随机过程知识点汇总

合集下载

(完整版)随机过程知识点汇总

(完整版)随机过程知识点汇总

第一章随机过程 的基本概念与基本类型 一.随机变量及其分布X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x)p kf (t)dt分布函数kxX 的概率分布用概率密度 f (x)F(x)分布函数连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,)其联合分布函数 1 2 n 1 1 2 离散型联合分布列连续型联合概率密度3.随机变量 的数字特征 数学期望:离散型随机变量 XEX x p kkXEX xf (x)dx连续型随机变量2DX E(X EX) 2 EX (EX) 2方差:反映随机变量取值 的离散程度协方差(两个随机变量 X ,Y ):B E[( X EX)(Y EY)] E(XY) EX EYXYB XY相关系数(两个随机变量X,Y ):0,则称 X ,Y 不相关。

若XYDX DY独立不相关itXg(t) E(e )itxe p k 连续 g(t)ke itxf (x)dx4.特征函数离散 g(t) 重要性质: g(0) 1,g(t) 1 g( t) g(t),, g (0) i EX kk k5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布P( X 1) p,P( X 0) qEX pDX pqP(X k) C p q n kk kEX npDX n p qnk泊松分布P( X k) ek!EXDX均匀分布略( x a)21 2N(a, ) f (x)222EX a正态分布eDX2xe ,x 0 0, x 011指数分布f (x)EXDX2X (X ,X , ,X ) 的联合概率密度 X ~ N(a, B) 6.N维正态随机变量1 2 n11 2T 1(x a) B (x a)}f (x , x , , x n ) exp{ 11 2n 2(2 ) | B |2a (a ,a , ,a ), x (x , x , ,x ), B (b ) 正定协方差阵 1 2 n 1 2 n ij n n二.随机过程 的基本概念 1.随机过程 的一般定义设 ( , P)是概率空间, T 是给定 的参数集,若对每个 t T ,都有一个随机变量 X 与之对应, X(t,e),t T ( , 是P)上 的随机过程。

随机过程知识点总结

随机过程知识点总结

知识点总结第1章 概率论基础1.1概论空间随机试验,它是指其结果不能事先确定且在相同条件下可以重复进行的试验。

其中,一个试验所有可能出现的结果的全体称为随机试验的样本空间,记为Ω,试验的一个结果称为样本点,记为ω,即}{ω=Ω. 样本空间的某个子集称为随机事件,简称事件.定义1.1.1 设Ω样本空间,是Ω的某些子集构成的集合,如果:(1)∈Ω (2)若∈A ,则∈A(3)若∈n A ,,, ,21n =则∈∞= 1n nA那么称为一事件域,也称为σ域.显然,如果是一事件域,那么(1)∈φ(2)若∈B A ,,则∈-B A(3)若∈n A , ∞==1n n 2,1n A ,则,,定义 1.1.2 设Ω是样本空间,是一事件域,定义在上的实值函数)(⋅P 如果满足:(1)∈∀A 0)(,≥A P ,(2)1)(=ΩP , (3)若∈n A ,,2,1, =n 且,,2,1,,, =≠=j i j i A A j i φ则∞=∞=∑=11)()(n n n n A P A P那么称P 是二元组(,Ω)上的概率,称P (A )为事件A 的概率,称三元组,(Ω),P 为概率空间。

关于事件的概率具有如下性质:(1);0)(=φP(2)若∈nA ,,,2,1,,,,,,2,1,n j i j i A A n i j i =≠==φ 则ni ni i i A P A P 11)()(==∑=(3)若∈B A ,,,B A ⊂则)A P B P A B P ()()(-=-(4)若∈B A ,)()(,,B P A P B A ≤⊂则; (5)若∈A ;1)(,≤A P 则(6)若∈A );(1)(,A P A P -=则(7)若∈n A ,,2,1, =n 则∞=∞=∑≤11)()(n n n i A P A P(8)若∈i A ,,,2,1,n i =则-===∑ ni ni i i A P A P 11)()(∑∑≤<≤≤<<≤--+-+nj i nk j i n n kj ij i A A A P A A A P A A P 11211)()1()()(一列事件∈n A ,2,1,=n 称为单调递增的事件列,如果;,2,1,1 =⊂+n A A n n 一列事件∈n A ,2,1,=n 称为单调递减的事件列,如果,2,1,1=⊃+n A A n n .定理1.1.1 设 ∈n A ,2,1,=n(1)若 ,2,1,=n A n 是单调递增的事件列,则⎪⎪⎭⎫⎝⎛=∞=∞→ 1)(lim n n n n A P A P (2)若 ,2,1,=n A n 是单调递减的事件列,则⎪⎪⎭⎫⎝⎛=∞=∞→ 1)(lim n n n n A P A P 定义1.1.3.设,(Ω),P 为一概率空间,∈B A ,.且,0)(>A P 则称)()()(A P AB P A B P =为在事件A 发生的条件下事件B 发生的条件概率.不难验证,条件概率)|(A P ⋅符合定义1.1.2中的三个条件,即 (1)∈∀B , 0)|(≥A B P ;(2);1)|(=ΩA P (3)设∈n B ,,2,1,,,,2,1, =≠==j j i B B n j i φ则∞=∞=∑=11)|()|(n n n n A B P A B P定理 1.1.2. 设,Ω( ),P 是一概率空间,有: (1)(乘法公式)若∈i A ,,,,2,1n i =且0)(121>-n A A A P ,则)|()()(12121A A P A P A A A P n =(2)(全概率公式)设∈A ,∈iB ,,2,1,0)(, =>i B P i 且∞=⊃=≠=1,,,2,1,,,,i i j i A B j i j i B B φ则∑∞==1)|()()(i i i B A P B P A P(3)(贝叶斯(Bayes)公式)且∈A ∈>i B A P ,0)(,,,,2,1,0)( =>i B P i且 ∞=⊃==1,,,2,1,,i i j i A B j i B B φ则,2,1,)|()()|()()|(1==∑∞=i B A P B P B A P B P A B P j jji i i定义 1.1.4设,(Ω ),P 为一概率空间,,,,2,1,n i F A i =∈如果对于任意的)1(n k k ≤<及任意的,12n i i i k i ≤<<<≤ 有)()()()(2121k k i i i i i i A P A P A P A A A P =则称n 21,,,A A A 相互独立。

随机过程知识点汇总

随机过程知识点汇总

随机过程知识点汇总随机过程是指一组随机变量{X(t)},其中t属于某个集合T,每个随机变量X(t)都与一个时刻t相关联。

2.随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。

离散时间随机过程是指在离散的时间点上取值的随机过程,例如随机游走。

连续时间随机过程是指在连续的时间区间上取值的随机过程,例如XXX运动。

3.随机过程的数字特征随机过程的数字特征包括均值函数和自相关函数。

均值函数E[X(t)]描述了随机过程在不同时刻的平均取值。

自相关函数R(t1,t2)描述了随机过程在不同时刻的相关程度。

4.平稳随机过程平稳随机过程是指其均值函数和自相关函数都不随时间变化而变化的随机过程。

弱平稳随机过程的自相关函数只与时间差有关,而不依赖于具体的时间点。

强平稳随机过程的概率分布在时间上是不变的。

5.高斯随机过程高斯随机过程是指其任意有限个随机变量的线性组合都服从正态分布的随机过程。

高斯随机过程的均值函数和自相关函数可以唯一确定该过程。

6.马尔可夫随机过程马尔可夫随机过程是指其在给定当前状态下,未来状态的条件概率分布只依赖于当前状态,而与过去状态无关的随机过程。

马尔可夫性质可以用转移概率矩阵描述,并且可以用马尔可夫链来建模。

7.泊松过程泊松过程是指在一个时间段内随机事件发生的次数服从泊松分布的随机过程。

泊松过程的重要性质是独立增量和平稳增量。

8.随机过程的应用随机过程在金融学、信号处理、通信工程、控制理论等领域有广泛的应用。

例如,布朗运动被广泛应用于金融学中的期权定价,马尔可夫链被应用于自然语言处理中的语言模型。

t)|^2]协方差函数BZs,t)E[(ZsmZs))(ZtmZt))],其中Zs和Zt是Z在时刻s和t的取值。

复随机过程是由实部和虚部构成的随机过程,其均值和方差函数分别由实部和虚部的均值和方差函数计算得到。

协方差函数和相关函数也可以类似地计算得到。

复随机过程在通信系统中有广泛的应用,例如调制解调、信道编解码等。

随机过程知识点汇总3

随机过程知识点汇总3

第一章随机过程的基本概念与基本类型一. 随机变量及其分布1随机变量X,分布函数F(x)二P(X < x)X连续型随机变量X的概率分布用概率密度 f (x) 分布函数F(x)二f (t)dt2. n维随机变量X =(X i,X2,…,X n)其联合分布函数F(x) H F a’X?,…,X n) =P(X1空X-X2乞x2,…,X n乞x n,)离散型联合分布列连续型联合概率密度3 .随机变量的数字特征数学期望:离散型随机变量X EX =二x k p k连续型随机变量X EX二"xf (x)dx匚方差:DX = E(X -EX)2二EX2-(EX)2反映随机变量取值的离散程度协方差(两个随机变量X,Y ):B XY =E[(X — EX)(Y —EY)] =E(XY) — EX .EY独立=不相关:=:-=0予oO 予离散g(t)二' e iX k P k 连续g(t) e iX f (x)dx'J重要性质:g(0)=1 , g(t) <1 , g(—t)=g(t) , g k(0)=i k EX k5 •常见随机变量的分布列或概率密度、期望、方差0 —1分布P(X =1) =p,P(X =0) =q EX二p DX = p q二项分布k k n -kP(X = k) = C n p q EX=np DX=n pq泊松分布-kP(X =k) =e EXk!DX=扎均匀分布略离散型随机变量X的概率分布用分布列P k 二P(X 二X k)分布函数F(x) = 7 P k相关系数(两个随机变量X,Y ):B XYDX DY若'=0,则称X,Y不相关。

4 .特征函数g(t)二E(e itX)6.N 维正态随机变量 X =(X ,,X 2^ ,X n )的联合概率密度II T A.f(X i ,X 2, ,X n )二 ---------- n-exo{(x-a) B (x-a)} 2 (2 二)2|B|2a =(a .,a 2,…,aj , x =(x i , X 2,…,X n ), B = (b ij )nn 正定协方差阵二•随机过程的基本概念 1•随机过程的一般定义设r 1, P)是概率空间,T 是给定的参数集,若对每个r T ,都有一个随机变量 X 与之对应, 则称随机变量族fx (t,e),t ・T /是 (JP)上的随机过程。

随机过程知识点总结

随机过程知识点总结
= ∑


∑ = 1

矩阵表示
= ()
3、 各状态平均返回时间
=
1

第五章 连续时间马尔可夫链
1、 转移概率 (, ) = {( + ) = |() = }
齐次转移概率 (, ) = ()
2、 转移速率
()
() = ∑ , ≥ 0
=1

[()] = [1 ];[()] =
[12]
第四章 马尔可夫链
4.1 马尔可夫链概念与状态转移概率
1、


2、
马尔可夫过程:未来状态只与当前状态有关,而与过去状态无关。
时间、状态都是离散的,称为马尔可夫链。
马尔可夫链的统计特性完全由条件概率{+1 = +1 | = }确定。
随机矩阵:各元素非负且各行元素之和为 1;
步转移矩阵是随机矩阵;
闭集 C 上所有状态构成的步转移矩阵仍是随机矩阵。
周期为的不可约马氏链,其状态空间可唯一地分解为个互不相交的子集之和,即
−1
= ⋃ , ∩ = ∅, ≠
=0
且使得自 中任一状态出发,经一步转移必进入+1 中( = 0 )。
[ ( + ) − ()] −[ (+)− ()]


!
+
( + ) − () = ∫
()

相较与齐次泊松过程 → ( + ) − ()
5、 复合泊松过程(独立增量过程)
是由对泊松过程的每一点赋予一独立同分布的随机变量而得的随机过程。
=1
′′ (0)(− 2 )

随机过程复习提纲汇总

随机过程复习提纲汇总

随机过程复习提纲汇总随机过程是概率论中研究随机现象的一种数学工具,它描述了随机事件或变量在时间或空间上的演化规律。

随机过程在概率论、统计学以及各个科学领域中都有广泛的应用。

在复习随机过程的过程中,可以按照以下提纲进行系统地总结和复习:一、随机过程的定义和基本概念1.随机过程的定义和基本性质2.随机变量和随机过程的关系3.有限维分布和无限维分布4.随机过程的连续性和可测性二、随机过程的分类1.马尔可夫链和马尔可夫过程2.马尔可夫链的平稳分布和细致平衡条件3.各类随机过程的特性和应用(如泊松过程、布朗运动等)三、随机过程的数学描述1.随机过程的表示方法(如状态空间表示、样本函数表示等)2.随机过程的独立增量性质3.随机过程的平稳性质和相关函数四、随机过程的统计特性1.随机过程的均值和方差2.随机过程的相关函数和自相关函数3.随机过程的功率谱密度和自相关函数之间的关系五、随机过程的极限理论1.强大数定律和中心极限定理在随机过程中的应用2.极限理论在随机过程中的应用(如大数定律、中心极限定理等)六、马尔可夫过程的统计推断1.马尔可夫链的参数估计2.马尔可夫过程的参数估计3.马尔可夫过程的隐马尔可夫模型和参数估计七、随机过程的应用1.随机过程在金融领域的应用2.随机过程在电信领域的应用3.随机过程在信号处理领域的应用以上是一个较为全面的随机过程复习提纲,按照这个提纲进行复习可以帮助系统地回顾和学习随机过程的各个重要概念、定理和应用。

在复习的过程中,可以结合课本、教材以及相关资料进行深入学习和巩固。

同时,通过解答题目、做习题和实际应用案例的分析,可以提高对随机过程的理解和应用能力。

复习随机过程时,要注意理论和实践相结合,注重理论概念的理解和应用技巧的掌握。

考研随机过程知识点浓缩

考研随机过程知识点浓缩

考研随机过程知识点浓缩随机过程是概率论中的重要分支,研究随机事件在时间上的演变规律。

在考研数学中,随机过程是一个重要的知识点,涉及到概率论和数理统计等多个领域。

本文将对考研随机过程的知识点进行浓缩总结,帮助考生更好地掌握重点内容。

1. 随机过程的定义随机过程是一个定义在时间轴上的随机变量族,即一系列随机变量组成的集合。

随机过程可分为连续时间随机过程和离散时间随机过程,根据时间参数的取值范围来进行区分。

2. 随机过程的分类根据随机过程的状态空间,可以将随机过程分为离散状态随机过程和连续状态随机过程。

离散状态随机过程中,状态空间为有限集合或者可列无限集合,如泊松过程;连续状态随机过程中,状态空间为连续集合,如布朗运动。

3. 马尔可夫性质马尔可夫性质是随机过程的重要性质之一,指的是在给定当前状态的条件下,未来的发展只依赖于当前状态,与过去的状态无关。

具有马尔可夫性质的随机过程可以简化计算和分析。

4. 随机过程的平稳性平稳性是随机过程的另一个重要性质,分为弱平稳和严平稳。

弱平稳指的是均值和自协方差不依赖于时间的特性;严平稳则要求联合分布在时间上的平移具有不变性。

平稳性的性质可以简化对随机过程的研究。

5. 随机过程的独立增量性质随机过程的独立增量性质指的是在不相交的时间间隔内,随机变量之间是相互独立的。

具有独立增量性质的随机过程可以通过对各个时间间隔内的随机变量进行独立分析。

6. 随机过程的马尔可夫链马尔可夫链是一种特殊的离散时间随机过程,具有马尔可夫性质。

马尔可夫链的状态空间是离散的,状态转移概率只与当前状态有关,与过去的状态无关。

马尔可夫链通常用状态转移矩阵来描述状态之间的转移规律。

7. 泊松过程泊松过程是一类具有无记忆性的离散状态随机过程,是一种常用的数学模型。

泊松过程描述了在一段时间内随机事件发生的次数,具有独立增量和稳定增量的性质。

8. 布朗运动布朗运动是连续时间的连续状态随机过程,具有平稳增量、独立增量和高斯增量的特性。

第一讲随机过程的概念

第一讲随机过程的概念
第十章
随机过程的基本知识
引例:热噪声电压
一、随机过程的定义
定义1 设E是一随机实验,样本空间S={e},T为参数集
若对每个eS ,X(e,t)都是实值函数, 则称{X(e,t),t T}
为随机过程,简记为X(t),t T 或X(t),也可记为X(t).
称族中每一个函数称为这个随机过程的样本函数。
样本函数: xi (t ) a cos( t i ) , i (0 , 2 )
状态空间:I=(-a,a)
例3: 掷骰子试验
伯努利过程 (伯努利随机序列)
以上都是随机过程,状态空间都是:I={1,2,3,4,5,6}
二、随机过程的分类
离散型随机过程
1. 依状态离散还是连续分为:
s, t 0, C X ( s, t ) DX [min{s, t }].
④ C X ( s, t ) Cov( X ( s), X (t ))
E[ X ( s) X ( s)][X (t ) X (t )]
为{X(t),tT}的协方差函数.
⑤ Rx(s,t)=E[X(s)X(t)]为{X(t),tT}的自相关函数, 简称相关函数
诸数字特征的关系:
X (t ) f ( x, t )
称 f ( x, t ) 为随机过程的一维密度函数 称{ f ( x, t ), t T } 为一维密度函数族.
X t 0 ,其中 X Y ( t ) te 例4 设随机过程
e( ) ,求
{Y (t ),t 0}的一维密度函数
y P( X ln ) , t 解: F ( y; t ) P[Y (t ) y ] P(te y ) 0 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果对,存在不依赖于的极限,则称马尔可夫链具有遍历性。一个不可约的马尔可夫链,如果它的状态是非周期的正常返态,则它就是一个遍历链。具有遍历性的马尔可夫链,无论系统从哪个状态出发,当转移步数充分大时,转移到状态的概率都近似等于,这时可以用作为的近似值。
2.研究平稳分布有什么意义?
判别一个不可约的、非周期的、常返态的马尔可夫链是否为遍历的,可以通过讨论来解决,但求极限时困难的。所以,我们通过研究平稳分布是否存在来判别齐次马尔可夫链是否为遍历链。一个不可约非周期常返态的马尔可夫链是遍历的充要条件是存在平稳分布,且平稳分布即极限分布=。
协方差(两个随机变量):
相关系数(两个随机变量): 若,则称不相关。
独立不相关
4.特征函数 离散 连续
重要性质:,,,
5.常见随机变量的分布列或概率密度、期望、方差
0-1分布
二项分布
泊松分布 均匀分布略
正态分布
指数分布
6.N维正态随机变量的联合概率密度
,,正定协方差阵
二.随机过程的基本概念
1.随机过程的一般定义
一方面表明各态历经过程各样本函数的时间平均实际上可以认为是相同的;另一方面也表明与必定与无关,即各态历经过程必是平稳过程。
3.讨论平稳过程的历经性,就是讨论能否在较宽松的条件下,用一个样本函数去近似计算平稳过程的均值、协方差函数等数字特征,即用时间平均代替统计平均。 只在一定条件下的平稳过程,才具有各态历经性。
2.为闭集的充要条件是:对任意的状态,状态,都有。所以闭集的意思是自的内部不能到达的外部。意味着一旦质点进入闭集中,它将永远留在中运动。
如果,则状态为吸收的。等价于单点为闭集。
3.马尔可夫链的分解定理:任一马尔可夫链的状态空间,必可唯一地分解成有限个互不相交的子集的和,①每一个都是常返态组成的不可约闭集;②中的状态同类,或全是正常返态,或全是零常返态,有相同的周期,且。③是由全体非常返态组成。分解定理说明:状态空间的状态可按常返与非常返分为两类,非常返态组成集合,常返态组成一个闭集。闭集又可按互通关系分为若干个互不相交的基本常返闭集。含义:一个马尔可夫链如果从中某个非常返态出发,它或者一直停留在中,或某一时刻进入某个基本常返闭集,一旦进入就永不离开。一个马尔可夫链如果从某一常返态出发,必属于某个基本常返闭集,永远在该闭集中运动。
该式两边都是随机变量,取平均值,这时不仅要对时间区间取,还要取概率意义下的统计平均,即
定义为平均功率。
为功率谱密度,简称谱密度。
可以推出当是均方连续平稳过程时,有
说明平稳过程的平均功率等于过程的均方值,或等于谱密度在频域上的积分。
广义平稳过程:随机过程,如果①是二阶距过程;②对任意的,;③对任意,,或仅与时间差有关。则满足这三个条件的随机过程就称为广义平稳过程,或宽平稳过程,简称平稳过程。
第二章泊松过程
一.泊松过程的定义(两种定义方法)
1,设随机计数过程,其状态仅取非负整数值,若满足以下三个条件,则称:是具有参数的泊松过程。①;②独立增量过程,对任意正整数,以及任意的相互独立,即不同时间间隔的计数相互独立;③在任一长度为的区间中,事件A发生的次数服从参数的的泊松分布,即对任意,有
设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。
含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。
当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。
二.联合平稳过程及相关函数的性质
1.定义:设和是两个平稳过程,若它们的互相关函数及仅与时间差有关,而与起点无关,则称和是联合平稳随机过程。
即,
当然,当两个平稳过程联合平稳时,其和也是平稳过程。
2.相关函数的性质:①;②,对于实平稳过程,是偶函数。③④非负定。⑤若是周期的,则相关函数也是周期的,且周期相同。⑥如果是不含周期分量的非周期过程,与相互独立,则。
推导过程要非常熟悉
2,表示第事件A发生到第次事件发生的时间间隔,是时间序列,随机变量服从参数为的指数分布。概率密度为,分布函数均值为
证明过程也要很熟悉 到达时间的分布 略
三.非齐次泊松过程 到达强度是的函数
①;②独立增量过程;③。 不具有平稳增量性。
均值函数
定理:是具有均值为的非齐次泊松过程,则有
四.复合泊松过程
称为系统的一步转移矩阵。性质:每个元素,每行的和为1。
3.步转移概率=;称为步转移矩阵。
重要性质:①称为方程,证明中用到条件概率的乘法公式、马尔可夫性、齐次性。
掌握证明方法:
②说明步转移概率矩阵是一步转移概率矩阵的次乘方。
4.是马尔可夫链,称为初始概率,即0时刻状态为的概率;称为绝对概率,即时刻状态为的概率。为初始概率向量,为绝对概率向量。
一.马尔可夫链的概念及转移概率
1.定义:设随机过程,对任意的整数和任意的,条件概率满足,则称为马尔可夫链。
马尔可夫链的统计特性完全由条件概率所决定。
2.转移概率相当于随机游动的质点在时刻处于状态的条件下,下一步转移到的概率。记为。则称为马尔可夫链在时刻的一步转移概率。若齐次马尔可夫链,则与无关,记为。
第一章随机过程的基本概念与基本类型
一.随机变量及其分布
1.随机变量,分布函数
离散型随机变量的概率分布用分布列分布函数
连续型随机变量的概率分布用概率密度分布函数
2.n维随机变量
其联合分布函数
离散型联合分布列连续型联合概率密度
3.随机变量的数字特征
数学期望:离散型随机变量 连续型随机变量
方差: 反映随机变量取值的离散程度
(4)马尔可夫过程:如果随机过程具有马尔可夫性,即对任意正整数及,,都有
,则则称是马尔可夫过程。
(5)正态过程:随机过程,若对任意正整数及,()是n维正态随机变量,其联合分布函数是n维正态分布函数,则称是正态过程或高斯过程。
(6)维纳过程:是正态过程的一种特殊情形。
设为实随机过程,如果,①;②是平稳独立增量过程;③对任意增量服从正态分布,即。则称为维纳过程,或布朗运动过程。
(1)均值函数 表示随机过程在时刻的平均值。
(2)方差函数表示随机过程在时刻对均值的偏离程度。
(3)协方差函数 且有
(4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。
(5)互相关函数:,是两个二阶距过程,则下式称为它们的互协方差函数。
,那么,称为互相关函数。
若,则称两个随机过程不相关。
3.是齐次马尔可夫链,状态空间为,一步转移概率为,概率分布称为马尔可夫链的平稳分布,满足
4.定理:不可约非周期马尔可夫链是正常返的充要条件是存在平稳分布,且此平稳分布就是极限分布。推论:有限状态的不可约非周期马尔可夫链必存在平稳分布。
5.在工程技术中,当马尔可夫链极限分布存在,它的遍历性表示一个系统经过相当长时间后达到平衡状态,此时系统各状态的概率分布不随时间而变,也不依赖于初始状态。
6.对有限马尔可夫链,如果存在正整数,使,即k步转移矩阵中没有零元素,则该链是遍历的。
第六章ቤተ መጻሕፍቲ ባይዱ稳随机过程
一.定义(第一章)
严平稳过程:有限维分布函数沿时间轴平移时不发生变化。
宽平稳过程:满足三个条件:二阶矩过程;均值为常数常数;相关函数只与时间差有关,即。
宽平稳过程不一定是严平稳过程,而严平稳过程一定是宽平稳过程。
4.有限马尔可夫链:一个马尔可夫链的状态空间是一个有限集合。
性质:①所有非常返态组成的集合不是闭集;②没有零常返态;③必有正常返态;④状态空间,是非常返集合,是正常返集合。
不可约有限马尔可夫链只有正常返态。
四.的渐近性质与平稳分布
1.为什么要研究转移概率的遍历性?
研究当时的极限性质,即的极限分布,包含两个问题:一是是否存在;二是如果存在,是否与初始状态有关。这一类问题称作遍历性定理。
另外:①它是一个Markov过程。因此该过程的当前值就是做出其未来预测中所需的全部信息。
②维纳过程具有独立增量。该过程在任一时间区间上变化的概率分布独立于其在任一的其他时间区间上变化的概率。③它在任何有限时间上的变化服从正态分布,其方差随时间区间的长度呈线性增加。
(7)平稳过程:
严(狭义)平稳过程:,如果对任意常数和正整数及,,()与()有相同的联合分布,则称是严(狭义)平稳过程。
联合平稳过程和的互相关函数,,;。和是实联合平稳过程时,则,。
三.随机分析 略
四.平稳过程的各态历经性
1.时间均值
时间相关函数
2.如果以概率1成立,则称均方连续的平稳过程的均值有各态历经性。
如果以概率1成立,则称均方连续的平稳过程的相关函数有各态历经性。
如果均方连续的平稳过程的均值和相关函数都有各态历经性,则称该平稳过程是各态历经的或遍历的。
4.均值各态历经性定理:均方连续的平稳过程的均值具有各态历经的充要条件是
5.相关函数各态历经性定理:均方连续的平稳过程的相关函数具有各态历经的充要条件是
第七章 平稳过程的谱分析
一.平稳过程的谱密度
推导过程:
随机过程为均方连续过程,作截尾处理,由于均方可积,所以存在FT,得,利用paserval定理及IFT定义得
定理:①矩阵形式:②
定理:说明马氏链的有限维分布完全由它的初始概率和一步转移概率所决定。
二.马尔可夫链的状态分类
1.周期:自某状态出发,再返回某状态的所有可能步数最大公约数,即。若,则称该状态是周期的;若,则称该状态是非周期的。
2.首中概率:表示由出发经步首次到达的概率。
3.表示由出发经终于(迟早要)到达的概率。
分类:根据参数集和状态空间是否可列,分四类。 也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。
相关文档
最新文档