有关磁路计算的一些概念
磁路计算1

9
若长度为l的导体处于磁通密度为B的均匀 磁场中,则当导体长度方向与磁通密度 方向垂直、导体流过电流i时,电磁力的 计算公式为 F=Bli
其方向可用左手定则确定
10
11
4、磁路的欧姆定律
作用在磁路上的磁动势 F 等于磁路内的磁通量 Φ乘以 磁阻 Rm
磁场强度等于磁通密度除以磁导率
于是
H B/
N
d dt
当磁通密度B、导体长度为 、相对磁场的速度为 , l v 则导体中产生的电动势 为 e Blv
7
电磁感应现象
法拉第实验:
S
N
v v V0 K
磁铁与线圈有相对运动 有源线圈的电流变化
闭合导线回路包围的磁通量变化时,回路中就会产生电流。
8
3电磁力定律
载流导体在磁场中将受到力的作用,这种 力称为安培力。电机学中则称为电磁力。 (electromagnetic force)
BdA BA
磁场强度H —— 计算磁场时引用的物理量。 B=μH ,单位:A/m
2
二. 磁路的概念
磁通所通过的路径称为磁路
3
漏 磁 通
主磁通
漏 磁 通
变压器的磁路
4
三、常用的的电工定律
1、安培环路定律
沿任何一条闭合回线L,磁场强度H的线积分等于该闭合回线 所包围的电流的代数和
Hdl i
F Hl 159 0.3A 47.7A
47.7 iF/N A 9.54 10 2 A 500
13
5、磁路的基尔霍夫定律
(1)磁路的基尔霍夫电流定律 1 2 3 0 或
0
14
1
i
磁路的基本概念-文档资料

也叫磁通势,即
Em = NI 磁动势Em的单位是安培(A)。
.
4
2.磁阻
磁阻就是磁通通过磁路时所受到的阻碍作用,用Rm表 示。磁路中磁阻的大小与磁路的长度l成正比,与磁路的横
截面积S成反比,并与组成磁路的材料性质有关。因此有
2.磁路
磁通经过的闭合路径叫磁路。磁路和电路一样,分为有 分支磁路和无分支磁路两种类型。图5-12给出了无分支磁路, 图5-13给出了有分支磁路。在无分支磁路中,通过每一个横 截面的磁通都相等。
图 5-12 无分支磁路
图 5-13 有 分 支 磁 路
.
3
二、磁路的欧姆定律
1.磁动势
通电线圈产生的磁通 与线圈的匝数N和线圈中所通
.
7
表5-2列出了电路与磁路对应的物理量及其关系式。
表5-2 磁路和电路中对应的物理量及其关系式
电
路
磁
路
电流 电阻 电阻率
I R l
S
电动势 电路欧姆定律
E I E
R
磁通 磁阻 磁导率
Rm
l S
磁动势 磁路欧姆定律
E m IN
Em Rm
.
8
第五节 磁路的基本概念
一、磁路 二、磁路的欧姆定律
.
1
一、磁路
1.主磁通和漏磁通
如图5-12所示,当线圈中通以电流后,大部分磁感线沿铁 心、衔铁和工作气隙构成回路,这部分磁通称为主磁通;还 有一部分磁通,没有经过气隙和衔铁,而是经空气自成回路, 这部分磁通称为漏磁通。
图5-12 主磁通和漏磁通
.
2
动势Em对应于电动势E,磁阻Rm对应于电阻R。因此,这一 关系称为磁路欧姆定律。
磁路计算 -回复

磁路计算是用于计算磁场中磁路参数的过程,它是磁场分析和电磁设备设计中的重要步骤之一。
磁路计算可以帮助确定磁路的磁通量、磁势、磁阻和磁感应强度等参数。
下面是进行磁路计算的一般步骤:
⚫确定磁路几何形状:首先需要确定磁路的几何形状,包括磁心、线圈和气隙等部分。
这些部分的形状和尺寸对磁路参数的计算有重要影响。
⚫材料特性和参数:确定各个磁路部分的材料特性和参数,包括磁性材料的磁导率、导磁率以及其他相关参数。
这些参数是进行磁路计算的基础。
⚫磁路分析方程:根据磁路的几何形状和材料特性,建立磁路分析方程。
这些方程可以是基于法拉第电磁感应定律或安培环路定理等。
⚫边界条件和约束:根据具体情况,确定磁路中的边界条件和约束。
这些条件可以是给定的电流、磁通量或磁势值等。
⚫解方程和计算:使用数值方法或解析方法,求解磁路分析方程,
得到磁路中各个部分的磁通量、磁势和磁感应强度等参数。
⚫结果分析和优化:分析计算结果,评估磁路的性能,并根据需要进行优化调整。
这可以包括改变磁路的几何形状、材料选型或改变线圈的绕组方式等。
需要注意的是,磁路计算是一个复杂的过程,涉及到电磁学、数学和工程等知识领域。
在实际应用中,通常会借助电磁场仿真软件或计算工具来辅助进行磁路计算,以提高计算的准确性和效率。
磁路设计的基本概念

磁路设计的基本概念第一章磁路电机是一种机电能量转换装置,变压器是一种电能传递装置,它们的工作原理都以电磁感应原理为基础,且以电场或磁场作为其耦合场。
在通常情况下,由于磁场在空气中的储能密度比电场大很多,所以绝大多数电机均以磁场作为耦合扬。
磁场的强弱和分布,不仅关系到电机的性能,而且还将决定电机的体积和重量;所以磁场的分析扣计箅,对于认识电机是十分重要的。
由于电机的结构比校复杂,加上铁磁材料的非线性性质,很难用麦克斯韦方程直接解析求解;因此在实际工作中.常把磁场问题简化成磁路问题来处理。
从工程观点来说,准确度已经足够。
本章先说明磁路的基本定律,然后介绍常用铁磁材料及其性能,最后说明磁路的计算方法。
1-1 磁路的基本定律一、磁路的概念磁通所通过的路径称为磁路。
图1—1表示两种常见的磁路,其中图a为变压器的磁路,图b为两极直流电机的磁路。
在电机和变压器里,常把线圈套装在铁心上。
当线圈内通有电流时、在线圈周围的空间(包括铁心内、外)就会形成磁场。
由于铁心的导磁性能比空气要好得多,所以绝大部分磁通将在铁心内通过,并在能量传递或转换过程中起耦合场的作用,这部分磁通称为主磁通。
围绕裁流线圈、部分铁心和铁心周围的空间,还存在少量分散的磁通,这部分磁通称为漏磁通。
主磁通和漏磁通所通过的路径分别构成主磁路和漏磁路,图1—l中示意地表出了这两种磁路。
用以激励磁路中磁通的载流线圈称为励磁线圈(或称励磁绕组),励磁线圈中的电流称为励磁电流(或激磁电流)。
若励磁电流为直流,磁路中的磁通是恒定的,不随时间而变化,这种磁路称为直流磁路;直流电机的磁路就属于这一类。
若励磁电流为交流(为把交、直流激励区分开,本书中对文流情况以后称为激磁电流),磁路中的磁通随时间交变变化,这种磁路称为交流磁路;交流铁心线圈、变压器和感应电机的磁路都属于这一类。
二、磁路的基本定律进行磁路分析和计算时,往往要用到以下几条定律。
安培环路定律沿着任何一条闭合回线L,磁场强度H的线积分值恰好等于该闭合回线所包围的总电流值∑i,(代数和).这就是安培环路定律(图l—2)。
磁路的基本概念和基本定律

磁路的基本概念和基本定律在很多电工设备(象变压器、电机、电磁铁等)中,不仅有电路的问题,同时还有磁路的问题,这一章,我们就学习磁的相关知识。
一、磁铁及其性质:人们把物体能够吸引铁、钴等金属及其合金的性质叫做磁性,把具有磁性的物体叫做磁体(磁铁)。
磁体两端磁性最强的区域叫磁极。
任何磁体都具有两个磁极,而且无论把磁体怎样分割总保持有两个异性磁极,也就是说,N极和S极总是成对出现的。
与电荷间的相互作用力相似,磁极间也存在相互的作用力,且同极性相互排斥,异极性相互吸引。
1.1磁场与磁感应线磁铁周围和电流周围都存在磁场。
磁场具有力和能的特征。
磁感应线能形象地描述磁场。
它们是互不交叉的闭合曲线,在磁体外部有N极指向S极,在磁体内部由S极指向N极,磁感应线上某点的切线方向表示该点的磁场方向,其疏密程度表示磁场的强弱。
1.2描述磁场的物理量:磁感应强度B:在磁场中垂直于磁场方向的通电导线所受电磁力F与电流I和导线有效长度L的乘积IL的比值即为该处的磁感应强度,即B=F/IL,单位:特斯拉。
磁感应强度是表示磁场中某点磁场强弱和方向的物理量,它是一个矢量,它与电流之间的方向关系可用右手螺旋定则来确定。
磁通∮:磁感应强度B和与它垂直方向的某一截面积S的乘积,称为通过该面积的磁通,即∮=BS,由上式可知,磁感应强度在数值上可以看作与磁场方向相垂直的单位面积所通过的磁通,故又称为磁通密度,单位是伏.秒,通常称为“韦”。
磁通∮是描述磁场在空间分布的物理量。
磁导率u是说明媒体介质导磁性能的物理量。
1.3定则电流与其产生磁场的方向可用安培定则(又称右手螺旋法则)来判断。
安培定则既适用于判断电流产生的磁场方向,也可用于在已知磁场方向时判断电流的方向。
1.直线电流产生的磁场,以右手拇指的指向表示电流方向,弯曲四指的指向即为磁场方向。
2.环形电流产生的磁场:以右手弯曲的四指表示电流方向,拇指所指的方向即为磁场方向。
3.通电导体在磁场内的受力方向,用左手定则来判断。
磁路计算

② 由于电机中一对极磁路中两个极的磁路情况相似,所以 只需计算半条回路上的各段磁位降,它们的总和就等于每 个评级的励磁磁势。以下叙述磁位降或磁势均为每极的。
步骤: u
E
B
S
H
HL
F0
4.电机中常用的磁性材料
热轧 硅钢片冷轧无含硅硅钢量片(1(含3硅%)量.5%以下)
比损耗小, 导磁性好, 平整度高 价格低, 导磁导热, 焊接性能好
损失长度:
bv
bv 2
bv 5
(一边开风道)
bv
bv
bv 2
5
2
(二边开风道)
③ 综上所述:
lef lt 2 Nvbv
三、气隙系数 k
③ 在实际上,定、转子都具有径向通风,气隙磁场沿轴向分布
不均匀;由于径向通风道没有钢片,磁通较少,因此也不能用 lt
2. lef 的物理意义:
由于边缘效应和径向通风沟的影响,使气隙磁场沿轴向分 布不均匀,在铁心中磁密大,在通风沟及定、转子端部磁 密较小。为了计算方便,从等效磁道的观点出发,引入计
算长度 lef 的概念,即在这个长度内它的磁密 B 为不变。
因而它决定于励磁磁势分布曲线的形状、气隙的均匀
程度及磁路饱和程度。
如:F 是正弦分布, 均匀,磁路不饱和
则
B(
x)
是正弦,
p
2
0.637
磁路越饱和,B(x)
越平,Bav
越大,
p
越大
(一)直流电机
p
的确定
1.均匀气隙:
p
bp
而
bp
bp
2
bp 极弧实际长度
p
bp
2
2 计及极靴尖处的边缘效应
第三章 磁路计算

③ 经验公式
k 1
t1 10 bZ1 10
(bZ1 : 定子齿宽 )
定、转子都开槽的话,则 k k1 • k 2
四、 极轭间残余气隙磁位降的计算
1.引入:由于工艺上的原因及旋转时的离心力作用, 凸极同步电机转子磁极与磁轭的接触面间不可能形成 处处密合,而在局部出现残隙,在磁路计算时可把它 看成磁路中附加一均匀等值气隙。
求出离齿最狭部分1/3处齿高处的 B 1 H 1 Ft H 1 Lt
t
t
t
3
3
3
B1 t 3
B lef t KFeltb 1
t
H1 t 3
Ft
H 1 Lt t 3
3
注意: b 1 t 3
(Da
2
1 3
hs
)
Z1
bs1
矩形槽尺寸及齿部磁场强度分布
用图解法求取实际齿磁密 和相应磁场强度
(二)齿磁密大于1.8T的场合(对于热轧钢片) 1.为什么不行?
算长度 lef 的概念,即在这个长度内它的磁密 B 为不变。
无径向通风道电机气隙磁场 的轴向分布
有径向通风道电机气隙磁场 的轴向分布
3.计算方法 ①边缘效应的影响(无径向通风沟)
如考虑边缘效应,经过作图和分析证明:lef lt 2
如不考虑边缘效应(如直流电机设计),则:lef lt
②通风道的影响 计算长度:lef lt Nvbv
则
B(
x)
是正弦,
p
2
0.637
磁路越饱和,B(x)
越平,Bav
越大,
p
越大
(一)直流电机
p
的确定
1.均匀气隙:
p
bp
磁路平均长度和有效磁路长度

磁路平均长度和有效磁路长度磁路平均长度和有效磁路长度是在电磁学中常用的两个概念,用于描述磁场在闭合磁路中的传播情况。
磁路平均长度指的是磁场传播的平均路径长度,而有效磁路长度则指的是磁场传播的有效路径长度。
本文将详细介绍这两个概念,并探讨它们在电磁学中的应用。
一、磁路平均长度磁路平均长度是指磁场传播的平均路径长度,它是通过对磁路中不同部分的长度进行加权平均得到的。
在闭合磁路中,磁场的传播路径是由磁场强度和磁导率共同决定的。
当磁导率不均匀或磁场强度分布不均匀时,磁场会在磁路中发生偏转或集中,导致磁场传播路径变长或变短。
因此,为了描述磁场在磁路中的传播情况,引入了磁路平均长度这个概念。
磁路平均长度可以用下面的公式来计算:磁路平均长度= ∑(li*mi)/∑mi其中,li是磁路中第i段的长度,mi是磁路中第i段的磁导率。
通过对磁路中每一段的长度进行加权平均,可以得到整个磁路平均长度。
磁路平均长度是磁路中磁场传播路径的一个重要参数,它可以用来评估磁路中磁场传播的效果。
二、有效磁路长度有效磁路长度是指磁场传播的有效路径长度,它是通过对磁路中不同部分的磁导率进行加权平均得到的。
在闭合磁路中,磁场的传播路径是由磁场强度和磁导率共同决定的。
当磁导率不均匀或磁场强度分布不均匀时,磁场会在磁路中发生偏转或集中,导致磁场传播路径变长或变短。
为了描述磁场在磁路中的传播情况,引入了有效磁路长度这个概念。
有效磁路长度可以用下面的公式来计算:有效磁路长度= ∑(li*Hi)/∑Hi其中,li是磁路中第i段的长度,Hi是磁路中第i段的磁场强度。
通过对磁路中每一段的磁场强度进行加权平均,可以得到整个有效磁路长度。
有效磁路长度是磁路中磁场传播路径的一个重要参数,它可以用来评估磁路中磁场传播的效果。
三、磁路平均长度和有效磁路长度的应用磁路平均长度和有效磁路长度是磁路设计和分析中常用的参数。
它们可以用来评估磁路中磁场传播的效果,指导磁路的设计和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有关磁路计算的一些概念
————————————————————————————————作者:————————————————————————————————日期:
有关磁路计算的一些概念
1、磁路的长度
在磁路计算中,磁路的长度一般都取其平均长度,即中心线长度。
如图8-11所示:
2、铁磁物质截面积
磁路中铁磁物质部分的截面积用磁路的几何尺寸直接计算。
磁路中有空气隙时,气隙边缘的磁感应线将有向外扩张的趋势,称为边缘效应,如图8-12所示。
空气隙截面积S0
工程上一般认为,当气隙较小时候,可用下面两式计算气隙的有效面积:
若铁心是涂有绝缘漆的电工硅钢片叠成的,则:S=K*S0其中:
S—有效面积; S0—视在面积; K—填充系数。