高考物理 碰撞与类碰撞

合集下载

滑块木板模型(解析版)-高考物理5种类碰撞问题

滑块木板模型(解析版)-高考物理5种类碰撞问题

滑块木板模型【问题解读】两类情景水平面光滑,木板足够长,木板初速度为零水平面光滑,木板足够长,木板初速度不为零图示v ---t 图像物理规律动量守恒,最终二者速度相同mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20-12(m +M )v 2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力动量守恒,最终二者速度相同M v 0-mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20+12M v 20-12(m +M )v 共2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力。

【高考题典例】1.(14分)(2024年高考新课程卷)如图,一长度l =1.0m 的均匀薄板初始时静止在一光滑平台上,薄板的右端与平台的边缘O 对齐。

薄板上的一小物块从薄板的左端以某一初速度向右滑动,当薄板运动的距离Δl =l6时,物块从薄板右端水平飞出;当物块落到地面时,薄板中心恰好运动到O 点。

已知物块与薄板的质量相等。

它们之间的动摩擦因数μ=0.3,重力加速度大小g =10m/s 2。

求(1)物块初速度大小及其在薄板上运动的时间;解题思路本题考查的考点:动量守恒定律、动能定理、平抛运动规律。

(1)设物块质量m ,初速度为v 0,薄板质量m ,物块滑上薄板,由动量守恒定律mv 0=mv 1+mv 2μmgl =12mv 20-12mv 21-12mv 22物块在薄板上运动加速度a 1=μg =3m/s 2物块在薄板上运动位移s =7l /6v 20-v 21=2a 1s联立解得:v 0=4m/s ,v 1=3m/s ,v 2=1m/s由v 0-v 1=at 1,解得t 1=13s(2)物块抛出后薄板匀速运动,l2-Δl =v 2t 2解得t 2=13s平台距地面的高度h =12gt 22=59m2.(2023年高考选择性考试辽宁卷)如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N /m 的轻弹簧,弹簧处于自然状态。

专题10 碰撞与类碰撞模型--2024版高三物理培优——模型与方法

专题10 碰撞与类碰撞模型--2024版高三物理培优——模型与方法

2024版高三物理培优——模型与方法专题10碰撞与类碰撞模型目录【模型一】弹性碰撞模型....................................................................................................................................1【模型二】非弹性碰撞、完全非弹性碰撞模型..............................................................................................15【模型三】碰撞模型三原则..............................................................................................................................23【模型四】小球—曲面模型............................................................................................................................27【模型五】小球—弹簧模型............................................................................................................................37【模型六】子弹打木块模型............................................................................................................................48【模型七】滑块木板模型.. (57)m +m =m +m 联立()、()解得:v 1ˊ=,=.特殊情况:若m 1=m 2,v 1ˊ=v 2,v 2ˊ=v 12.“动静相碰型”弹性碰撞的结论两球发生弹性碰撞时应满足动量守恒和机械能守恒。

(高中物理)碰撞与类碰撞

(高中物理)碰撞与类碰撞

碰撞与类碰撞高中《动量》局部内容是历年高考的热点内容,碰撞问题是动量局部内容的重点和难点之一,在课本中,从能量角度把碰撞分为弹性碰撞和非弹性碰撞,而学生往往能够掌握这种问题的解决方法,但只要题型稍加变化,学生就感到束手无策。

在此,作者从另外一个角度来研究碰撞问题,期望把动量中的碰撞问题和类似于碰撞问题归纳和总结一下,供读者参考。

从两物体相互作用力的效果可以把碰撞问题分为: 一般意义上的碰撞:相互作用力为斥力的碰撞相互作用力为引力的碰撞〔例如绳模型〕类碰撞:相互作用力既有斥力又有引力的碰撞〔例如弹簧模型〕一、一般意义上的碰撞如下列图,光滑水平面上两个质量分别为m 1、m 2小球相碰。

这种碰撞可分为正碰和斜碰两种,在高中阶段只研究正碰。

正碰又可分为以下几种类型:1、完全弹性碰撞:碰撞时产生弹性形变,碰撞后形变完全消失,碰撞过程系统的动量和机械能均守恒2、完全非弹性碰撞:碰撞后物体粘结成一体或相对静止,即相互碰撞时产生的形变一点没有恢复,碰撞后相互作用的物体具有共同速度,系统动量守恒,但系统的机械能不守恒,此时损失的最多。

3、一般的碰撞:碰撞时产生的形变有局部恢复,此时系统动量守恒但机械能有局部损失。

例:在光滑水平面上A 、B 两球沿同一直线向右运动,A 追上B 发生碰撞,碰前两球动量分别为s m kg P A /12⋅=、s m kg P B /13⋅=,那么碰撞过程中两物体的动量变化可能的是〔 〕A 、s m kg P A /3⋅-=∆,s m kg PB /3⋅=∆B 、s m kg P A /4⋅=∆,s m kg P B /4⋅-=∆C 、s m kg P A /5⋅-=∆,s m kg P B /5⋅=∆D 、s m kg P A /24⋅-=∆,s m kg P B /24⋅=∆[析与解]:碰撞中应遵循的原那么有:1、 统动量守恒原那么:即0=∆+∆B A P P 。

此题ABCD 选项均符合2、物理情景可行性原那么:〔1〕、碰撞前,A 追上B 发生碰撞,所以有碰前B A v v >〔2〕、碰撞时,两球之间是斥力作用,因此前者受到的冲量向前,动量增加;后者受到的冲量向后,动量减小,既0<∆A P ,0>∆B P 。

碰撞及类碰撞模型归类例析

碰撞及类碰撞模型归类例析

碰撞及类碰撞模型归类例析“碰撞”是高中物理中的一个重要模型,它涉及动量定理、动量守恒定律、机械能守恒定律、能量守恒定律等诸多知识。

处理碰撞问题,需要先根据题意选取恰当的研究对象,合理选取研究过程,并把握该过程的核心要素,再判断研究对象的动量是否守恒、机械能是否守恒,然后根据相应物理规律列方程求解。

一、碰撞的特点:(1)作用时间极短,内力远大于外力,因为极短相互作用时间内可以忽略外力的影响,对系统而言动量保持不变,即总动量总是守恒的;(2)系统能量不能凭空增加,在碰撞过程中,因为没有其他形式的能量转化为动能,所以总动能一定不会增加,在完全弹性碰撞过程中动能守恒,然而在非弹性碰撞中,系统动能减小,总之碰撞不会导致系统动能增加;(3)在碰撞过程中,当两物体碰后速度相等,即发生完全非弹性碰撞时,系统动能损失最大; (4)在碰撞过程中,两物体产生的位移可以忽略不计。

二、常见的碰撞模型: 1.弹性碰撞弹性碰撞是高中物理碰撞问题中最常见的模型,对该碰撞问题的处理所依据的物理原理也相对容易理解。

所谓的弹性碰撞是指研究对象之间在碰撞的瞬间动能没有损失。

(1)动静碰撞模型如图所示,在光滑的水平面上质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性碰撞.小球发生的是弹性碰撞,由动量守恒和能量守恒,得111122m v m v m v ''=+ ,222111122111222m v m v m v ''=+ 由上两式解得:121112m m v v m m -'=+ ,121122m v v m m '=+ 推论:① 若m 1 = m 2,可得v'1 = 0、v'2 = v 1,相当于两球交换速度。

② 若m 1 > m 2,则v'1>0 且v'2>0,即v'1和v'2均为正值,表示碰撞后两球的运动方向与v 1相同. ③ 若m 1>>m 2,则m 1-m 2≈m 1,m 1 + m 2≈m 1,可得v'1 = v1,v'2 = 2v 1。

2024年高考物理热点-碰撞与类碰撞模型(解析版)

2024年高考物理热点-碰撞与类碰撞模型(解析版)

碰撞与类碰撞模型1.碰撞问题是历年高考试题的重点和热点,它所反映出来的物理过程、状态变化及能量关系,对学生的理解能力、逻辑思维能力及分析推理能力要求比较高。

高考中考查的碰撞问题,碰撞时间极短,位移为零,碰撞过程遵循动量守恒定律。

2.高考题命题加重了试题与实际的联系,命题导向由单纯的解题向解决问题转变,对于动量守恒定律这一重要规律我们也要关注其在生活实际中的应用,学会建构模型、科学推理。

3.动量和能量综合考查是高考命题的热点,在选择题和计算题中都可能出现,选择题中可能考查动量和能量知识的简单应用,计算题中一般结合竖直面内的圆周运动模型、板块模型或弹簧模型等压轴考查,难度较大。

此类试题区分度较高,且能很好地考查运动与相互作用观念、能量观念动量观念和科学思维要素,因此备考命题者青睐。

题型一人船模型1.模型简析:如图所示,长为L 、质量为m 船的小船停在静水中,质量为m 人的人由静止开始从船的一端走到船的另一端,不计水的阻力。

以人和船组成的系统为研究对象,在人由船的一端走到船的另一端的过程中,系统水平方向不受外力作用,所以整个系统动量守恒,可得m 船v 船=m 人v 人,因人和船组成的系统动量始终守恒,故有m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得x 人=m 船m 人+m 船L ,x 船=m 人m 人+m 船L 。

2.模型特点(1)两个物体作用前均静止,作用后均运动。

(2)动量守恒且总动量为零。

3.结论:m 1x 1=m 2x 2(m 1、m 2为相互作用物体的质量,x 1、x 2为其对地位移的大小)。

题型二“物块-弹簧”模型模型图例m 1、m 2与轻弹簧(开始处于原长)相连,m 1以初速度v 0运动两种情景1.当弹簧处于最短(最长)状态时两物体瞬时速度相等,弹性势能最大:(1)系统动量守恒:m 1v 0=(m 1+m 2)v 共。

210212共pm 2.当弹簧处于原长时弹性势能为零:(1)系统动量守恒:m1v0=m1v1+m2v2。

《高三物理碰撞》课件

《高三物理碰撞》课件
v1' = (m1 - m2)v1 / (m1 + m2), v2' = (m2 - m1)v2 / (m1 + m2)
弹性碰撞的实例
两个小球在光滑水平面上发生弹性碰撞
01
在这种情况下,两个小球在碰撞前后的速度满足动量守恒和动
能守恒,且没有能量损失。
两个分子在气体中的弹性碰撞
02
气体分子之间的碰撞大多数是弹性碰撞,因为它们之间的相互
作用力较小,能量损失也很小。
原子核之间的弹性碰撞
03
原子核之间的相互作用力很强,但它们之间的碰撞仍然可以近
似为弹性碰撞,因为它们的动量很大,能量损失很小。
03
非弹性碰撞
非弹性碰撞的定义
非弹性碰撞是指两个物体在碰撞过程中动能损失不能被完全吸收和转化的碰撞过程 。
在非弹性碰撞中,两个物体的速度在碰撞后会发生变化,但它们的总动能会减少。
碰撞的特点
总结词
碰撞具有时间短暂、动量守恒、能量守恒等特点。
详细描述
碰撞过程非常短暂,通常只有几个毫秒甚至更短的时间。在这么短的时间内,系统的动 量和能量是守恒的,即系统的总动量和总能量在碰撞前后保持不变。这是因为在经典物 理学中,系统的总动量和总能量是守恒的,只有在相对论中才会出现动量和能量的不守
该公式表示碰撞前后,系统内 各物体的动量总和保持不变。
动量守恒定律的实例
子弹打木块
一颗子弹以一定速度打入静止的 木块,在子弹打入的过程中,子 弹和木块组成的系统动量守恒。
弹性碰撞
两个小球在光滑的水平面上发生碰 撞,如果碰撞为弹性碰撞,则碰撞 前后两小球的速度总和保持不变。
天体运动
在行星绕恒星运动的过程中,如果 忽略其他星体的影响,行星和恒星 组成的系统动量守恒。

2025高考物理专题复习--弹性碰撞和非弹性碰撞(共37张ppt)

2025高考物理专题复习--弹性碰撞和非弹性碰撞(共37张ppt)

A.

C.−
B.-v


D.


15
2、碰撞的可能性判断
2.1 碰撞问题遵循的三个原则
例4、(多选)质量相等的A、B两球在光滑水平面上沿同一直线、同一方向运动,
A球的动量pA=9 kg·m/s,B球的动量pB=3 kg·m/s,当A追上B时发生正碰,则碰
后A、B两球的动量可能值是( AD )
A. pA′=6 kg·m/s,pB′=6 kg·m/s
球A、B、C,现让A球以v0=2 m/s的速度向着B球运动,A、B两球碰撞后粘合在
一起,两球继续向右运动并跟C球碰撞,C球的最终速度vC=1 m/s.求:
(1)A、B两球跟C球相碰前的共同速度大小;
(2)第二次碰撞过程中损失了多少动能;
(3)两次碰撞过程中共损失了多少动能.
答案
(1)1 m/s;(2)0.25J;(3)1.25J
a、碰前两物体同向运动,即v后 > v前,碰后原来在前面的物体速度一定增大,
且v前′ ≥ v后′。
b、碰前两物体相向运动,碰后两物体的运动方向不可能都不改变。
14
2、碰撞的可能性判断
2.1 碰撞问题遵循的三个原则
例3、如图所示,质量为m的A小球以水平速度v与静止的质量为3m的B小球正碰


后,A球的速率变为原来的 ,而碰后B球的速度是(以v方向为正方向) ( D )
2、非弹性碰撞:物体碰撞后,形变不能恢复,动能产生损失。生活中,绝大多
数碰撞属于非弹性碰撞。
动量守恒:
动能损失,转化成声能和内能:
7
1、 弹性碰撞和非弹性碰撞
1.3 碰撞的分类
3、完全非弹性碰撞:一种特殊的非弹性碰撞,物体碰撞后结合在一起,动能损

物理高三碰撞知识点

物理高三碰撞知识点

物理高三碰撞知识点物理学中的碰撞是指两个或多个物体之间发生相互作用的过程。

碰撞是物理学中非常重要的一个研究领域,对于理解物体之间的相互作用以及能量转换具有重要意义。

本文将对高三物理中的碰撞知识点进行详细论述。

一、碰撞的基本概念碰撞发生在两个或多个物体之间,其中至少有一个物体的运动状态发生改变。

在碰撞中,物体之间存在着相互作用力,这些力可以改变物体的运动状态,如速度、方向或形状等。

碰撞可以分为弹性碰撞和非弹性碰撞两种类型。

弹性碰撞是指碰撞后物体之间没有能量损失,动能和动量在碰撞前后的总量保持不变。

非弹性碰撞是指碰撞后物体之间发生能量转化或损失,动能和动量在碰撞前后的总量不再保持恒定。

二、动量守恒定律在任何一种碰撞中,动量守恒定律都是成立的。

动量守恒定律表明,在碰撞前后,系统的总动量保持不变。

即:m1v1 + m2v2 = m1v1' + m2v2'其中,m1、m2分别为参与碰撞的物体的质量,v1、v2为碰撞前的速度,v1'、v2'为碰撞后的速度。

动量守恒定律可以帮助我们在碰撞中求解物体的速度和质量等相关问题,是碰撞问题的重要基本原理。

三、动能守恒定律在弹性碰撞中,动能守恒定律也是成立的。

动能守恒定律表明,在弹性碰撞中,参与碰撞的物体的总动能在碰撞前后保持不变。

动能守恒定律可以用下面的公式表示:1/2m1v1^2 + 1/2m2v2^2 = 1/2m1v1'^2 + 1/2m2v2'^2其中,m1、m2分别为参与碰撞的物体的质量,v1、v2为碰撞前的速度,v1'、v2'为碰撞后的速度。

四、碰撞的应用碰撞在日常生活中有着广泛的应用。

以下是几个常见的例子:1. 球类运动:足球、篮球等球类运动中,球员之间的碰撞是不可避免的。

通过研究碰撞的力学规律,可以更好地理解球的运动轨迹和碰撞后的变化。

2. 车辆碰撞:交通事故是车辆碰撞的典型例子。

通过研究碰撞的力学规律,可以预测碰撞的严重程度,有助于改进汽车安全性能和交通管理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碰撞与类碰撞
高中《动量》部分内容是历年高考的热点内容,碰撞问题是动量部分内容的重点和难点之一,在课本中,从能量角度把碰撞分为弹性碰撞和非弹性碰撞,而学生往往能够掌握这种问题的解决方法,但只要题型稍加变化,学生就感到束手无策。

在此,作者从另外一个角度来研究碰撞问题,期望把动量中的碰撞问题和类似于碰撞问题归纳和总结一下,供读者参考。

从两物体相互作用力的效果可以把碰撞问题分为: 一般意义上的碰撞:相互作用力为斥力的碰撞
相互作用力为引力的碰撞(例如绳模型)
类碰撞:
相互作用力既有斥力又有引力的碰撞(例如弹簧模型)
一、一般意义上的碰撞
如图所示,光滑水平面上两个质量分别为m 1、m 2小球相
碰。

这种碰撞可分为正碰和斜碰两种,在高中阶段只研究正
碰。

正碰又可分为以下几种类型:
1、完全弹性碰撞:碰撞时产生弹性形变,碰撞后形变完全消失,碰撞过程系统的动量和机械能均守恒
2、完全非弹性碰撞:碰撞后物体粘结成一体或相对静止,即相互碰撞时产生的形变一点没有恢复,碰撞后相互作用的物体具有共同速度,系统动量守恒,但系统的机械能不守恒,此时损失的最多。

3、一般的碰撞:碰撞时产生的形变有部分恢复,此时系统动量守恒但机械能有部分损失。

例:在光滑水平面上A 、B 两球沿同一直线向右运动,A 追上B 发生碰撞,碰前两球动量分别为s m kg P A /12⋅=、s m kg P B /13⋅=,则碰撞过程中两物体的动量变化可能的是( )
A 、s m kg P A /3⋅-=∆,s m kg P
B /3⋅=∆
B 、s m kg P A /4⋅=∆,s m kg P B /4⋅-=∆
C 、s m kg P A /5⋅-=∆,s m kg P B /5⋅=∆
D 、s m kg P A /24⋅-=∆,s m kg P B /24⋅=∆
[析与解]:碰撞中应遵循的原则有:
1、 统动量守恒原则:即0=∆+∆B A P P 。

此题ABCD 选项均符合
2、物理情景可行性原则:
(1)、碰撞前,A 追上B 发生碰撞,所以有碰前B A v v >
(2)、碰撞时,两球之间是斥力作用,因此前者受到的冲量向前,动量增加;后者受到的冲量向后,动量减小,既0<∆A P ,0>∆B P 。

此题B 选项可以排除
(3)、碰撞后,A 球位置在后,所以有''B A v v >
3、系统能量守恒原则:在碰撞中,若没有能量损耗,则系统机械能守恒;若能量有损失,则系统的机械能减小;而系统的机械能不可能增加。

一般而言,碰撞中的重力势能不变, 所以有'
+'=+KB KA KB KA E E E E 。

此题中D 选项可以排除。

综上所述,本题正确答案为(A 、C )
二、类碰撞中绳模型
例:如图所示,光滑水平面上有两个质量相等的物体,其间用一不可
伸长的细绳相连,开始B 静止,A 具有s m kg P A /4⋅=(规定向右为
正)的动量,开始绳松弛,那么在绳拉紧的过程中,A 、B 动量变化
可能是( )
A 、s m kg P A /4⋅-=∆,s m kg P
B /4⋅=∆
B 、s m kg P A /2⋅=∆,s m kg P B /2⋅-=∆
C 、s m kg P A /2⋅-=∆,s m kg P B /2⋅=∆
D 、s m kg P P B A /2⋅=∆=∆
[析与解]:绳模型中两物体组成的系统同样要满足上述的三个原则,只是在第2个原则中,由于绳对两个小球施加的是拉力,前者受到的冲量向后,动量减小;后者受到的冲量向前,动量增加,当两者的速度相等时,绳子的拉力为零,一起做匀速直线运动。

综上所述,本题应该选择C 选项。

三、类碰撞中弹簧模型
例:在光滑水平长直轨道上,放着一个静止的弹簧振子,它由一轻弹簧两端各联结一个小球构成,两小球质量相等,现突然
给左端小球一个向右的速度V ,试分析从开始运动到弹簧第一次恢复原长这一过程中两球的运动情况并求弹簧第一次恢复到自然长度时,每个小球的速度?
[析与解]:刚开始,A 向右运动,B 静止,A 、B 间距离减小,弹簧被压缩,对两球产生斥力,相当于一般意义上的碰撞,此时A 动量减小,B 动量增加。

当两者速度相等时,两球间距离最小,弹簧形变量最大。

接着,A 、B 不会一直做匀速直线运动,弹簧要恢复原长,对两球产生斥力,A 动量继续减小,B 动量继续增加。

所以,到弹簧第一次恢复原长时,A 球动量最小,B 球动量最大。

在整个过程中,系统动量守恒,从开始到第一次恢复原长时,弹簧的弹性势能均为零,即系统的动能守恒。

A B mv mv mv =+
222111222
A B mv mv mv =+ 解得: A v v =
0B v = (这组解即为刚开始两个物体的速度)
或 0A =
B v = (此组解为弹簧第一次恢复原长时两个物体的速度)
当然,读者还可以继续讨论接下来两个物体的运动情况。

实际上,不管是一般意义上的碰撞,还是类碰撞,在相互作用时两个物体的受力情况、冲量方向及动量变化情况是学生处理这类问题的难点所在。

下面作者再补充一些相关习题作巩固用
1、甲、乙两球在光滑水平面上,在同一直线同一方向上运动,它们的动量分别为5/P kg m s =⋅甲,7/P
kg m s =⋅乙。

已知甲的速度大于乙的速度,甲球与乙球相碰,碰撞后乙球的动量变为10/kg m s ⋅,则甲、乙两球质量m 甲和m 乙的关系为
m m =甲乙。

2、甲、乙两球放在光滑水平面上,它们用细绳相连。

开始时
细绳处于松弛状态,现使两球反向运动,如图所示,当细绳
拉紧,突然绷断,此后两球的运动情况可能是图中的( )
3、如图所示,滑块A 、B 的质量分别为1m 、2m ,且12m m ,由轻质弹簧相连接,置于水平气垫导轨上,用一细线把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧,两个滑块一起以恒定的速度0v 向右滑动。

某时刻烧断细线,当弹簧伸长至本身的自然长度时,滑块A 的速度恰好为零,求
(1)最初弹簧处于最大压缩状态时的弹性势能为多少?
(2)定量分析在以后的运动过程中,滑块B 是否会有速度等于零的时刻。

相关文档
最新文档