阵描述
• (2)单纯形表与矩阵表示的关系
Page 8
由( 3 - 5)、( 3 - 6)式知 X B +B 1 NX N B 1b - z (C N C B B N ) X N -C B B b
Page 5
由(3 - 3)式知 BX B b NX N X B B 1b B 1 NX N 上式代入 (3 - 2)式得 z C B (B 1b B 1 NX N ) C N X N =C B B 1 b ( C N C B B 1 N ) X N (3 6 ) (3 5)
因为,不满足最优性条件,所以不是最优解
小结
学习要点:
Page 14
1. 掌握矩阵的运算; 2.理解基矩阵的作用; 3.了解矩阵运算与单纯表的关系。
The end,thank yoቤተ መጻሕፍቲ ባይዱ!
运筹学
( Operations Research )
Chapter3 对偶理论和灵敏度分析
本章主要内容:
§3.1 单纯形法的矩阵描述 §3.2 单纯形法的矩阵计算
§3.3 对偶问题的提出
§3.4 线性规划的对偶理论
§3.5 影子价格
§3.6 对偶单纯形法
§3.7 灵敏度分析
( Duality Theory )
量是基变量, 从而确定基矩 阵; b.求基矩阵的 逆矩阵; c.求检验数。
N 1 3
1 / 2 0 2 1 1 4 1 3 0 4 0 1 1 1 2 0
1 3 0 4 2 2 3 1 2
2 由最终表反推出初始表 例2:设用单纯形法求解某个线性规划问题的最终表如下(目标max, 约束 Page 12 为≤形式,x3,x4,x5为松弛变量),试写出原始线性规划模型。
§3.1 单纯形法的矩阵描述
• (2)单纯形表与矩阵表示的关系
Page 8
由( 3 - 5)、( 3 - 6)式知 X B +B 1 NX N B 1b - z (C N C B B N ) X N -C B B b
Page 5
由(3 - 3)式知 BX B b NX N X B B 1b B 1 NX N 上式代入 (3 - 2)式得 z C B (B 1b B 1 NX N ) C N X N =C B B 1 b ( C N C B B 1 N ) X N (3 6 ) (3 5)
因为,不满足最优性条件,所以不是最优解
小结
学习要点:
Page 14
1. 掌握矩阵的运算; 2.理解基矩阵的作用; 3.了解矩阵运算与单纯表的关系。
The end,thank yoቤተ መጻሕፍቲ ባይዱ!
运筹学
( Operations Research )
Chapter3 对偶理论和灵敏度分析
本章主要内容:
§3.1 单纯形法的矩阵描述 §3.2 单纯形法的矩阵计算
§3.3 对偶问题的提出
§3.4 线性规划的对偶理论
§3.5 影子价格
§3.6 对偶单纯形法
§3.7 灵敏度分析
( Duality Theory )
量是基变量, 从而确定基矩 阵; b.求基矩阵的 逆矩阵; c.求检验数。
N 1 3
1 / 2 0 2 1 1 4 1 3 0 4 0 1 1 1 2 0
1 3 0 4 2 2 3 1 2
2 由最终表反推出初始表 例2:设用单纯形法求解某个线性规划问题的最终表如下(目标max, 约束 Page 12 为≤形式,x3,x4,x5为松弛变量),试写出原始线性规划模型。
最优化方法之单纯形法PPT课件

3 5
4 2
1 0
0 1
9 8
x3 9 3x1 0 x4 8 5x1 0
x1 3
x1 1.6
第5页/共76页
x1取min3,1.6 1.6,
即x4 0 x4出基
得到新基
3 5
1
0
• 迭代(求新的基本可行解)
3 4 1 0 9
5
2
0
1
8
主元素
3 4 1 0 9
1
25 0
s.t 3x1 4x2 x3 9
5x1 2x2 x4 8
x1, x2 , x3 , x4 0
• 找初始基可行解
系数的增广矩阵
取初始可行基为B1
1
0
0 1
3 4 1 0 9
A
5
2
0
1
8
得基可行解 X (0) (0 0 9 8)T
目标函数值 z(0) 0
• 判断是否最优解?能否找到另一个基可行解使目标函数 值下降?
x3
3 14
x4
3 2
x1
-
1 7
x3
2 7 x4 1
x2
3 2
5 14
x3
3 14
x4
x1
1
1 7
x3
-
2
7
x4
代入目标函数:
z
17.5
5 14
x3
25 14
x4
最优解: X * (1 1.5 0 0)T z* 17.5
第10页/共76页
X (0) (0 0 9 8)T z(0) 0
x1, x2 , x3 , x4 , x5 0
zj cj cBB1Pj cj
单纯形法的矩阵描述

σj
7 0 0 0 -15
45
0 x3 0 0 1 -1 1 1
B-1b
7 x1 1 0 0 1 -2 2
15 x2 0 1 0 0 1 3
σj
0 0 0 -7 -1
59
最优基矩阵旳逆矩阵B-1
Page 11
基矩阵:
1 1 1
B p3
p1
p2
0 0
1 0
2 1
基矩阵旳逆矩阵:
1 1 1
0 1 -1 00 1 10 0 0 0 -7
1 1 1 1 1 1 2 0 1 0 1 0 0
11 -2 2 13 -1
1 2
p3
p1
1
松弛变量旳价值系数为0 x1、x2旳价值系数设为c1、c2
p2
0 − c1 = −7
0 +2c1−c2 = −1
c1 = 7 c2 = 15
1 1 1 1 1 0 0
量旳系数矩阵,则
(
X
,
X
S
)
X X
B N
,(C
,
CS
)
(CB
,
CN
);
§3.1 单纯形法旳矩阵描述 Page 5
目标函数
约束条件 非负条件
max
z
CX
(CB ,CN
)
XB XN
CB XB CN XN
(3 2)
( B,
N
)
XB XN
BX B
NX N
b
(3 3)
X B,X N 0
Page 13
例3:试验证X=(0,2,0,0,2)T是否是下列线性规划问题旳最优解。
第五章 单纯形法ppt课件

➢ x2+x5=250
→ 0=250?
➢ 显然不能得到相应的解。
编辑版pppt
9
一、问题的提出
➢ 为什么令x2=0,x5=0时不能得到解? ➢ 因为其余三个变量的系数列向量为
110
201
000
➢ 该矩阵是非可逆矩阵,即去掉x2和x5后的三个约束 方程线性相关,这种情况下得不到解。
编辑版pppt
10
编辑版pppt
24
二、单纯形法的基本思路和原理
➢ 3、那有没有办法在求出解之前保证我 们取得的基为可行基?
➢ 解决办法:保证右端项非负,找到一个 单位矩阵,必定是一个可行基。
编辑版pppt
25
二、单纯形法的基本思路和原理
➢ 如范例系数阵:
右端项非负
1 1 1 0 0 300 2 1 0 1 0 400 0 1 0 0 1 250
❖ 我们首先将最优解缩小在一个有限的❖ 回顾图解法,我们知道:最优解必定在可行域的顶 点上取得,而顶点的个数总是有限的。
❖ 多维线性规划问题的可行域也存在有限个顶点。
❖ 如果能够从一个顶点开始,通过某种方式向更优顶 点转移,总会找到最优点。
❖ 首先面临的问题: ❖ 如何通过代数方法找到第一个顶点?
存在3阶单位阵
编辑版pppt (初始可行基)
26
二、单纯形法的基本思路和原理
➢ 基本可行解为(0,0,300,400,250) ➢ 此可行基称为初始可行基。 ➢ 对应的解称为初始基本可行解。
➢ 初始基本可行解在上页矩阵中一目了然。
编辑版pppt
27
二、单纯形法的基本思路和原理 ➢第二步:最优性检验
不存在 (200,0,100,0,50) (300,0,0,-200,-50) (0,250,50,150,0) (0,400,-100,0,150) (0,300,0,100,-50)
第一节单纯形法的矩阵描述及改进单纯形法介绍-精品文档

矩阵单纯形法计算的描述
当基变量为 X B 时,新的单纯形表
基变量 非基变量
C B
X Bb B cj zj
1
X B I 0
X X N s 1 BN B 1 1 C C B N C N B BB
当前基解
当前检验数
单 大 纯 规 形 对 模 法 偶 线 矩 问 性 题 阵 规 描 划 述
上页 下页 返回
修正单纯形法简介
原因:
单纯形法的目的是要求问题的最优解, 而在迭代过程中,单纯形表中的某些列与 求最优解关系不大。因此,对单纯形法进 行修正。
思路:
~ ~ , P b , P , , 每次迭代关键求出 B k k j i
1
需要换入的变量对应的列
单 大 纯 规 形 对 模 法 偶 线 矩 问 性 题 阵 规 描 划 述
特点:
1. 2.
具有一定的输入和输出 在将输入转换成输出的过程中,努力实现自身的决策 目标。
单 大 纯 规 形 对 模 法 偶 线 矩 问 性 题 阵 规 描 划 述
上页 下页 返回
重要概念
决策单元的相对有效性
评价的依据是决策单元的“输入”和“ 输出”数据,根据输入和输出数据来评价决 策单元的优劣。 决策单元的相对有效性(即决策单元的优劣 )被称为DEA有效,它用数学规划模型计 算比较决策单元之间的相对效率,为评价对 象作出评价。
第一节 单纯形法的矩阵描述 及改进单纯形法介绍
单纯形法的矩阵描述
继续
改进单纯形法介绍
返回
单 大 纯 规 形 对 模 法 偶 线 矩 问 性 题 阵 规 描 划 述
上页 下页 返回
单纯形法的矩阵描述
设线性规划问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:在初始单位矩阵的位置,在各运算表中就是B-1的所在位置
最优基矩阵B=(p3,p1,p2)
cj 7 15 0 0 0
二、单纯形法矩P阵ag描e 1述0
CB XB x1 x2 x3 x4 x5 bi θi
的应用
0 x3 1 1 1
0 x4 1 2 0
0 x5 0 1 0
σj
7 15 0
0 x3 1 0 1 0 x4 1 0 0
Page 3
§3.1 单纯形法的矩阵描述
§3.1 单纯形法的矩阵描述 Page 4
设线性规划的矩阵形式为
max z CX
AX b
X
0
标准化
max z CX CS X S
AX IXS b
X
,
XS
0
(3 1)
这里I为m阶单位阵,b≥0. 设基变量XB=XS,系数矩
阵(A,I)=(B,N),其中B、N分别是基变量和非基变
量的系数矩阵,则
(
X
,
XS
)
XB XN
,(C ,
CS
)
(CB
,
CN
);
§3.1 单纯形法的矩阵描述 Page 5
目标函数
max
z
CX
(CB ,CN
)
XB XN
CB XB CN XN
(3 2)
约束条件
(
B,
N
)
X X
B N
BX B NX N
b
(3 3)
非负条件 X B,X N 0
• (1) 基变量的检验数:(CB CBB1B) 0 非基变量的检验数:(CN CBB1N ) c j z j ( j 1, 2,L , n) 迭代后松弛变量: 为基变量:检验数(CB CBB1B) 0 为非基变量:检验数(CS CB B1I )= CB B1 c j z j 故所有检验数可表示 C CB B1 A与 CB B1
令 XN 0, 得 XB B1b, 有
基可行解X (1) (B1b, 0)T,目标函数值 z CBB1b
最小规则的表达式是
min i
( B1b)i ( B1Pk )i
( B1Pk )i
0
( B1b)l ( B1Pk )l
4)非基矩阵: B-1N
§3.1 单纯形法的矩阵描述 Page 7
1 1 11 6
b B(B1b) 0 1 2 2 8
0 0 1 3 3
故:
max z = 7x1 + 15x2 x1 + x2 ≤6 x1 +2x2 ≤8 x2 ≤3 x1, x2 ≥ 0
3 验证对某个问题解的性质的假设是否正确
Page 13
例3:试验证X=(0,2,0,0,2)T是否是以下线性规划问题的最优解。
1 1 1 1 1 1
1
2
0
1
2
p3
p1
0 1 0 0 1
松弛变量的价值系数为0 x1、x2的价值系数设为c1、c2
p2
0 − c1 = −7
0 +2c1−c2 = −1
c1 = 7 c2 = 15
1 1 1 1 1 0 0
N
B(B1N )
0
1
2 1
2 1
0
p4
p5
0 0 1 0 1 0 1
§3.1 单纯形法的矩阵描述 Page 8
• (2)单纯形表与矩阵表示的关系
由(3 - 5)、(3 - 6)式知 X B +B1NX N B1b
-z (CN CB B1N ) X N -CB B1b
上两式用矩阵表示为
0 1
1 0
B 1 N CN CB
B 1 N
z XB XN
运筹学
( Operations Research )
Chapter3 对偶理论和灵敏度分析
本章主要内容:
§3.1 单纯形法的矩阵描述 §3.2 单纯形法的矩阵计算 §3.3 对偶问题的提出 §3.4 线性规划的对偶理论 §3.5 影子价格 §3.6 对偶单纯形法 §3.7 灵敏度分析
( Duality Theory )
N 1
3
4 1
3
0 4
01/12
0 1
2 1
1 2
10
1 3 0 4 2 2
3 1 2
b.求基矩阵的 逆矩阵;
c.求检验数。
因为,不满足最优性条件,所以不是最优解
小结
学习要点: 1. 掌握矩阵的运算; 2.理解基矩阵的作用; 3.了解矩阵运算与单纯表的关系。
Page 14
The end,thank you!
(3 4)
由(3 - 3)式知 BX B b NX N X B B1b B1NX N
上式代入(3 - 2)式得
(3 5)
z CB (B1b B1NX N ) CN X N =CB B1b (CN CB B1N ) X N (3 6)
§3.1 单纯形法的矩阵描述 Page 6
B1b
C
B
B1b
(3 7)
§1 单纯形法的矩阵描述 Page 9
初 系数 始 矩阵
表
检验 数
迭 系数 代 矩阵
后
检验 数
基变量XB
非基变量XN
RHS
XS
B
N
I
b
CB
CN
0
(-z)=0
XB
I=B-1B
B-1N
B-1I= B-1
B-1b
CB-CBB-1B CN-CBB-1N -CBB-1 (-z)= -CBB-1b
检验数:
N CN CB B1N
0
0 0
7
15
1 0
1 1
1 0 21
0 0
0 0 1 0 1
0
0 0
7
15
1 1
1 2
0 0 7 1 7 1
0
1
常数项:
1 1 1 6 1
X B B1b 0 1 28 2
0 0 1 3 3
目标函数值:
z CB B1b
max z = x1 + 4x2 + 3x3
1)验证是否是可行解
2x1 + 2x2 + x3 ≤ 4
2)验证是否满足最优性条件
x1 + 2x2 + 2x3 ≤6
x1, x2, x3 ≥ 0
a.确定哪些变
解: 易证,X满足约束,是可行解
B p2
p5
2 2
10
B 1
1/12
10
量是基变量, 从而确定基矩 阵;
0 0 6 6/1 1 检查计算是否正确
1 0 8 8/2 例1来自0 1 3 3/1max z = 7x1 + 15x2
x1 + x2 ≤6
00
0
b x1 +2x2 ≤8
0 -1 3 3/1
x2 ≤3
1 -2 2 2/1
x1, x2 ≥ 0
15 x2 0 1 0 0 1 3 — 单位矩阵
σj
7 0 0 0 -15
0
7
15
1 2
59
3
2 由最终表反推出初始表 例2:设用单纯形法求解某个线性规划问题的最终表如下(目标max, 约束 Page 12
为≤形式,x3,x4,x5为松弛变量),试写出原始线性规划模型。
x3 0
x1 1
x2 0
σj
0
解:
1
B
( B 1 ) 1
0
0
0 1 -1 1 1 0 0 1 -2 2 10 01 3 0 0 -7 -1
45
0 x3 0 0 1 -1 1 1
B-1b
7 x1 1 0 0 1 -2 2
15 x2 0 1 0 0 1 3
σj
0 0 0 -7 -1
59
最优基矩阵的逆矩阵B-1
Page 11
基矩阵:
1 1 1
B p3
p1
p2
0 0
1 0
2 1
基矩阵的逆矩阵:
1 1 1
B1
0
1
2
0 0 1