(完整版)二元一次方程组--难题技巧(整理版)

合集下载

方程与不等式之二元一次方程组难题汇编及答案解析

方程与不等式之二元一次方程组难题汇编及答案解析
()
A. 5x 3y 72 B. 5x 3y 72 C. 6x 2y 92 D. 6x 2y 92
【答案】C 【解析】 【分析】
设欢欢答对了 x 道题,答错了 y 道题,根据“每答对一题得+5 分,每答错一题得-3 分,不
答的题得-1 分,已知欢欢这次竞赛得了 72 分”列出方程. 【详解】
即可.
【详解】
3x 2y 2k 3① 解: 2x 7 y 3k 2②
①+②得 5x+5y=5k-5,
∴x+y=k-1.
∵ x y 2020 ,
∴k-1=2020, ∴k=2021. 故选:D. 【点睛】 本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.
10.对于实数
10x 5 y 则 12x 15 y .
故选:A. 【点睛】 此题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程 组.
5.用白铁皮做罐头盒,每张铁皮可制盒身 10 个或制盒底 40 个,一个盒身与两个盒底配 成一套罐头盒,现有 120 张白铁皮,设用 x 张制盒身,y 张制盒底,得方程组 ( )
x y 120 A. 40y 10x
x y 120 B. 10y 40x
x y 120 C. 40y 20x
x y 120 D. 20y 40x
【答案】C
【解析】
【分析】
首先根据题意可以得出以下两个等量关系:①制作盒身的白铁皮张数+制作盒底的白铁皮
的张数=120,②盒身的个数×2=盒底的个数,据此进一步列出方程组即可.
方程与不等式之二元一次方程组难题汇编及答案解析
一、选择题
x 3y 4a
1.已知关于 x,y 的方程组{

二元一次方程组应用题解题方法及归类总结(全面实用)

二元一次方程组应用题解题方法及归类总结(全面实用)

二元一次方程组应用题解题方法及归类总结(全面实用)二元一次方程组应用题解题方法及归类总结(全面实用)【解题思路】列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y y x y -=⎧⎨-=⎩,解得200150x y =⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩.故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b =甲产品数乙产品数;(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c ==甲产品数乙产品数丙产品数. 四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨. 点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩.点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.【跟踪练习】(含答案可直接删除)练习1(2012年南京市)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解析:设中型汽车有x 辆,小型汽车有y 辆.由题意,得⎩⎨⎧=+=+.23046,50y x y x 解得,⎩⎨⎧==.35,15y x 故中型汽车有15辆,小型汽车有35辆.练习2(2012年四川省眉山市)某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?解:(1)全部直接销售获利为:100×140=14000(元);全部粗加工后销售获利为:250×140=35000(元);尽量精加工,剩余部分直接销售获利为:450×(6×18)+100×(140-6×18)=51800(元).(2)设应安排x天进行精加工,y天进行粗加工.由题意,得⎩⎨⎧=+=+.140166,15y x y x 解得,⎩⎨⎧==.5,10y x 故应安排10天进行精加工,5天进行粗加工.练习3为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍,拆除旧校舍每平方米需80元,建新校舍每平方米需700元. 计划在年内拆除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求:原计划拆、建面积各是多少平方米?(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?答案:(1)原计划拆、建面积各是4800平方米、2400平方米;(2)可绿化面积为1488平方米.。

初一数学下册:二元一次方程8大题型解题方法整理

初一数学下册:二元一次方程8大题型解题方法整理

初一数学下册:二元一次方程8大题型解题方法整理#初一数学二元一次方程——实际问题与二元一次方程组的思路1.列方程组解应用题的基本思想:列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。

一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数要相等。

2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;答:写出答案。

3.要点诠释:(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。

1和差倍数问题知识梳理:和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。

典型例题:思路点拨:由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。

变式拓展:思路点拨:由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。

2产品配套问题典型例题:思路点拨:本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。

变式拓展:思路点拨:根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。

3工作量问题知识梳理我们在解决工程问题时通常把工作总量看成1;工作量=工作效率×工作时间;总工作量=每个个体工作量之和;工作效率=工作量÷工作时间(即单位时间的工作量);工作效率=1÷完成工作的总时间。

二元一次方程组求解题技巧

二元一次方程组求解题技巧

二元一次方程组求解题技巧解二元一次方程组的方法有多种,可以通过代入法、消元法、等价变形法等进行求解。

下面我将简要介绍一些解二元一次方程组的基本技巧。

1. 代入法:代入法是最直观也最简单的一种求解二元一次方程组的方法。

具体做法是将其中一个方程中的一个变量用另一个方程中的一个变量表示出来,然后将代入到另一个方程中进行求解。

例如,给定方程组:2x + 3y = 7 ----(1)4x - y = 1 ----(2)选取第一个方程中的x或y作为参数,将其代入到第二个方程中可以得到:4x - (7-2x)/3 = 1解方程得到x的值,然后将x的值代入到第一个方程中即可得到y的值。

2. 消元法:消元法是通过消去一个变量,将二元一次方程组化成只含有一个变量的一元一次方程,从而求解出另一个变量的值。

具体做法是通过适当的加减或乘除运算使得两个方程的系数相等或相差一个常数倍,然后两个方程相减或相加消去一个变量。

例如,给定方程组:2x + 3y = 7 ----(1)4x - y = 1 ----(2)将第二个方程乘以2,得到:8x - 2y = 2 ----(3)将(1)与(3)相减,即可消去变量x,然后求解y的值。

将y的值代入到任一方程中,即可求解出x的值。

3. 等价变形法:等价变形法是通过对方程组进行合理的变形,使得方程形式更简化或更容易代入相互消去,从而得到方程组的解。

具体做法是通过合并同类项,移项以及对方程进行等号互换等方式使方程组求解更方便。

例如,给定方程组:2x + 3y = 7 ----(1)4x - y = 1 ----(2)将方程(1)乘以2,得到:4x + 6y = 14 ----(4)将(4)和(2)相加,得到:10y = 15解方程可以得到y的值,然后将y的值代入到方程(1)或(2)中求解出x的值。

总结:解二元一次方程组可以灵活运用代入法、消元法和等价变形法等多种方法。

在运用时需要根据具体的方程组形式和求解的需要选择合适的方法。

二元一次方程组(难点、考点、易错点)

二元一次方程组(难点、考点、易错点)

DSE 金牌数学专题系列二元一次方程组(难点、考点、易错点)一、导入:讲个故事:“从前有个太监…………………………”有人耐不住问:“下面呢?”继续讲故事:“下面?没了啊……”一、知识点回顾(一)二元一次方程组1.二元一次方程:像x+y=2这样的方程中含有两个未知数(x和y),并且未知数的指数都是1,这样的方程叫做二元一次方程.2.二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.3.二元一次方程组:把两个方程x+y=3和2x+3y=10合写在一起为像这样,把两个二元一次方程组合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.5.代入消元法:由二元一次方程组中的一个方程,把一个未知数用含另一个未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.6.加减消元法:两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法. (二)二元一次方程组的实际应用列方程组解应用题的常见类型主要有:1. 行程问题.包括追及问题和相遇问题,基本等量关系为:路程=速度×时间;2. 工程问题.一般分为两类,一类是一般的工程问题,一类是工作总量为1的工程问题.基本等量关系为:工作量=工作效率×工作时间;3. 和差倍分问题.基本等量关系为:较大量=较小量+多余量,总量=倍数× 1倍量;4. 航速问题.此类问题分为水中航行和风中航行两类,基本关系式为:顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度-水(风)速5. 几何问题、年龄问题和商品销售问题等.二、专题讲解专题一错题分析【误解】A或D.【思考与分析】二元一次方程组的解是使方程组中的每一个方程的左右两边的值都相等的两个未知数的值,而中的一个方程的解,并不能让另一方程左、右两边相等,所以它们都不是这个方程组的解,只有C是正确的.验证方程组的解时,要把未知数的值代入方程组中的每个方程中,只有使每个方程的左、右两边都相等的未知数的值才是方程组的解.【正解】C.把式③代入式②得8-3y+3y=8,0×y=0.所以y可以为任何值.所以原方程组有无数组解.【正解】由式②得x=8-3y③把式③代入式①得2(8-3y)+5y=-21,解得y=37.把y=37代入式③得x=8-3×37,解得x=-103. 所以【例3】解方程组【错解】方程①- ②得:-3y=0,所以y=0,把y=0,代入②得x=-2,所以原方程组的解为【分析】在①- ②时出错.【正解】①- ②得:(x-2y)-(x-y)=2-(-2)x-2y-x+y=4-y=4 y=-4把y=-4代入②得x=-6,所以原方程组的解为【小结】两方程相减时,易出现符号错误,所以要特别细心.【例4】某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩.游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人;而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的,问晚会上男、女生各有几人?错解: 设晚会上男生有x人,女生有y人.根据题意,得把①代入②,得x=(2x-1),解得x=3.把x=3代入②,得y=5.所以答:晚会上男生3人,女生5人.【分析】本题错在对题中的数量关系没有弄清.每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人,这里涂蓝色油彩的人数不是题中所有的男生人数,而是除自己之外的男生人数,同理,女生看到的人数也应是除自己以外的女生人数.正解: 设晚会上男生有x人,女生有y人.根据题意,得把③代入④,得x=[2(x-1)-1-1],解得x=12.把x=12代入④,得y=21.所以答:晚会上男生12人,女生21人.解二元一次方程组的问题看似简单,但如果你稍不注意,就有可能犯如下错误.【例5】解方程组【错解】方程①+②得:2x=4,原方程组的解是:x=2【错因分析】错解只求出了一个未知数x,没有求出另一个未知数y.所以求解是不完整的.【正解】(接上)将x=2带入②得:y=0.所以原方程组的解为【小结】用消元法来解方程组时,只求出一个未知数的解,就以为求出了方程组的解,这是对二元一次方程组的解的意义不明确的表现.应牢记二元一次方程组的解是一组解,而不是一个解.【例6】解方程组【错解】由式①得y=2x-19 ③把式③代入式②得2(2x-19-【错因分析】“错解”在把变形后的式③代入式②时,符号书写出现了错误.当解比较复杂的方程组时,应先化简,在求出一个未知数后,可以将它代入化简后的方程组里的任意一个方程中,求出第二个未知数,这样使得运算方便,避免出现错误.【正解一】化简原方程组得【正解二】化简原方程组得①×6+②得17x=114,【小结】解二元一次方程组可以用代入法,也可以用加减法.一般地说,当方程组中有一个方程的某一个未知数的系数的绝对值是1或有一个方程的常数项是0时,用代入法比较方便;当两个方程中某一未知数的系数的绝对值相等或成整数倍时,用加减法比较方便.专题二思维点拨【例1】小红到邮局寄挂号信,需要邮资3元8角. 小红有票额为6角和8角的邮票若干张,问各需多少张这两种面额的邮票?【思考与解】要解此题,第一步要找出问题中的数量关系.寄信需邮资3元8角,由此可知所需邮票的总票额要等于所需邮资3.8元. 再接着往下找数量关系,所需邮票的总票额等于所需6角邮票的总票额加上所需8角邮票的总票额. 所需6角邮票的总票额等于单位票额6角与所需6角邮票数目的乘积. 同样的,所需8角邮票的总票额等于单位票额8角与所需8角邮票数目的乘积. 这就是题中蕴含的所有数量关系.第二步要抓住题中最主要的数量关系,构建等式.由图可知最主要的数量关系是:所需邮资=所需邮票的总票额.第三步要在构建等式的基础上找出这个数量关系中牵涉到哪些已知量和未知量.已知量是所需邮资3.8元,两种邮票的单位票额0.6元和0.8元,未知量是两种邮票的数目. 第四步是设元(即设未知量),并用数学符号语言将数量关系转化为方程. 设0.6元的邮票需x张,0.8元的邮票需y张,用字母和运算符号将其转化为方程:0.6x+0.8y=3.8. 第五步是解方程,求得未知量. 由于两种邮票的数目都必须是自然数,此二元一次方程可以用列表尝试的方法求解.方程的解是第六步是检验结果是否正确合理. 方程的两个解中两种邮票的数目均为正整数,将两解代入方程后均成立,所以结果是正确合理的.第七步是答,需要1张6角的邮票和4张8角的的邮票,或需要5张6角的邮票和1张8角的的邮票.【例2】小聪全家外出旅游,估计需要胶卷底片120张. 商店里有两种型号的胶卷:A型每卷36张底片,B型每卷12张底片. 小聪一共买了4卷胶卷,刚好有120张底片. 求两种胶卷的数量.【思考与解】第一步:找数量关系. A型胶卷数+B型胶卷数=胶卷总数,A型胶卷的底片总数+B型胶卷的底片总数=底片总数. A型胶卷的底片总数=每卷A型胶卷所含底片数×A型胶卷数,B型胶卷的底片总数=每卷B型胶卷所含底片数×B型胶卷数.第二步:找出最主要的数量关系,构建等式. A型胶卷数+B型胶卷数=胶卷总数,A型胶卷的底片总数+B型胶卷的底片总数=底片总数.第三步:找出未知量和已知量. 已知量是:胶卷总数,度片总数,每卷A型胶卷所含底片数,每卷B型胶卷所含底片数;未知量是:A型胶卷数,B型胶卷数.第四步:设元,列方程组. 设A型胶卷数为x,B型胶卷数为y,根据题中数量关系可列出方程组:第五步:答:A型胶卷数为3,B型胶卷数为1.【小结】我们在解这类题时,一般就写出设元、列方程组并解出未知量和答这几步,如有必要可以加上验证这一步.其他步骤可以省略.【例3】用加减法解方程组【思考与分析】经观察,我们发现两个方程中y的系数互为相反数,故将两方程相加,消去y.解:①+②,得4x=8.解得x=2.把x=2代入①,得2+2y=3.解得y=.所以,原方程组的解为:【思考与分析】经观察,我们发现x的系数成倍数关系,故先将方程①×2再与方程②作差消去x较好.解:①×2,得4x-6y=16. ③②-③,得11y=-22.解得y=-2.把y=-2代入①,得2x-3×(-2)=8. 解得x=1.所以原方程组的解为【思考与分析】如果用代入法解这个方程组,就要从方程组中选一个系数比较简单的方程进行变形,用含一个未知数的式子表示另一个未知数,然后代入另一个方程.本题中,方程②的系数比较简单,应该将方程②进行变形.如果用加减法解这个方程组,应从计算简便的角度出发,选择应该消去的未知数.通过观察发现,消去x比较简单.只要将方程②两边乘以2 ,然后将两方程相减即可消去x.解法1:由②得x=8-2y.③把③代入①得2(8-2y)+5y=21,解得y=5.把y=5代入③得x=-2.所以原方程组的解为:解法2:②×2得2x+4y=16. ③①-③得2x+5y-(2x+4y)=21-16,解得y=5.把y=5代入②得x=-2.所以原方程组的解为【小结】我们解二元一次方程组时,用到的都是消元的思想,用代入法还是加减法解题,原则上要以计算简便为依据.【例6】用代入法解方程组【思考与分析】经观察,我们发现方程①为用y表示x的形式,故将①代入②,消去x.解:把①代入②,得3(y+3)-8y=14.解得y=-1.把y=-1代入①,得x=2.所以原方程组的解为【例7】用代入法解方程组【思考与分析】经观察比较,我们发现方程①更易于变为用含一个未知数的代数式表示另一个未知数的形式,故选择①变形,消去y.解:由①,得y=2x-5. ③把③代入②,得3x+4(2x-5)=2.解得x=2.把x=2代入③,得y=-1.所以原方程组的解为:【例8】甲、乙两厂,上月原计划共生产机床90台,结果甲厂完成了计划的112%,乙厂完成了计划的110%,两厂共生产机床100台,求上月两厂各超额生产了多少台机床?【思考与分析】我们可以采用两种方法设未知数,即直接设法和间接设法.直接设法就是题目要求什么就设什么为未知数,本题中就是设上月甲厂超额生产x台,乙厂超额生产y台;而间接设法就是问什么并不设什么,而是采用先设出一个中间未知数,求出这个中间未知数,再利用它同题中要求未知数的联系,解出所要求的未知数,题中我们可设上月甲厂原计划生产x台,乙厂原计划生产y台.解法一:直接设法.设上月甲厂超额生产x台,乙厂超额生产y台,则共超额了100-90=10(台),而甲厂计划生产的台数是台,乙厂计划生产的台数是台.根据题意,得答:上月甲厂超额生产6台,乙厂超额生产4台.解法二:间接设法.设上月甲厂原计划生产x台,乙厂原计划生产y台.根据题意,得所以x×(112%-1)=50×12%=6,y×(110%-1)=40×10%=4.答:上月甲厂超额生产6台,乙厂超额生产4台.【例9】某学校组织学生到100千米以外的夏令营去,汽车只能坐一半人,另一半人步行.先坐车的人在途中某处下车步行,汽车则立即回去接先步行的一半人.已知步行每小时走4千米,汽车每小时走20千米(不计上下车的时间),要使大家下午5点同时到达,问需何时出发.【思考与分析】我们从行程问题的3个基本量去寻找,可以发现,速度已明确给出,只能从路程和时间两个量中找出等量关系,有题意知,先坐车的一半人,后坐车的一半的人,车三者所用时间相同,所以根据时间来列方程组.如图所示是路程示意图,正确使用示意图有助于分析问题,寻找等量关系.解:设先坐车的一半人下车点距起点x千米,这个下车点与后坐车的一半人的上车点相距y千米,根据题意得化简得从起点到终点所用的时间为所以出发时间为:17-10=7.即早晨7点出发.答:要使学生下午5点到达,必须早晨7点出发.【例10】小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)【思考与分析】设教育储蓄存了x元,一年定期存了y元,我们可以根据题意可列出表格:解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元,则答:存教育储蓄的钱为1500元,存一年定期的钱为500元.【反思】我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.专题三竞赛数学【例1】已知方程组的解x,y满足方程5x-y=3,求k的值.【思考与分析】本题有三种解法,前两种为一般解法,后一种为巧解法.(1)由已知方程组消去k,得x与y的关系式,再与5x-y=3联立组成方程组求出x,y的值,最后将x,y的值代入方程组中任一方程即可求出k的值.(2)把k当做已知数,解方程组,再根据5x-y=3建立关于k的方程,便可求出k 的值.(3)将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k的值.把代入①,得,解得k=-4.解法二:①×3-②×2,得17y=k-22,解法三:①+②,得5x-y=2k+11.又由5x-y=3,得2k+11=3,解得k=-4.【小结】解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解法了.【例2】某种商品价格为每件33元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品. 若无需找零钱,则付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?【思考与分析】本题我们可以运用方程思想将此问题转化为方程来求解. 我们先找出问题中的数量关系,再找出最主要的数量关系,构建等式. 然后找出已知量和未知量设元,列方程组求解.最后,比较各个解对应的x+y的值,即可知道哪种付款方式付出的张数最少.解:设付出2元钱的张数为x,付出5元钱的张数为y,则x,y的取值均为自然数. 依题意可得方程:2x+5y=33.因为5y个位上的数只可能是0或5,所以2x个位上数应为3或8.又因为2x是偶数,所以2x个位上的数是8,从而此方程的解为:由得x+y=12;由得x+y=15. 所以第一种付款方式付出的张数最少.答:付款方式有3种,分别是:付出4张2元钱和5张5元钱;付出9张2元钱和3张5元钱;付出14张2元钱和1张5元钱.其中第一种付款方式付出的张数最少.【例3】解方程组【思考与分析】本例是一个含字母系数的方程组.解含字母系数的方程组同解含字母系数的方程一样,在方程两边同时乘以或除以字母表示的系数时,也需要弄清字母的取值是否为零.解:由①,得y=4-mx,③把③代入②,得2x+5(4-mx)=8,解得(2-5m)x=-12,当2-5m=0,即m=时,方程无解,则原方程组无解.当2-5m≠0,即m≠时,方程解为将代入③,得故当m≠时,原方程组的解为【小结】含字母系数的一次方程组的解法和数字系数的方程组的解法相同,但注意求解时需要讨论字母系数的取值情况.对于x、y的方程组中,a1、b1、c1、a2、b2、c2均为已知数,且a1与b1、a2与b2都至少有一个不等于零,则①时,原方程组有惟一解;②时,原方程组有无穷多组解;③时,原方程组无解.【例4】某中学新建了一栋4层的教学大楼,每层楼有8间教室,这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了训练:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟可以通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.【思考与解】(1)设平均每分钟一道正门可通过x名学生,一道侧门可以通过y名学生.根据题意,得所以平均每分钟一道正门可以通过学生120人,一道侧门可以通过学生80人.(2)这栋楼最多有学生4×8×45=1440(人).拥挤时5分钟4道门能通过5×2×(120+80)×(1-20%)=1600(人).因为1600>1440,所以建造的4道门符合安全规定.答:平均每分钟一道正门和一道侧门各可以通过120名学生、80名学生;建造的这4道门符合安全规定.【例5】某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问张强第一次、第二次分别购买香蕉多少千克?【思考与分析】要想知道张强第一次、第二次分别购买香蕉多少千克,我们可以从香蕉的价格和张强买的香蕉的千克数以及付的钱数来入手.通过观察图表我们可知香蕉的价格分三段,分别是6元、5元、4元.相对应的香蕉的千克数也分为三段,我们可以假设张强两次买的香蕉的千克数分别在某段范围内,利用分类讨论的方法求得张强第一次、第二次分别购买香蕉的千克数.解:设张强第一次购买香蕉x千克,第二次购买香蕉y千克.由题意,得0<x<25.①当0<x≤20,y≤40时,由题意,得②当0<x≤20,y>40时,由题意,得(与0<x≤20,y≤40相矛盾,不合题意,舍去).③当20<x<25时,25<y<30.此时张强用去的款项为5x+5y=5(x+y)=5×50=250<264(不合题意,舍去).综合①②③可知,张强第一次购买香蕉14千克,第二次购买香蕉36千克.答:张强第一次、第二次分别购买香蕉14千克、36千克.【反思】我们在做这道题的时候,一定要考虑周全,不能说想出了一种情况就认为万事大吉了,要进行分类讨论,考虑所有的可能性,看有几种情况符合题意.【例6】用如图1中的长方形和正方形纸板做侧面和底面,做成如图2的竖式和横式两种无盖纸盒. 现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?【思考与分析】我们已经知道已知量有正方形纸板的总数1000,长方形纸板的总数2000,未知量是竖式纸盒的个数和横式纸盒的个数. 而且每个竖式纸盒和横式纸盒都要用一定数量的正方形纸板和长方形纸板做成,如果我们知道这两种纸盒分别要用多少张正方形纸板和长方形纸板,就能建立起如下的等量关系:每个竖式纸盒要用的正方形纸板数×竖式纸盒个数+ 每个横式纸盒要用的正方形纸板数×横式纸盒个数= 正方形纸板的总数每个竖式纸盒要用的长方形纸板数×竖式纸盒个数+ 每个横式纸盒要用的长方形纸板数×横式纸盒个数= 长方形纸板的总数通过观察图形,可知每个竖式纸盒分别要用1张正方形纸板和4张长方形纸板,每个横式纸盒分别要用2张正方形纸板和3张长方形纸板.解:由题中的等量关系我们可以得到下面图表所示的关系.设竖式纸盒做x个,横式纸盒做y个. 根据题意,得①×4-②,得5y=2000,解得y=400.把y=400代入①,得x+800=1000,解得x=200.所以方程组的解为因为200和400均为自然数,所以这个解符合题意.答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.三、巩固练习:一)精心选一选(每题7分,共35分)1. 方程组的解是().2. 在一次小组竞赛中,遇到了这样的情况:如果每组7人,就会余3人;如果每组8人,就会少5人.问竞赛人数和小组的组数各是多少?若设人数为x,组数为y,根据题意,可列方程组().3. 买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的桶数是甲种水的桶数的75%,设买甲种水x桶、乙种水y桶,则所列方程组中正确的是().4. 一个两位数被9除余2,如果把它的十位与个位交换位置,则所得的两位数被9除余5,设个位数字为x,十位数字为y,则下面正确的是().(以下选项中k1、k2都为整数)5. 用面值l元的纸币换成面值为l角或5角的硬币,则换法共有()种.A. 4B. 3C. 2D. 1二)用心填一填(每题7分,共35分)1. 一艘轮船顺流航行,每小时行20千米;逆流航行每小时行16千米.则轮船在静水中的速度为 ______,水流速度为______.2. 一队工人制造某种工件,若平均每人一天做5件,那么全队一天就比定额少完成30件;若平均每人一天做7件,那么全队一天就超额20件. 则这队工人有______人,全队每天制造的工件数额为______件.3. 已知甲、乙两人从相距18千米的两地同时相向而行,1小时相遇.再同向而行如果甲比乙先走小时,那么在乙出发后小时乙追上甲.设甲、乙两人速度分别为x千米/时、y千米/时,则x=______,y=______.4. 甲、乙二人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就能追上乙;如果乙让甲先跑2秒钟,那么乙跑6秒钟落后于甲28米,甲每秒钟跑______,乙每秒钟跑______.5. 小强拿了十元钱去商场购买笔和圆规.售货员告诉他:这10元钱可以买一个圆规和三支笔或买两个圆规和一支笔,现在小强只想买一个圆规和一支笔,那么售货员应该找给他______元.三)耐心做一做(每题10分,共30分)1. 某人要在规定的时间内由甲地赶往乙地,如果他以每小时50千米的速度行驶,就会迟到24分钟;如果他以每小时75千米的高速行驶,则可提前24分钟到达乙地,求他以每小时多少千米的速度行驶可准时到达.2. 一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元.若只选一个组单独完成,从节约开支角度考虑,这家商店应选择哪个组?3. 《参考消息》报道,巴西医生马廷恩经过10年研究得出结论:卷入腐败行列的人容易得癌症,心肌梗塞,脑溢血,心脏病等病,如果将贪污受贿的580名官员和600名廉洁官员进行比较,可发现,后者的健康人数比前者的健康人数多272人,两者患病或患病致死者共444人,试问贪污受贿的官员和廉洁官员中的健康人数各自占统计人数的百分之几?答案一、精心选一选1. B2. C3. B4. C5. B二、用心填一填1.18千米/时,2千米/时.2. 25,155.3. 4,6.4. 8米,6米.5. 4.三、耐心做一做1. 【解题思路】由于甲地到乙地的距离不知道是多少,从甲地到乙地规定的时间也不知道,所以不能直接求速度.我们可以设甲地到乙地的路程和规定的时间为未知数,列方程求解,最后用速度=路程÷时间得到标准速度.解:设甲、乙两地的之间距离为s千米,从甲地到乙地的规定时间为t小时.根据题意,得解得经检验,符合题意.则=60(千米/小时).答:他以每小时60千米/小时的速度行驶可准时到达.2. 【解题思路】由甲乙混做的时间和钱数我们可求出甲乙各自单独做需要的时间和费用,然后再进行比较.解:设甲组单独完成需x天,乙组单独完成需y天,则根据题意,得。

解题技巧:与二元一次方程组解法有关的问题压轴题五种模型全攻略(原卷版) 七年级数学下册

解题技巧:与二元一次方程组解法有关的问题压轴题五种模型全攻略(原卷版) 七年级数学下册

专题04解题技巧专题:与二元一次方程组解法有关的问题压轴题五种模型全攻略【考点导航】目录【典型例题】 (1)【考点一求二元一次方程的正整数解】 (1)【考点二解二元一次方程组】 (1)【考点三二元一次方程组的错解复原问题】 (2)【考点四二元一次方程组的特殊解法】 (4)【考点五新定义型二元一次方程组问题】 (5)【过关检测】 (7)【典型例题】【考点一求二元一次方程的正整数解】x y+=的正整数解的对数是()例题:(2023下·四川资阳·七年级校考期中)方程7A.5B.7C.6D.无数对【变式训练】【考点二解二元一次方程组】例题:(2024下·全国·七年级假期作业)解方程组:【变式训练】【考点三二元一次方程组的错解复原问题】例题:(2023下·七年级课时练习)下面是马小虎同学解二元一次方程组的过程,请认真阅读并完成相应的问题:解方程组:34 6310 x yx y-=⎧⎨-=⎩①②解:①×2,得6x-2y=8.③…第一步②-③,得-y=2,…第二步解得y=-2.…第三步把y=-2代入①,得3x-(-2)=4.…第四步解得x=2.…第五步∴22 xy=⎧⎨=⎩(1)这种求解二元一次方程组的方法叫做________法,以上求解步骤中,马小虎同学从第________步开始出现错误;(2)请写出此题正确的解答过程.【变式训练】【考点四二元一次方程组的特殊解法】【变式训练】1.(2023上·陕西咸阳·八年级咸阳市实验中学校考期中)阅读材料:善于思考的乐乐同学在解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩时,采用了一种“整体换元”的解法,把5m +,3n +分别看成一个整体,设5m x +=,【考点五新定义型二元一次方程组问题】例题:(2023下·福建厦门·七年级厦门市湖滨中学校考期中)我们定义:若整式M 与N 满足:(M N k k +=为整数),我们称M 与N 为关于k 的平衡整式.例如,若234x y +=,我们称2x 与3y 为关于4的平衡整式.(1)若25a -与49a +为关于1的平衡整式,求a 的值;(2)若310x -与y 为关于2的平衡整式,2x 与510y +为关于5的平衡整式,求x y +的值.【变式训练】1.(2023下·江苏苏州·七年级统考期末)对于有理数x 、y 定义一种新运算“※”:规定x ※2y ax by =-+,等式右边是通常的四则运算.例如:2※122a b =-+.(1)若1※(1)4-=-,3※24=,求a 、b 的值;(2)若运算“※”满足交换律,即对于任意有理数x 、y 且x y ≠,都满足x ※y y =※x ,求a 、b 之间的数量关系.2.(2023下·湖北十堰·七年级校考阶段练习)对于有理数x ,y ,定义新运算:2x y x y *=-,2x y x y ⊗=+,其中a ,b 是常数.例如111*=,328⊗=.(1)若关于x ,y 的方程组*45x y m x y m =-⎧⎨⊗=⎩的解也满足方程5x y +=,求m 的值;(2)若关于x ,y 的方程组111222*a x b y c a x b y c =⎧⎨⊗=⎩的解为45x y =⎧⎨=⎩,求关于x ,y 的方程组()()()()111222*a x y b x y c a x y b x y c ⎧+-=⎪⎨+⊗-=⎪⎩的解.【过关检测】一、单选题1.(2023上·山西太原·八年级太原市实验中学校联考阶段练习)用代入法解方程组22340y x x y =-+⎧⎨-=⎩①②时,将方程①代入②中,所得的方程正确的是()A .2364x x --=B .2324x x +-=C .2364x x -+=D .2364x x +-=2.(2023下·山东威海·七年级统考期末)二元一次方程2321x y +=的正整数解有()A .1个B .2个C .3个D .4个3.(2023上·广东茂名·八年级统考期末)已知代数式与242m x y --与52n m nx y +是同类项,那么m 、n 的值分别是()A .31m n =-⎧⎨=-⎩B .31m n =⎧⎨=-⎩C .31m n =-⎧⎨=⎩D .31m n =⎧⎨=⎩4.(2023下·浙江·七年级校联考阶段练习)对于任意实数a ,b ,定义关于“⊗”的一种运算如下:2a b a b ⊗=-.例如342342=⨯-=⊗.若2x y ⊗=,且4y x ⊗=,则x y +的值为()A .6B .7C .8D .95.(2023上·四川达州·八年级校考期末)两位同学在解方程组273ax by cx y +=⎧⎨+=⎩时,甲同学正确地解出11x y =-⎧⎨=-⎩,乙同学因把c 抄错了解得32x y =-⎧⎨=-⎩,则a 、b 、c 正确的值应为()A .315a b c =-=-=-,,B .115a b c ==-=-,,C .2410a b c ==-=-,,D .315a b c ===-,,二、填空题6.(2023上·山东济南·八年级统考期中)把方程24x y -=变形,用含x 的代数式表示y ,则y =.7.(2023下·浙江湖州·七年级统考阶段练习)二元一次方程25x y +=的一个正整数解是.(只要写出一个)8.(2023上·河北张家口·八年级统考期中)已知方程组2324x y x y -=-⎧⎨-+=⎩,则x y +的值为.9.(2023上·山东·八年级期末)已知关于x ,y 的方程组210220x y m x y m +-+=⎧⎨+++=⎩.则x y +=.10.(2023下·山东济南·七年级统考期末)定义新运算:对于任意实数a 、b 约定关于⊗的一种运算如下:2a b a b ⊗=+.例如:()()3223-⊗=⨯-24+=-.若()5x y ⊗-=,且27y x ⊗=,则x y +的值是.三、解答题。

二元一次方程组解法技巧

二元一次方程组解法技巧

二元一次方程组解法技巧1. 嘿,你知道代入消元法吗?就像一把钥匙开一把锁一样!比如说方程组{x+y=5,x-y=1},我们可以从第一个方程中解出 x=5-y,然后把它代入第二个方程,那不就轻松搞定啦!这多直接有效啊,大家赶紧试试呗!2. 还有加减消元法哦!这就像搭积木一样,把相同的部分消除掉。

比如{2x+y=7,3x-y=8},把两个方程一加,y 就没啦,直接能求出 x 啦,是不是很奇妙呀!3. 换元法也很牛呢!就好像给式子穿上了一件新衣服。

像方程组{(x+1)+2(y-1)=5,2(x+1)-(y-1)=2},我们设 x+1=a,y-1=b,一下子就变简单多啦!哎呀,这多好用呀!4. 图像法也很有趣哟!那不就是把方程组画在纸上嘛。

比如 y=2x+1 和y=-x+4,画出来两条直线的交点不就是解嘛,哇哦,感觉像在探索宝藏一样呢!5. 整体代入法也是一绝呀!就好像手里有个魔法棒。

比如已知 2x-y=3,那要求 6x-3y 不就简单了嘛,把 6x-3y 变成 3(2x-y),直接代入 3 就好啦,是不是很神奇呀!6. 主元法知道不?这就像是抓住了关键人物。

比如方程组 x+y+z=10,2x-y+z=8,先确定一个主元,然后围绕它来解题,多有意思呀!7. 对称法也不容小觑哦!有时候方程组就像照镜子一样对称呢。

遇到这种情况,解题可就轻松多啦,不信你试试呀!8. 参数法就像是个神秘嘉宾。

在一些复杂的方程组里,引入参数,就会有意想不到的效果呢。

哇塞,真的很厉害呢!9. 构造法也超棒呀!就像是给自己搭了一个特别的舞台。

根据方程组的特点构造出合适的形式来解题,真的是太有创意啦!总之,二元一次方程组的解法技巧多着呢,每一种都有它独特的魅力,大家要多多去发掘呀,绝对会让你受益匪浅的!。

完整版)二元一次方程组题型总结

完整版)二元一次方程组题型总结

完整版)二元一次方程组题型总结二元一次方程组题型总结类型一:二元一次方程的概念及求解例(1)已知(a-2)x-by=5是关于x、y的二元一次方程,则a=2,b=-1.2)二元一次方程3x+2y=15的正整数解为(3,3)。

类型二:二元一次方程组的求解例(3)若|2a+3b-7|与(2a+5b-1)互为相反数,则a=1,b=2.4)2x-3y=4,x-y=5的解为(-1,-6)。

类型三:已知方程组的解,而求待定系数。

例(5)已知3mx-2y=1,4x+ny+7=2,x=-2,y=1是方程组的解,则m-n的值为-1.6)若满足方程组kx+(2k-1)y=6的x、y的值相等,则k=2.练:若方程组2x-y=3,2kx+(k+1)y=10的解互为相反数,则k的值为-3/2.类型四:涉及三个未知数的方程,求出相关量。

例(7)已知abc/123=4/12,且a+b-c=1,则a=4,b=8,c=1.8)解方程组x+3y=2,3y+z=4,z+3x=6,得x=2,y=0,z=-2.练:若2a+5b+4c=10,3a+b-7c=-2,则a+b-c=0.由方程组x-2y+3z=2,2x-3y+4z=3可得,x∶y∶z是1∶2∶1.类型五:列方程组求待定字母系数是常用的解题方法。

例(9)若x=1,y=-2,y=-3都是关于x、y的方程|a|x+by=6的解,则a+b的值为-2.10)关于x,y的二元一次方程ax+b=y的两个解是(2,-1)和(1,1),则这个二元一次方程是y=-x+3.练:如果方程组x=-1y=2ax+by=zbx-cy=1中的{x,y}是解,下列哪个式子成立?A。

a+4c=2B。

4a+c=2C。

a+4c+2=0D。

4a+c+2=0解析:由{x=-1,y=2}可知,代入方程组中得a+2b=zb-2c=1又因为{x,y}是解,所以代入方程组中得a+2b=0b-2c=0解得a=4c,代入选项可知只有选项C成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
二元一次方程组技巧攻略
典型例题分析
(1) (2) (3)
(4)361463102463361102x y x y +=-⎧⎨+=⎩ (5)()1232111x y x y +⎧=⎪⎨⎪+-=⎩ (6)()()9185
232032m n m m n ⎧+=⎪⎪⎨⎪++=⎪⎩
(7)7231
x y x y ⎧+=⎪⎨-=-⎪⎩ (7)⎪⎩
⎪⎨⎧=+=+=+504060
z x z y y x (9)
1. 若已知方程()
()()221153a x a x a y a -+++-=+,则当a = 时,方程为一元一次方程; 当a = 时,方程为二元一次方程.
2. 求二元一次方程3220x y +=的:⑴所有正整数解;⑵一组分数解;⑶一组负数解.
3.如果21x y =⎧⎨
=⎩是方程组7
5
ax by bx cy +=⎧⎨+=⎩的解,则a c 与的关系是( )
A.49a c +=
B. 29a c +=
C. 49a c -=
D. 29a c -=
4. 已知方程组 由于甲看错方程①中的a 得方程组解31
x y =-⎧⎨=-⎩;乙看
错方程②中b 得方程组解为5
4x y =⎧⎨
=⎩
,若按正确的a b 、计算,求原方程组的解.
5、已知代数式
13
12
a x y -与23
b a b x y -+-是同类项,那么a 、b 的值分别是( ) A.2
1a b =⎧⎨=-⎩
B.2
1a b =⎧⎨=⎩
C.2
1a b =-⎧⎨=-⎩
6. 如果()43713
x y kx k y +=⎧⎪⎨+-=⎪⎩的解x y 、的值相等,则k 的值是( ) A.1 B.0 C.2 D. 2- 7、如果()2
5x y +-与3210y x -+互为相反数,那么x = ,y = .
8、若23
x y =-⎧⎨=⎩是方程33x y m -=和5x y n +=的公共解,则2
3m n -= .
9、已知231x y =-⎧⎨
=⎩是二元一次方程组1
1
ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +-的值是 .
10、已知关于x y 、的方程组26
47x ay x y -=⎧⎨+=⎩
有整数解,即x y 、都是整数,a 是正整数,
求a 的值.
11、足球比赛记分规则:胜一场得三分,平一场得一分,负一场得零分。

甲队赛了五场得七分,平几场?
12、试求2x+y=5三种情况下x y 的值(1)x 与y 相等,x= ,y= ;(2)x 与y 互为相反数x= ,y= ;(3)y 是x 的3倍x= ,y= 。

13、(a-2)x —(b+5)y =3是二元一次方程,求a-b 。

a 515 42x y x by +=⎧⎨-=-⎩① ②。

相关文档
最新文档