电动势的测定及其应用(实验报告)
电动势的测定及应用实验报告

宁波工程学院物理化学实验报告专业班级化学工程与工艺姓名序号同组姓名指导老师实验日期2015.5.13实验名称电动势的测定及应用一、实验目的1.通过实验加深对可逆电池、可逆电极概念的理解。
2.掌握对消法测定电池电动势的原理及电位差计的使用方法。
3.通过测量电池Ag︱AgNO3(b1)‖KCl(b2)︱Ag-AgCl|Ag的电动势求AgCl的溶度积Ksp。
4.了解标准电池的使用和不同盐桥的使用条件。
二、实验原理1.可逆电池的电动势:电池的书写习惯是左方为负极,右方为正极。
负极进行氧化反应,正极进行还原反应。
如果电池的反应时自发的,则电池电动势为正。
符号“∣”表示两相的界面,“‖”表示盐桥。
在电池中,电极具有一定的电极电势。
当电池处于平衡态时,两个电极的电极电势之差,即:E=φ+-φ-可逆电池具备的条件为:(1)、电极上的化学反应可向正反两个方向进行,即反应可逆。
(2)、电池在工作时,所通过的电流必须无限小,此时电池可在接近平衡状态下进行,即能量可逆。
(3)、电池中所进行的其他过程可逆。
如溶液间的无扩散、无液体接界的电势。
因此在制备可逆电池、测定可逆电池的电动势时应符合上述的条件,在精度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来减少液体接界电势。
要达到工作电流零的条件,必须使电池在接近热力学平衡条件下工作。
测量可逆电池的电动势不能直接用伏特计来测量。
因为电池与伏特计相接后,整个线路便有电流通过,此时电池内部由于存在内电阻而产生某一电位降便在电池两极发生化学反应,溶液浓度发生变化,电动势数据不稳定。
所以要准确测定电池的电动势,只有在电流无限小的情况下进行,所采用的对消法就是根据这个要求设计的。
2.对消法测定原电池电动势原理:在待测电池并联一个大小相等,方向相反的外加电势差,这样待测电池中没有电流通过,外加电势差的大小即等于待测电池的电动势。
3.电极:(1)、标准氢电极:电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极(标准氢电极是氢气压力为101325pa,溶液中aH+为1,其电极电势规定为零)。
电池电动势的测定及应用实验报告

电池电动势的测定及应用实验报告电池电动势的测定及应用实验报告引言电池是我们日常生活中不可或缺的能源供应装置,它的电动势是衡量电池性能的重要指标。
本实验旨在通过测定电池的电动势,了解电池的工作原理,并探索电池在实际应用中的一些可能性。
实验方法1. 实验仪器与材料本实验使用的仪器有:直流电压表、电流表、可变电阻箱、导线等。
材料包括:干电池、铜片、锌片等。
2. 实验步骤(1)将干电池的正极与铜片连接,负极与锌片连接,形成一个闭合电路。
(2)将直流电压表的正极与铜片连接,负极与锌片连接,测量电池的电动势。
(3)通过调节可变电阻箱的电阻,改变电路中的电流强度,记录电压和电流的变化。
(4)根据测得的数据,绘制电压与电流的关系曲线。
实验结果通过实验,我们得到了以下数据:电流(A) 0.1 0.2 0.3 0.4 0.5电压(V) 1.5 1.3 1.1 0.9 0.7根据实验数据,我们可以绘制出电压与电流的关系曲线。
从图中可以看出,电压随着电流的增大而逐渐降低,呈现出线性的负相关关系。
讨论与分析1. 电池的内阻根据欧姆定律,我们可以通过实验数据计算出电池的内阻。
内阻的大小会影响电池的电动势稳定性和输出能力。
通过实验计算,我们得到电池的内阻为0.8欧姆。
2. 电池的工作原理电池是通过化学反应将化学能转化为电能的装置。
在干电池中,锌片发生氧化反应,释放出电子,形成负极;铜片则接受电子,发生还原反应,形成正极。
这种化学反应产生的电子流动就是电池的电流。
3. 电池的应用电池作为一种便携式能源装置,广泛应用于日常生活和工业领域。
它可以为各种电子设备提供电力,如手机、手提电脑、闹钟等。
此外,电池还可以用于储能系统,如太阳能电池板储存太阳能,以备不时之需。
结论通过本次实验,我们成功测定了电池的电动势,并了解了电池的工作原理。
通过分析实验数据,我们得出了电压与电流之间的关系,并计算出了电池的内阻。
电池作为一种重要的能源装置,具有广泛的应用前景。
原电池电动势的测定与应用物化实验报告

原电池电动势的测定及热力学函数的测定一、实验目的1) 掌握电位差计的测量原理和测量电池电动势的方法;2) 掌握电动势法测定化学反应热力学函数变化值的有关原理和方法; 3) 加深对可逆电池,可逆电极、盐桥等概念的理解; 4) 了解可逆电池电动势测定的应用;5) 根据可逆热力学体系的要求设计可逆电池,测定其在不同温度下的电动势值,计算电池反应的热力学函数△G 、△S 、△H 。
二、实验原理1.用对消法测定原电池电动势:原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生生极化,结果使电极偏离平衡状态。
另外,电池本身有阻,所以伏特计测得的只是不可逆电池的端电压。
而测量可逆电池的电动势,只能在无电流通过电池的情况下进行,因此,采用对消法。
对消法是在待测电池上并联一个大小相等、方向相反的外加电源,这样待测电池中没有电流通过,外加电源的大小即等于待测电池的电动势。
2.电池电动势测定原理:Hg | Hg 2Cl 2(s) | KCl( 饱和 ) | | AgNO 3 (0.02 mol/L) | Ag 根据电极电位的能斯特公式,正极银电极的电极电位:其中)25(00097.0799.0Ag /Ag --=+t ϕ;而+++-=Ag Ag /Ag Ag /Ag 1lna F RTϕϕ 负极饱和甘汞电极电位因其氯离子浓度在一定温度下是个定值,故其电极电位只与温度有关,其关系式: φ饱和甘汞 = 0.2415 - 0.00065(t – 25)而电池电动势 饱和甘汞理论—ϕϕ+=Ag /Ag E ;可以算出该电池电动势的理论值。
与测定值比较即可。
3.电动势法测定化学反应的△G 、△H 和△S :如果原电池进行的化学反应是可逆的,且电池在可逆条件下工作,则此电池反应在定温定压下的吉布斯函数变化△G和电池的电动势E有以下关系式:△r G m =-nFE从热力学可知:△H=-nFE+△S4.注意事项:①盐桥的制备不使用:重复测量中须注意盐桥的两端不能对调;②电极不要接反;三、.实验仪器及用品1.实验仪器SDC数字电位差计、饱和甘汞电极、光亮铂电极、银电极、250mL烧杯、20mL烧杯、U 形管2.实验试剂0.02mol/L的硝酸银溶液、饱和氯化钾溶液、硝酸钾、琼脂四、实验步骤1.制备盐桥3%琼脂-饱和硝酸钾盐桥的制备方法:在250mL烧杯中,加入100mL蒸馏水和3g琼脂,盖上表面皿,放在石棉网上用小火加热至近沸,继续加热至琼脂完全溶解。
原电池电动势的测定实验报告电动势的测定及应用

原电池电动势的测定实验报告电动势的测定及应用实验九原电池电动势的测定及应用一、实验目的1.测定Cu-Zn电池的电动势和Cu、Zn电极的电极电势。
2.学会几种电极的制备和处理方法。
3.掌握数字电位差计的测量原理和正确的使用方法。
二、实验原理电池由正、负两极组成。
电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。
电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。
从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系:G nFE (9-1)式中 G是电池反应的吉布斯自由能增量;n为电极反应中得失电子的数目;F为法拉第常数(其数值为96500C mol 1);E为电池的电动势。
所以测出该电池的电动势E后,进而又可求出其它热力学函数。
但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件:(1)电池反应可逆,亦即电池电极反应可逆;(2)电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。
因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。
在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。
原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池的电动势。
由(9-1)式可推导出电池的电动势以及电极电势的表达式。
下面以铜-锌电池为例进行分析。
电池表示式为:Zn(s) ZnSO4(m1) CuSO4(m2) Cu(s)符号“|”代表固相(Zn或Cu)和液相(ZnSO4或CuSO4)两相界面;“‖”代表连通两个液相的“盐桥”;m1和m2分别为ZnSO4和CuSO4的质量摩尔浓度。
原电池电动势的测定及应用实验报告

原电池电动势的测定及应用实验报告实验报告:原电池电动势的测定及应用一、实验目的:1.学习如何测定原电池的电动势。
2.了解原电池的构造和工作原理。
3.研究原电池的应用。
二、实验仪器和材料:1.原电池(例如锌银电池、铜锌电池等)2.电流表3.电位计4.导线5.开关6.电阻箱7.连接板8.电源三、实验原理:原电池是一种将化学能转化为电能的装置,由两个不同的金属或合金及其周围的电解质溶液组成。
在原电池中,金属条与电解质之间的化学反应产生电流。
电动势是原电池提供给外部电路单位正电荷所需的能量。
电动势的实际值与原电池的化学反应和电化学平衡有关。
四、实验步骤及数据处理:1.将原电池、电流表、电位计以及电阻箱按照电路图连接好。
2.打开开关,通过调节电阻箱中的电阻,使电流表示数保持在一个恒定的值。
3.根据电位计的示数和电流表的示数,计算出原电池的电动势。
五、实验结果与分析:根据电位计的示数和电流表的示数,我们进行了多组实验,并计算出了不同条件下原电池的电动势。
在分析实验结果时,我们可以发现,原电池的电动势与电流的大小无关,主要取决于原电池中的化学反应和电化学平衡。
不同种类的原电池,其电动势可能会有所不同。
六、实验应用:1.用于供电:原电池可以直接为电器设备或电路提供稳定的直流电源。
2.计算电动势:通过测量原电池的电动势,我们可以了解原电池的性能与工作状态,判断其是否需要更换或维修。
3.进行电解实验:原电池可以为电解实验提供所需的电流。
4.进行电池组装:原电池可以通过串联或并联的方式组装成电池组,提供更大的电动势和容量。
七、实验总结:通过本次实验,我们学习了如何测定原电池的电动势,并了解了原电池的构造、工作原理和应用。
电动势是一个重要的物理概念,对于理解电路的工作原理和实际应用具有重要意义。
物化实验报告电池电动势的测定及其应用

物化实验报告电池电动势的测定及其应用
一、实验目的
1.学习和掌握电池电动势的测定原理。
2.掌握配制电池电解液的方法。
3.掌握电池电动势的应用。
二、实验原理
电池电动势是一种原子尺度上发生的势能,它是由电池电解质本身引起的力,由阴、阳极及电解质联合而成。
当它处于静止状态时,电池内部的电解质有特定的分布,并在这个分布状态下,具有一定的势能,这就是电池电动势。
实验中使用的电解质为硝酸铵和乙酸,电池的构造为硝酸铵(阴极)+银/银离子(阳极)。
两个电极分别在不同的溶液中,在实验条件下,通过电池的电解,在一定的条件下,将会发生电解反应:
阴极:2NH4NO3(aq)→2NH4+(aq)+2NO3-(aq)
阳极:2Ag+(aq)→2Ag(s)+2e-
两个反应路径相互影响,使得阴极的电解质离子浓度比阳极的电解质离子浓度低。
由于阴极电解质迁移到阳极,因此电池内部产生电势,从而产生电能。
三、实验步骤
1.准备实验药品:用适量的硝酸铵、乙酸及银离子溶液,准备实验所需的电解液。
2.配制电解液:将硝酸铵和乙酸按照比例混合,然后在其中加入银离子溶液,搅拌均匀即可得到电解液。
3.连接电池:将电解液填满电池双极夹。
物理化学实验报告电动势的测定与应用

物理化学实验报告电动势的测定与应用实验十七:电动势的测定与应用班级:13级化学二班学号:20135051209 姓名:郑润田一:实验目的1.掌握对消法测定电池电动势的的原理及电位差计的使用2.学会银电极、银—氯化银电极的自制备和盐桥的制备3.了解可逆电池电动势的应用二:实验原理原电池是由两个“半电池”组成,每一个半电池中有一个电极和相应的溶液组成。
由不同的半电池可以组成各式各样的原电池。
电池反应中,正极起还原作用,负极起氧化作用,而电池反应是电池中两个电极反应的总和,其电动势为组成该电池的两个半电池的电极电位代数和。
若知道一个半电池的电极电位,即可求得其他半电池的电极电位。
但迄今还不能从实验上测得单个半电池的电极电位。
在电化学中,电极电位是以某一电极为标准而求出其他电极的相对值,现在国际上采用的标准电极是标准氢电极,记在Α=1,P H2=1atm时被氢H+吸附的铂电极。
由于氢电极使用比较麻烦,因此通常把具有稳定电位的电极,如甘汞电极,银—氯化银电极等作为第二参比电极。
通过对电池电动势的测定,可以求出某些反应的ΔH,ΔS,ΔG等热力学函数,电解质的平均活动系数,难溶盐的溶度积和溶液的pH等数值。
但用电动势的方法求如上的数据,必须是设计成一个可逆的电池,而该电池反应就是所求的反应。
例如用电动势求AgCl的K,需要设计如下的电池。
spHg-Hg2Cl2 | KCl( 饱和 ) | | AgNO3 (0.100 mol/L) | Ag根据电极电位的能斯特公式,银电极的电极电位:负极反应:Hg + Cl-(饱和)−→− 1/2Hg2Cl2 + e-正极反应:Ag+ + e-−→− Ag总反应:Hg + Cl-(饱和)+ Ag+ −→−1/2Hg2Cl2 + Ag根据电极电位的能斯特公式,正极银电极的电极电位:φAg/Ag+ = φθAg/Ag+ + 0.05916V lgɑAg+其中φθAg/Ag+= 0.799 - 0.00097(t-25)又例如通过电动势的测定,求溶液的pH,可设计如下电池:Hg -Hg2Cl2 | KCl( 饱和 ) | | 饱和有醌氢醌的未知pH溶液 |Pt醌氢醌是一种暗褐色晶体,在水中溶解度很小,在水溶液中依下式部分溶解。
电池电动势的测定及其应用实验报告

电池电动势的测定及其应用实验报告
一、实验目的
1、熟悉和掌握自由电动势的测量方法。
2、了解和掌握电池自由电动势的数据处理方法。
3、掌握电池自由电动势的应用。
二、实验原理
电池自由电动势是一种电池在不同温度和电解液种类下所表现出来的
最大可达的电动势。
它在电池的容量、电池的负载电流以及电池的储存寿
命等方面具有非常重要的作用,可以帮助我们对电池的性能进行详细的分析,从而更好地发现问题,提出解决方案,并有效地延长电池的使用寿命。
实验中,利用测量电池自由电动势,使用微电路控制,实现保持电池
在预设的恒电流的情况下,得到电池自由电动势的测量。
三、实验步骤
1、将电池放置在稳定的实验装置上,连接电池并加以热控,将温度
调节在一定的范围内;
2、连接电池的正负极到实验仪器;
3、设置电池负载电流,将实验仪器的表格设置在自由电动势测试模
式下;
4、同一电池比较多次,改变不同的负载电流,观察电池的自由电动
势和耗电量关系;
5、当电池自由电动势达到最大时,记录其电压和实验温度;
6、将测试数据处理,获得电池自由电动势的数据;
7、观察电池的负载电流和自由电动势关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测量次数
1
2
3
平均值
电动势E/V
0.5383
0.5384
0.5384
0.5384
已知饱和甘汞电极电势与温度关系为:
将温度 =18.6℃代入,可得
与温度关系为:
将温度 =18.6℃代入可得 的理论值为
由于电池的电动势为 ,所以
实验测得的 与理论值的绝对误差为:
相对误差为:
七.分析与讨论
(3) 将 置“未知1”(或“未知2”)位置,按下“粗”按钮,调节读数转盘Ⅰ、Ⅱ使灵敏电流计指零,再按下“细”按钮,精确调节读数转盘Ⅲ使灵敏电流计指零。读数转盘Ⅰ、Ⅱ和Ⅲ的示值乘以相应的倍率后相加,再乘以 所用的倍率,即为被测电动势(或电压) 。此操作过程称作“测量”。
三.仪器与药品
UJ-25型电位差计1台,直流辐射式检流计1台,稳流电源1台,电位差计稳压电源1台,韦斯顿标准电池1台,银电极2支,铂电极、饱和甘汞电极各1支,盐桥玻管4根。
实验报告电动势的测定及其应用
一.实验目的
1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。
2.学会制备银电极,银~氯化银电极,盐桥的方法。
3.了解可逆电池电动势的应用。
二.实验原理
原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。
⑸ 将“测量选择”旋钮置于“测量”,依次调节“ ”五个旋钮,使“检零指示”显示数值为负且绝对值最小,此时“电位指示”显示的数值即为被测电动势的值。
依照上述步骤测定三个电池的电动势,每个电池测三次。实验完毕,把盐桥放在水中加热溶解,洗净,其它各仪器复原,检流计短路放置。
五.实验注意事项
1.连接线路时,红线接阳极,黑线接阴极。
镀银液,盐桥液,硝酸银溶液(0.100mol/L),未知pH液,盐酸液(0.100mol/L),(1mol/L),醌氢醌。
四.实验步骤
本实验测定下列四个电池的电动势:
1.盐桥的制备
为了消除液接电势,必须使用盐桥,其制备方法是以质量比例琼胶︰KNO3︰H2O=1.5︰20︰50的比例加入到烧杯中,于电炉上加热并不断用玻璃棒搅拌使之溶解,然后用滴管将它注入干净的U形管中,U形管中以及管两端不能留有气泡,冷却后待用。
已知0℃时0.01mol/L的 溶液的平均活度系数 ,温度 ℃时的 可通过下式求得
将 =18.6℃代入可得0.1mol/L的 溶液的 ,所以 。由于 的浓度为0.1mol/L,则 ,所以
解得
综合两个电池求得的溶度积可得 的 为:
2.由第二个电池求
第一个电池为:
电池的电极反应为
负极:
正极:
电极总反应:
(1)测量前可根据电化学基本知识初步估算一下被测电池的电动势大小,以便在测量时能迅速找到平衡点,这样可避免电极极化。、
(2)要选择最佳实验条件使电极处于平衡状态。
(3)为了判断所测量的电动势是否为平衡电势,一般应在短时间内,等间隔地测量个数据。若这些数据是在平均值附近摆动,偏差小于±0.5 mV,则可认为已达平衡,并
1.根据第三、四个电池的测定结果,求算 的
第三个电池为:
电池的电极反应为
负极:
正极:
电极总反应:
其中左边半电池的制备方法为:往0.01mol/L的氯化钾溶液中滴加2滴0.1mol/L硝酸银溶液,边滴边搅拌(不可多加),然后插入新制成的银电极即可。
所测电动势的结果为:
测量次数
1
2
3
平均值
电动势E/V
0.4132
电动势的测量方法,在物理化学研究工作中具有重要的实际意义,通过电池电动势的测量可以获得氧化还原体系的许多热力学数据。如平衡常数、电解质活度及活度系数、离解常数、溶解度、络合常数、酸碱度以及某些热力学函数改变量等。
电动势的测量方法属于平衡测量,在测量过程中尽可能的做到在可逆条件下进行。为此应注意以下几点:
盐桥的选择不仅要使其正、负离子迁移数接近,还应不与两端溶液起化学作用,同时为了使电流的容量大,盐桥的浓度要大大高于被测溶液的浓度,一般用饱和溶液。本实验中所制盐桥的电解质为KNO3,因为KNO3在水中的溶解度很大,且正、负离子迁移数大致相等,与电池两极的溶液不会发生反应。
用对消法测量电动势的线路图为:
Ew、Es、Ex分别为工作电池、标准电池和待测电池,工作电池使均匀电阻AB上电流通过并产生均匀的电位降。测定时先将K扳至与标准电池Es相连,移动滑线电阻至接触点C,使检流计G中无电流通过,这时AC上的电位降VAC正好和标准电池的电动势Es数值相等而相互对消,因此得:(1)
再将K扳至与待测电池Ex相连,用同样的方法找出检流计G中无电流通过时的平衡点C´,得:
显然,电表校验装置的误差还应包括标准电动势 欠准、工作电流波动、线间绝缘不良等其它因素的影响,但考虑这些因素对教学实验就过于复杂了。
在电化学中,电极电势的绝对值至今无法测定,在实际测量中是以某一电极的电极电势作为零标准,然后将其他的电极(被研究电极)与它组成电池,测量其间的电动势,则该电动势即为该被测电极的电动势。被测电极在电池中的正、负极性,可由它与零标准电极两者的还原电势比较而确定。通常将氢电极在氢气压力为101325Pa,溶液中氢离子活度为1时的电极电势规定为零伏,称为标准氢电极,然后与其他被测电极进行比较。由于使用标准氢电极不方便,在实际测定时往往采用第二级的标准电极。甘汞电极(SCE)是其中最常用的一种。这些电极与标准氢电极比较而得到的电势已精确测出,可参见相关物理化学手册。
为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。
附【实验装置】(阅读了解)
UJ25型电位差计
UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为 ( 置 档)或 ( 置 档)。使用 外接工作电源,标准电池和灵敏电流计均外接,其面板图如图5.8.2所示。调节工作电流(即校准)时分别调节 (粗调)、 (中调)和 (细调)三个电阻转盘,以保证迅速准确地调节工作电流。 是为了适应温度不同时标准电池电动势的变化而设置的,当温度不同引起标准电池电动势变化时,通过调节 ,使工作电流保持不变。 被分成Ⅰ( )、Ⅱ( )和Ⅲ( )三个电阻转盘,并在转盘上标出对应 的电压值,电位差计处于补偿状态时可以从这三个转盘上直接读出未知电动势或未知电压。左下方的“粗”和“细”两个按钮,其作用是:按下“粗”铵钮,保护电阻和灵敏电流计串联,此时电流计的灵敏度降低;按下“细”按钮,保护电阻被短路,此时电流计的灵敏度提高。 为标准电池和未知电动势的转换开关。标准电池、灵敏电流计、工作电源和未知电动势 由相应的接线柱外接。
2.电动势的测定
⑴按右图组成三个电池。
⑵将待测电池接至电位差计上,用测试线将待测电池按“+”、“-”极与“测量”插孔连接,注意正负极不能接错。
⑶将“测量”旋钮置于“内标”, 将“×100”旋钮置于“1”,“补偿”旋钮逆时针旋转到底,其它旋钮均置于“0”,此时“电位指示”显示“1.00000”V。
⑷待“检零指示”显示数值稳定后,按一下采零键,此时,“检零指示”显示“0000”。
(2)
把(2)、(3)两式相除,并整理后得:
(3)
在用电位差计校准电流表时,是通过用电位差计测量标准电阻上的电压来转化成标准电流,进而对电流表各点进行校正。估算电表校验装置的误差,并判断它是否小于电表基本误差限的1/3,进而得出校验装置是否合理的结论。估算时只要求考虑电位差计的基本误差限及标准电阻 的误差,可用下式确定:
如果测可逆电池电动势时,电池与伏特计直接相接,则整个电路便有一定的电流通过,在电池内阻上会产生一个电位降,并在电池两极发生化学反应,从而使得两极间的电位差较电池电动势小,因此要使两电极的电位差与电池电动势相等,则必须要求没有电流通过电池,不用直接用伏特计来测量一个可逆电池的电动势。
本实验的盐桥是用琼胶、KNO3和蒸馏水按一定比例在加热状态混合均匀,然后无气泡地注入U形管中冷却制成的。盐桥是一个隔开两个半电池的液体部分而能维持通电的装置。盐桥的作用在于有效地减弱液体液接电势,因为当两种不同溶液或同一溶质不同浓度的两种溶液接通电流后,由于离子的迁移速度不同,使溶液在接界处产生电位差,即液接电势。如果接入了盐桥,这时越过溶液接界处的电流,将主要由组成盐桥的离子来传递。虽然在盐桥和半电池之间的界面上还存在液接电势,但由于盐桥的正负离子迁移数大致相等,从而使
(1)将 置到“断”, 置于“ ”档或“ ”档(视被测量值而定),分别接上标准电池、灵敏电流计、工作电源。被测电动势(或电压)接于“未知1”(或“未知2”)。
(2)根据温度修正公式计算标准电池的电动势 的值,调节 的示值与其相等。将 置“标准”档,按下“粗”按钮,调节 、 和 ,使灵敏电流计指针指零,再按下“细”按钮,用 和 精确调节至灵敏电流计指针指零。此操作过程称为“校准”。
7.测定过程中,检流计一直向一边偏转,可能是正负极接错,导线有断路,工作电源电压不够等造成,应进行检查。
8.试验完毕,把盐桥放入水中加热溶解,洗净,其它各仪器复原,检流计短路放置。
六.数据处理(参考)
实验称取的琼胶、KNO3的质量分别为3g、40g,移取的蒸馏水的体积为100mL。温度 =18.6℃。
取最后三个数据的平均值作为该电池的电动势。
(4)前面已讲到必须要求电池可逆,并且要求电池在可逆的情况下工作。
可逆电池的电动势不能直接伏特计测量。因为当把伏特计与电池接通后,由于电池放电,不断发生化学反应,电池中溶液的浓度将不断改变,因而电动势值也会发生变化。另一方面,电池本身存在内电阻,所以伏特计所测量出的只是两极的电势降,而不是电池的电动势,只有在没有电流通过时的电势降才是电池真正的电动势。在进行电池电动势测定时,为了使电池反应在接近热力学可逆条件下进行,采用电位差计测量,电位差计是可以利用对消法原理进行电势差测量的仪器,即能在无电流通过时测得其两极的电势差,这时的电势差就是电池的电动势。