(完整版)二次函数压轴题等腰三角形存在性,直角三角形存在性
压轴题05二次函数与三角形存在性问题(与等腰、直角、等腰直角三角形、相似)-2023年中考

2023年中考数学压轴题专项训练压轴题05二次函数与三角形存在性问题(与等腰、直角、等腰直角三角形、相似三角形)题型一:二次函数与等腰三角形存在性问题例1.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.题型二:二次函数与直角三角形存在性问题例2.(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B 的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点P为该抛物线对称轴上的一个动点,当P A=PC时,求点P的坐标;(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.题型三:二次函数与等腰直角三角形存在性问题例3.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.题型四:二次函数与相似三角形存在性问题例4.(2023•宜兴市一模)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣2的图象经过点A(﹣1,0),B(3,0),与y轴交于点C,连接BC、AC.(1)求二次函数的函数表达式;(2)设二次函数的图象的顶点为D,求直线BD的函数表达式以及sin∠CBD的值;(3)若点M在线段AB上(不与A、B重合),点N在线段BC上(不与B、C重合),是否存在△CMN 与△AOC相似,若存在,请直接写出点N的坐标,若不存在,请说明理由.一.解答题(共20小题)1.(2023•绥宁县模拟)如图,一次函数y=12x+2与x轴,y轴分别交于A、C两点,二次函数y=ax2+bx+c的图象经过A、C两点,与x轴交于另一点B,其对称轴为直线x=−3 2.(1)求该二次函数表达式;(2)在y轴的正半轴上是否存在一点M,使以点M、O、B为顶点的三角形与△AOC相似,若存在,求出点M的坐标,若不存在,请说明理由;(3)在对称轴上是否存在点P,使△P AC为等腰三角形,若存在,求出点P的坐标;若不存在,请说明理由.2.(2023•泗阳县校级一模)如图,二次函数y=ax2+bx+4与x轴交于点A(4,0)、B(﹣1,0),与y轴交于点C.(1)求函数表达式及顶点坐标;(2)连接AC,点P为线段AC上方抛物线上一点,过点P作PQ⊥x轴于点Q,交AC于点H,当PH =2HQ时,求点P的坐标;(3)是否存在点M在抛物线上,点N在抛物线对称轴上,使得△BMN是以BN为斜边的等腰直角三角形,若存在,直接写出点M的横坐标;若不存在,请说明理由.3.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.4.(2023•崂山区开学)如图1,已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4).与x轴交于点B,C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+32x+c(a≠0)的表达式;(2)判断△ABC的形状,并说明理由;(3)如图2,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标;(4)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请写出此时点N的坐标.5.(2023•泰山区校级一模)已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)求出二次函数表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,求出此时点N的坐标,并说明理由;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.6.(2023•灞桥区校级二模)如图,二次函数y=−12x2−x+4的图象与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.(1)求点A、B、C的坐标;(2)若点P在抛物线对称轴上,且在x轴上方,当△PBC为等腰三角形时,求出所有符合条件的点P 的坐标.7.(2023春•仓山区校级期中)如图抛物线y=﹣x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求二次函数的解析式及顶点P的坐标;(2)过定点(1,3)的直线l:y=kx+b与二次函数的图象相交于M,N两点.①若S△PMN=2,求k的值;②证明:无论k为何值,△PMN恒为直角三角形.8.(2023春•兴化市月考)已知:二次函数y=ax2+2ax﹣8a(a为常数,且a>0)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)分别求点A、B的坐标;(2)若△ABC是直角三角形,求该二次函数相应的表达式;(3)当a=12时,一次函数y=12x+b的图象过B点,与二次函数的对称轴交于Q点,N为一次函数图象上一点,过N点作y的平行线交二次函数图象于M点,当D、M、N、Q四点组成的四边形是平行四边形时,求N点的坐标.9.(2023•广水市模拟)二次函数y=ax2+bx+c交x轴于点A(﹣1,0)和点B(﹣3,0),交y轴于点C(0,﹣3).(1)求二次函数的解析式;(2)如图1,点E为抛物线的顶点,点T(0,t)为y轴负半轴上的一点,将抛物线绕点T旋转180°,得到新的抛物线,其中B,E旋转后的对应点分别记为B',E',当四边形BEB'E'的面积为12时,求t的值;(3)如图2,过点C作CD∥x轴,交抛物线于另一点D.点M是直线CD上的一个动点,过点M作x 轴的垂线,交抛物线于点P.是否存在点M使△PBC为直角三角形,若存在,请直接写出点M的坐标,若不存在,请说明理由.10.(2023•江油市模拟)抛物线y=ax2+114x−6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求二次函数与一次函数的解析式;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+12PQ的最大值.11.如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数的表达式;(2)点M为一次函数下方抛物线上的点,△ABM的面积最大时,求点M的坐标;(3)设一次函数y=0.5x+2的图象与二次函数的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.12.(2023•儋州一模)如图,在直角坐标系中有Rt△AOB,O为坐标原点,A(0,3),B(﹣1,0),将此三角形绕原点O顺时针旋转90°,得到Rt△COD,二次函数y=ax2+bx+c的图象刚好经过A,B,C三点.(1)求二次函数的解析式及顶点P的坐标;(2)过定点Q的直线l:y=kx﹣k+3与二次函数图象相交于M,N两点.①若S△PMN=2,求k的值;②证明:无论k为何值,△PMN恒为直角三角形;③当直线l绕着定点Q旋转时,△PMN外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.13.(2023•保亭县一模)如图,二次函数y=ax2+bx+5的图象经过点(1,8),且与x轴交于A、B两点,与y轴交于点C,其中点A(﹣1,0),M为抛物线的顶点.(1)求二次函数的解析式;(2)求△MCB的面积;(3)在坐标轴上是否存在点N,使得△BCN为直角三角形?若存在,求出点N的坐标;若不存在,请说明理由.14.(2022秋•蔡甸区期末)如图,一次函数y=12x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=12x2+bx+c的图象与一次函数y=12x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为(1,0).(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB﹣PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.15.(2023•二道区校级一模)已知一次函数y=x+4的图象与二次函数y=ax(x﹣2)的图象相交于A(﹣1,b)和B,点P是线段AB上的动点(不与A、B重合),过点P作PC⊥x轴,与二次函数y=ax(x﹣2)的图象交于点C.(1)求a、b的值;(2)如图1,M为∠APC内一点,且PM=1,E,F分别为边P A和PC上两个动点,求△MEF周长的最小值;(3)若△P AC是直角三角形,求点C的坐标.16.(2023•靖江市一模)已知二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴交于点A,与y轴交于点(0,−32),顶点为C(﹣1,﹣2).(Ⅰ)求该二次函数的解析式;(Ⅱ)过A、C两点作直线,并将线段AC沿该直线向上平移,记点A、C分别平移到点D、E处.若点F在这个二次函数的图象上,且△DEF是以EF为斜边的等腰直角三角形,求点F的坐标;(Ⅲ)当p+q≥﹣2时,试确定实数p,q的值,使得当p≤x≤q时,p≤y≤q.17.(2023•泰山区一模)二次函数y=ax2+bx+2的图象交x轴于点A(﹣1,0),点B(4,0)两点,交y 轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=32时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.18.(2023•东营区一模)如图,已知二次函数的图象与x轴交于A(1,0)和B(﹣3,0)两点,与y轴交于点C(0,﹣3),直线y=﹣2x+m经过点A,且与y轴交于点D,与抛物线交于点E.(1)求抛物线的解析式;(2)如图1,点M在AE下方的抛物线上运动,求△AME的面积最大值;(3)如图2,在y轴上是否存在点P,使得以D、E、P为顶点的三角形与△AOD相似,若存在,求出点P的坐标;若不存在,试说明理由.19.(2023•铁西区模拟)如图①,已知抛物线y=mx2﹣3mx﹣4m(m<0)的图象与x轴交于A、B两点(A 在B的左侧),与y的正半轴交于点C,连结BC,二次函数的对称轴与x轴交于点E,且OC=2OE.(1)求出抛物线的解析式;(2)如图②Q(t,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,若△MCN与△BQM相似,请求出Q的坐标;(3)如图②Q(t,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,将△CMN沿CN翻折,M的对应点为M',是否存在点Q,使得M'恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.20.(2023•东胜区模拟)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣2,0),B(4,0),C(0,8)三点,点P是直线BC上方抛物线上的一个动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC的面积最大,求此时P点坐标及△PBC面积的最大值;(3)在y轴上是否存在点Q,使以O,B,Q为顶点的三角形与△AOC相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.。
专题11 存在性-等腰直角三角形(解析版)

中考数学压轴题--二次函数--存在性问题第11节等腰直角三角形的存在性方法点拨第一步:易证ΔBAD∽ΔECB,如果再加一个条件BD=BE,此时ΔBAD≌ΔECB (AAS)所以,AB=CE,AD=CB第二步:根据点坐标来表示线段长度,列等式求解。
例题演练1.如图所示,抛物线y=a(x+1)(x﹣5)(a≠0)的图象与x轴交于A、B两点,与y轴交于点C.(1)当a=﹣时,①求点A、B、C的坐标;②如果点P是抛物线上一点,点M是该抛物线对称轴上的点,当△OMP是以OM为斜边的等腰直角三角形时,求出点P的坐标;(2)点D是抛物线的顶点,连接BD、CD,当四边形OBDC是圆的内接四边形时,求a 的值.【解答】解:对于y=a(x+1)(x﹣5)(a≠0),令y=a(x+1)(x﹣5)=0,解得x =5或﹣1,令x=0,则y=﹣5a,故点A、B、C的坐标分别为(5,1)、(﹣1,0)、(0,﹣5a),当x=2时,y=a(x+1)(x﹣5)=﹣9a,顶点的坐标为(2,﹣9a).(1)①当a=﹣时,函数的表达式为y=﹣(x+1)(x﹣5),则点A、B、C的坐标分别为(5,1)、(﹣1,0)、(0,2);②过点P作y轴的平行线交过点M与x轴的平行线于点F,交x轴于点E,设点P的坐标为(x,﹣(x+1)(x﹣5)),∵∠MPO=90°,∴∠MPF+∠OPE=90°,∵∠OPE+∠POE=90°,∴∠POE=∠MPF,∵∠PFM=∠OEP=90°,PM=PO,∴△PFM≌△OEP(AAS),∴PE=MF,则﹣(x+1)(x﹣5)=x﹣2,解得x=﹣或4,故点P的坐标为(﹣,﹣)或(4,2);(2)点B、C的坐标分别为(﹣1,0)、(0,﹣5a),顶点D的坐标为(2,﹣9a).当四边形OBDC是圆的内接四边形时,则BC的中点为该圆的圆心,设BC的中点为点Q,由中点坐标公式得,点Q(,﹣a),则OQ=DQ,即()2+(﹣)2=(2﹣)2+(﹣9a+a)2,解得a=±.2.如图,已知抛物线y=ax2+4x+c与直线AB相交于点A(0,1)和点B(3,4).(1)求该抛物线的解析式;(2)设C为直线AB上方的抛物线上一点,当△ABC的面积最大时,求点C的坐标;(3)将该抛物线向左平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点D,是否存在点E使得△ADE是以AD为腰的等腰直角三角形?若存在,直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)将A、B两点代入到解析式中,得,,解得,∴抛物线的解析式为:y=﹣x2+4x+1;(2)设直线AB为:y=k1x+1,代入点B,得,3k1+1=4,解得k1=1,∴直线AB为:y=x+1,设C(m,﹣m2+4m+1),过C作CM∥y轴交AB于M,如图1,则M(m,m+1),∴CM=﹣m2+4m+1﹣m﹣1=﹣m2+3m,∴S△ABC=S△ACM+S△BCM==,∵C为直线AB上方抛物线上一点,∴0<m<3,∴时,△ABC的面积最大值为,此时C();(3)∵抛物线y=﹣(x﹣2)2+5,∴将抛物线向右平移2个单位后得到的抛物线为:y=﹣x2+5,联立,解得,∴D(1,4),①如图2,当DA=DE,∠EDA=90°,E在AD右侧时,过D作x轴平行线交y轴于N,过E作y轴平行线,两线交于F点∵∠DAN+∠NDA=∠NDA+∠EDF=90°∴∠DAN=∠EDF,又∠DNA=∠EFD=90°,DA=DE,∴△DNA≌△EFD(AAS),∴DN=EF=1,AN=DF=3,∴E(4,3),②当DA=DE,∠EDA=90°,E在AD左侧,同理可得,E(﹣2,5),③当AD=AE,∠DAE=90°,E在AD左侧时,同理可得,E(﹣3,2),④当AD=AE,∠DAE=90°,E在AD右侧时,同理可得,E(3,0),综上所述,E(4,3)或(﹣2,5)或(﹣3,2)或(3,0).3.如图,已知抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,其中A(﹣1,0),C(0,3).(1)求该抛物线的函数表达式;(2)抛物线与直线y=﹣x﹣1交于A、E两点,P是x轴上点B左侧一动点,当以P、B、C为顶点的三角形与△ABE相似时,求点P的坐标;(3)若F是直线BC上一动点,在抛物线上是否存在动点M,使△MBF为等腰直角三角形,若存在,请直接写出点M的坐标;否则说明理由.【解答】解:(1)把A(﹣1,0),C(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数表达式为y=﹣x2+2x+3;(2)联立直线AE和抛物线的函数关系式成方程组,得:,解得:,,∴点E的坐标为(4,﹣5),∴AE==5,在y=﹣x2+2x+3中,令y=0,得:﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴点B的坐标为(3,0),∵C(0,3),∴OB=OC=3,∵∠BOC=90°,∴∠CBO=45°,BC=3,∵直线AE的函数表达式为y=﹣x﹣1,∴∠BAE=45°=∠CBO.设点P的坐标为(m,0),则PB=3﹣m,∵以P、B、C为顶点的三角形与△ABE相似,∴=或=,∴=或=,解得:m=或m=﹣,∴点P的坐标为(,0)或(﹣,0);(3)∵∠CBO=45°,∴存在两种情况(如图2).①取点M1与点A重合,过点M1作M1F1∥y轴,交直线BC于点F1,∵∠CBM1=45°,∠BM1F1=90°,∴此时△BM1F1为等腰直角三角形,∴点M1的坐标为(﹣1,0);②取点C′(0,﹣3),连接BC′,延长BC′交抛物线于点M2,过点M2作M2F2∥y 轴,交直线BC于点F2,∵点C、C′关于x轴对称,∠OBC=45°,∴∠CBC′=90°,BC=BC′,∴△CBC′为等腰直角三角形,∵M2F2∥y轴,∴△M2BF2为等腰直角三角形.∵点B(3,0),点C′(0,﹣3),∴直线BC′的函数关系式为y=x﹣3,联立直线BC′和抛物线的函数关系式成方程组,得:,解得:,,∴点M2的坐标为(﹣2,﹣5),综上所述:点M的坐标为(﹣1,0)或(﹣2,﹣5).4.如图,抛物线y=ax2+bx﹣3(a>0)与x轴交于A、B两点,交y轴于点C,OB=3,抛物线经过点(2,5).(1)求该抛物线解析式;(2)如图1,该抛物线顶点D,连接BD、BC,点P是线段BD下方抛物线上一点,过点P作PE∥y轴,分别交线段BD、BC于点F、E,过点P作PG⊥BD于点G,求2PG+EF 的最大值,及此时点P的坐标;(3)如图2,在y轴左侧抛物线上有一动点M,在y轴上有一动点N,是否存在以AN 为直角边的等腰直角三角形AMN?若存在,请直接写出点M的坐标.【解答】解:(1)∵OB=3,∴B(﹣3,0)把C(﹣3,0)和点(2,5),代入抛物线y=ax2+bx﹣3,得,解得,∴抛物线解析式为y=x2+2x﹣3;(2)延长PE与x轴交于点M,FM⊥x轴,PG⊥BD,如图所示,∠FMB=90°,∠PGF=90°,∵∠BFM=∠PFG,∴∠MBF=∠GPF,∴B(﹣3,0),D(﹣1,﹣4),B、D两点的横坐标距离为2,纵坐标距离为4,由勾股定理得BD==2,∴cos∠MBF=cos∠GPF=,∴2PG+EF=EF+2FP,∴C(0,﹣3),设直线BC解析式为l BC:y=kx+b(b≠0),把B(﹣3,0)和C(0,﹣3)代入得,,解得,∴l BC:y=﹣x﹣3,同理,直线BD得解析式为:y=﹣2x﹣6,设E(m,﹣m﹣3),P(m,m2+2m﹣3),F(m,﹣2m﹣6),∴EF+2FP=[﹣m﹣3﹣(﹣2m﹣6)]+2[(﹣2m﹣6)﹣(m2+2m﹣3)]=﹣2(m+)2+,∴当m=﹣时,EF+2FP有最大值,∵2PG+EF=EF+2FP,∴此时,P点坐标为P(﹣,﹣);(3)存在,设N(0,y1),M(x2,+2x2﹣3),当y=0时,代入抛物线y=x2+2x+3中,解得两根为﹣3和1,A在y轴右侧,∴A(1,0),∴AN2=OA2+ON2=1+y12,AM2=(x2﹣1)2+(+2x2﹣3)2,MN2=+(+2x2﹣3﹣y1)2,①当AN⊥MN时,此时由AN=MN,等腰直角三角形各边比为1:1:,∴M点横坐标为﹣﹣1或﹣3﹣1,将M的横坐标为﹣﹣1或﹣3﹣1,代入y=x2+2x﹣3中得,∴M点坐标为(﹣﹣1,﹣2)或(﹣3﹣1,14),②由AN⊥MA得:M点横坐标为﹣2﹣2或﹣2﹣2,将M点横坐标为﹣2﹣2或﹣2﹣2代入y=x2+2x+3中,得M点坐标为(﹣2﹣2,17+8﹣4﹣4)或(﹣2﹣2,33+8﹣4﹣4),综上所述,M点坐标为(﹣﹣1,﹣2)或(﹣3﹣1,14),(﹣2﹣2,17+8﹣4﹣4)或(﹣2﹣2,33+8﹣4﹣4),5.如图,抛物线C1:y=x2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到物度C2,C2交x轴于A、B两点(点A在点B的左边),交y轴于点C.(1)求抛物线C1的解析式及顶点坐标;(2)以AC为斜边向上作等腰直角三角形ACD,当点D落在抛物线C2的对称轴上时,求抛物线C2的解析式及D点坐标.【解答】解:(1)∵抛物线C1经过原点,与x轴的另一个交点为(2,0),∴,解得,∴抛物线C1的解析式为y=x2﹣2x,∴抛物线C1的顶点坐标(1,﹣1).(2)如图,∵抛物线C1的向右平衡m(m>0)个单位得到抛物线C2,∴C2的解析式为y=(x﹣m﹣1)2﹣1,∴A(m,0),B(m+2,0),C(0,m2+2m),过点C作CH⊥对称轴DE,垂足为H,∵△ACD为等腰直角三角形,∴AD=CD,∠ADC=90°,∴∠CDH+∠ADE=90°,∴△HCD=△ADE,∵∠DEA=90°,∴△CHD≌△DEA,∴AE=HD=1,CH=DE=m+1,∴EH=HD+DE=1+m+1=m+2,由OC=EH得m2+2m=m+2,解得m1=1,m2=﹣2(舍去),∴抛物线C2的解析式为:y=(x﹣2)2﹣1,∴D点坐标(2,2).6.已知:如图,抛物线y=ax2+bx+6与x轴交于点B(6,0),C(﹣2,0),与y轴交于点A,点P是线段AB上方抛物线上的一个动点.(1)如图,连接P A、PB.设△P AB的面积为S,点P的横坐标为m.请说明当点P运动到什么位置时,△P AB的面积有最大值?(2)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+6与x轴交于点B(6,0),C(﹣2,0),∴可设抛物线的表达式为:y=a(x+2)(x﹣6),∴﹣12a=6,解得a=﹣,∴抛物线的表达式为:y=﹣x2+2x+6,∴A(0,6)∴直线AB的表达式为:y=﹣x+6,点P的横坐标为m,则P(m,﹣m2+2m+6),过点P作x轴的垂线,交线段AB于点D,则D(m,﹣m+6),∴S=×OB×PD=×6×(﹣m2+2m+6+m﹣6)==﹣(m﹣3)2+,∴当m=3时,S的值取最大,此时P(3,);(2)存在,理由如下:由题意可知,PD⊥PE,若△PDE是等腰直角三角形,则PE=PD,由(1)可得,PD=﹣m2+2m+6+m﹣6=﹣m2+3m,∵PE∥x轴,∴E(4﹣m,﹣m2+2m+6),∴PE=|2m﹣4|,∴|2m﹣4|=﹣m2+3m,解得m1=﹣2(舍),m2=4,m3=5+(舍),m4=5﹣,∴当△PDE是等腰直角三角形时,点P的坐标为(4,6),(5﹣,3﹣5).7.如图1.二次函数y=﹣x2+6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求出点A,B,C的坐标;(2)连接AC,求直线AC的表达式;(3)如图2,点D为线段AC上的一个动点,连接BD,以点D为直角顶点,BD为直角边,在x轴的上方作等腰直角三角形BDE,若点E在y轴上时,求点D的坐标;(4)若点D在线段AC上,点D由A到C运动的过程中,以点D为直角顶点,BD为直角边作等腰直角三角形BDE,当抛物线的顶点C在等腰直角三角形BDE的边上(包括三角形的顶点)时,请直接写出顶点E的坐标.【解答】解:(1)当x=0时,y=6.∴C点坐标为(0,6).当y=0时,.解得x1=﹣4,x2=4.∵A点在B点左侧,∴点A坐标为(﹣4,0),点B坐标为(4,0).(2)设直线AC的表达式为:y=kx+b.∵点A坐标为(﹣4,0),点C坐标为(6,0).∴.解得.∴直线AC的表达式为.(3)如答图1,过点D分别作DF⊥x轴于点F,DG⊥y轴于G. ∴四边形DGOF为矩形,∠FDG=90°.∵△BDE为等腰直角三角形,BD为直角边.∴BD=ED,∠EDB=90°.∴∠EDB﹣∠GDB=∠FDG﹣∠GDB.即∠EDG=∠BDF.在△BDF和△EDG中,.∴△BDF≌△EDG(AAS).∴DF=DG.设点D的坐标为(m,).∴.解得m=,∴点D的坐标为().(4)由(2)可得直线AC的表达式为.∵点D在直线AC上,∴设点D坐标为().设直线BC的解析式为:y=kx+b.将B(4,0),C(0,6)代入得.解得.∴直线BC的解析式为.①当C位于斜边BE上时,∵点E在直线BC上,∴设点E坐标为(b,).如答图2所示.作EM⊥x轴于点M,DQ⊥x轴于点Q,DN⊥EM于点N.易知四边形DQMN为矩形.∴∠QDN=90°.∵△BDE为等腰直角三角形,BD为直角边.∴BD=ED,∠EDB=90°.∴∠EDB﹣∠NDB=∠QDN﹣∠NDB.即∠EDN=∠BDQ.在△BDQ和△EDN中,.∴△BDQ≌△EDN(AAS).∴DN=DQ,EN=BQ.∵E坐标为(b,),D坐标为().∴DN=b﹣a,EN=.DQ=,BQ=4﹣a.∴.解得.∴=.∴点E的坐标是().②当点D在直角边DE上时,BD交y轴于点F,如答图3所示.∵∠CDF=∠BOF=90°,∠CFD=∠BFO.∴∠DCF=∠OBF.∴tan∠DCF=tan∠OBF.即.亦即.∴OF=.∴点F坐标为(0,).设直线BF解析式为y=kx+b.将B(4,0),F(0,)代入得.解得.∴直线BF解析式为y=.∵B、F、D三点共线,亦即直线BD解析式为y=.联立直线AC解析式得解得.故点D坐标为().∵BD⊥AC,BD=DE,∴BD2=DE2.∴.解得b=.∴=.∴点E的坐标为().③当点D与点C重合时,即点C为直角顶点时.如答图4所示.作EG⊥y轴于点G.∵∠BCE=90°.∴∠ECG+∠BCO=90°.又∵∠ECG+∠GEC=90°∴∠BCO=∠GEC.在△GEC和△OCB中,.∴△GEC≌△OCB(AAS).∴GE=OC=6,GC=OB=4.∴点E的坐标为(6,10).由图知点E关于点C对称的点E'亦满足题意.则由中点坐标公式可得点E'的横坐标为2×0﹣6=﹣6,纵坐标为2×6﹣10=2.故点E'坐标为(﹣6,2).综上所述,点E的坐标为()或()或(6,10)或(﹣6,2).8.如图,抛物线y=ax2+bx+5交x轴于A(﹣1,0)、B(5,0)两点,交y轴于点C.(1)求抛物线的解析式;(2)点P是对称轴上一点,当P A+PC达到最小值时,求点P的坐标;(3)M、N为线段BC上两点(N在M的右侧,且M、N不与B、C重合),MN=2,在第一象限的抛物线上是否存在这样的点R,使△MNR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+5交x轴于A(﹣1,0),B(5,0),∴,解得:,∴抛物线的解析式为:y=﹣x2+4x+5;(2)当x=0时,y=5,∴C(0,5),∵A与B关于抛物线的对称轴对称,∴直线BC与对称轴的交点就是点P,此时P A+PC达到最小值,∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线对称轴为直线x=2,设直线BC的解析式为:y=kx+b(k≠0),∵点B坐标为(5,0),则,解得:,∴直线BC的解析式为y=﹣x+5,与对称轴的交点为(2,3),∴点P的坐标(2,3);(3)分三种情况:①以点M为直角顶点,如图1,∵MN=2,∴RN=MN=4,∵C(0,5),B(5,0),∴OC=OB=5,∴∠OCB=∠OBC=45°,∵∠RNM=45°=∠BCO,∴RN∥OC,由(2)知:直线BC的解析式为y=﹣x+5,设R(m,﹣m2+4m+5),则N(m,﹣m+5),则RN=(﹣m2+4m+5)﹣(﹣m+5)=4,解得m1=4,m2=1,∵点N在点M右侧,∴m=4,∴R(4,5);②以点R为直角顶点,如图2,∵MN=2,∴RN=MN=2,设R(m,﹣m2+4m+5),则Q(m,﹣m+5),∴RN=(﹣m2+4m+5)﹣(﹣m+5)=2,解得m1=,m2=,∵点N在点M右侧,∴m=,∴R(,);③以点N为直角顶点,如图3,∵MN=2,∴RM=MN=4,∵∠RMN=∠OBC=45°,∴MR∥OB,设R(m,﹣m2+4m+5),则M(m﹣4,﹣m2+4m+5),把M(m﹣4,﹣m2+4m+5)代入y=﹣x+5,得﹣(m﹣4)+5=﹣m2+4m+5,解得m1=4,m2=1,此时点M(0,5),因为点M在线段BC上运动,且不与B、C重合,所以不存在以N为直角顶点的情况;综上所述:当R(4,5)或(,)时,△MNR为等腰直角三角形.9.抛物线y=ax2﹣6ax+4(a≠0)交y轴正半轴于点C,交x轴负半轴于点A,交x轴正半轴于点B,且AB=10.(1)如图(1),求抛物线的解析式;(2)如图(2),连接BC,点P为第一象限抛物线上一点,设点P横坐标为t,△PBC 的面积为S,求S与t之间的函数关系式(不用写出自变量t的取值范围);(3)如图(3),在(2)的条件下,连接P A交y轴于点D,过点P作x轴的垂线,交x轴于点E,交BC于点F,连接DF,当∠APE+∠CFD=90°时,在抛物线上是否存在点Q,使得点Q、PE的中点N、点C、是构成以CN为斜边的等腰直角三角形?若存在,请求出点Q的坐标,若不存在,请说明理由.【解答】解:(1)如图1中,设A(m,0),B(n,0),由题意:,解得,∴A(﹣2,0),B(8,0),把A(﹣2,0)代入y=ax2﹣6ax+4,得到a=﹣,∴抛物线的解析式为y=﹣x2+x+4.(2)如图2中,连接OP.设P(t,﹣t2+t+4),∵B(8,0),C(0,4),∴OB=8,OC=4,∴S=S△POC+S△POB﹣S△OBC=×4×t+×8×(﹣t2+t+4)﹣×4×8=﹣t2+8t(0<t<8).(3)存在.理由:如图3中,设P(t,﹣t2+t+4),∵A(﹣2,0),B(8,0),C(0,4),∴直线P A的解析式为y=﹣(t﹣8)x﹣t+4,直线BC的解析式为y=﹣x+4,∵PE⊥x轴,∴F(t,﹣t+4),∵D(0,﹣t+4),∴FD∥AB,∴∠CFD=∠CBA,∵∠APF+∠CFD=90°,∠APF+∠P AE=90°,∴∠P AB=∠CFD=∠CBO,∴tan∠CBO=tan∠P AB==,∴=,∵OA=2,∴OD=1,∴﹣t+4=1,∴t=6,∴P(6,4),E(6,0),∵PN=NE,∴N(6,2),∵C(0,4),△CNQ是等腰直角三角形,CN是斜边,当点Q在CN的上方时,如图3,过点Q作x轴的平行线交y轴于点G,交EP的延长线于点H,设点Q(s,k),易证△QGC≌△NHQ(AAS),则GC=QH,GQ=HN,即s=k﹣2,k﹣4=6﹣s,解得,∴点Q的坐标为(4,6),∵当x=4时,y=﹣×42+×4+4=6,∴点Q在抛物线y=﹣x2+x+4上,∴满足条件的点Q的坐标为(4,6).10.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标和△ABC的面积.(3)点P是抛物线对称轴上一点,且使得P A﹣PC最大,求点P的坐标.(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【解答】解:(1)∵抛物线y=ax2+bx过A(4,0),B(1,3)两点,∴,解得,∴抛物线的解析式为y=﹣x2+4x.(2)如图1中,∵y=﹣x2+4x=﹣(x﹣2)2+4,∴对称轴x=2,∵B,C关于对称轴对称,B(1,3),∴C(3,3),∴S△ABC=×2×3=3.(3)如图1中,∵A(4,0),C(3,3),∴直线AC的解析式为y=﹣3x+12,∵P A﹣PC≤AC,∴当点P在直线AC上时,P A﹣PC的值最大,此时P(2,6).(4)如图4﹣1中,如图,当∠CNM=90°,NC=NM时,可知N(4,0),M(1,﹣1),CN=NM=,∴S△MNC=×CN×MN=5.如图4﹣2中,当∠CMN=90°,MN=MC时,M(1,﹣2),N(﹣4,0),可知MN =MC==,∴S△MNC=.如图4﹣3中,当∠CMN=90°,MC=MN时,可知M(1,2),N(2,0),MN=CM ==,∴S△MNC=××=,如图4﹣4中,当∠CNM=90°,CN=MN时,N(﹣2,0),M(1,﹣5),可得S△MNC =17.综上所述,满足条件的△MNC的面积为5或或或17.。
中考数学复习---二次函数中三角形存在性问题压轴题练习(含答案解析)

中考数学复习---二次函数中三角形存在性问题压轴题练习(含答案解析)一.相似三角形的存在性1.(2022•陕西)已知抛物线y=ax2+bx﹣4经过点A(﹣2,0),B(4,0),与y 轴的交点为C.(1)求该抛物线的函数表达式;(2)若点P是该抛物线上一点,且位于其对称轴l的右侧,过点P分别作l,x 轴的垂线,垂足分别为M,N,连接MN.若△PMN和△OBC相似,求点P的坐标.【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+bx﹣4得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)如图:∵y=x2﹣x﹣4=(x﹣1)2﹣,∴抛物线y=x2﹣x﹣4的对称轴是直线x=1,在y=x2﹣x﹣4中,令x=0得y=﹣4,∴C(0,﹣4),∴OB=OC=4,∴△BOC是等腰直角三角形,∵△PMN和△OBC相似,∴△PMN是等腰直角三角形,∵PM⊥直线x=1,PN⊥x轴,∴∠MPN=90°,PM=PN,设P(m,m2﹣m﹣4),∴|m﹣1|=|m2﹣m﹣4|,∴m﹣1=m2﹣m﹣4或m﹣1=﹣m2+m+4,解得m=+2或m=﹣+2或m=或m=﹣,∵点P是该抛物线上一点,且位于其对称轴直线x=1的右侧,∴P的坐标为(+2,+1)或(,1﹣).2.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【解答】解:(1)∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(﹣1,0),∴B(3,0),∴设抛物线的解析式为:y=a(x+1)(x﹣3),将C(0,3)代入抛物线的解析式,则﹣3a=3,解得a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)存在,P(0,﹣1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,由(1)知,OB=OC=3,∴∠OCB=∠OBC=45°,∴∠APC=∠ABC=45°,∴△AOP是等腰直角三角形,∴OP=OA=1,∴P(0,﹣1).(3)存在,理由如下:由(1)知抛物线的解析式为:y=﹣x2+2x+3,∴D(1,4),由抛物线的对称性可知,E(2,3),∵A(﹣1,0),∴AD=2,DE=,AE=3.∴AD2=DE2+AE2,∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.∵点M在直线l下方的抛物线上,∴设M(t,﹣t2+2t+3),则t>2或t<0.∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,解得t=2(舍)或t=3或﹣3或(舍)或﹣,∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).3.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y 轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.【解答】解:(1)∵抛物线y=﹣x2+c与y轴交于点P(0,4),∴c=4,∴抛物线的解析式为y=﹣x2+4;(2)△BCQ是直角三角形.理由如下:将抛物线y=﹣x2+4向左平移1个单位长度,得新抛物线y=﹣(x+1)2+4,∴平移后的抛物线顶点为Q(﹣1,4),令x=0,得y=﹣1+4=3,∴C(0,3),令y=0,得﹣(x+1)2+4=0,解得:x1=1,x2=﹣3,∴B(﹣3,0),A(1,0),如图1,连接BQ,CQ,PQ,∵P(0,4),Q(﹣1,4),∴PQ⊥y轴,PQ=1,∵CP=4﹣3=1,∴PQ=CP,∠CPQ=90°,∴△CPQ是等腰直角三角形,∴∠PCQ=45°,∵OB=OC=3,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠BCO=45°,∴∠BCQ=180°﹣45°﹣45°=90°,∴△BCQ是直角三角形.(3)在x轴上存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似.∵△ABC是锐角三角形,∠ABC=45°,∴以B、N、T三点为顶点的三角形与△ABC相似,必须∠NBT=∠ABC=45°,即点T在y轴的右侧,设T(x,0),且x>0,则BT=x+3,∵B(﹣3,0),A(1,0),C(0,3),∴∠ABC=45°,AB=4,BC=3,设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x+3,由,解得:,,∴M(﹣,),N(,),∴BN=×=,①当△NBT∽△CBA时,则=,∴=,解得:x=,∴T(,0);②当△NBT∽△ABC时,则=,∴=,解得:x=,∴T(,0);综上所述,点T的坐标T(,0)或(,0).(4)抛物线y=﹣x2+4的顶点为P(0,4),∵直线BC的解析式为y=x+3,∴直线BC与y轴的夹角为45°,当抛物线沿着垂直直线BC的方向平移到只有1个公共点时,平移距离最小,此时向右和向下平移距离相等,设平移后的抛物线的顶点为P′(t,4﹣t),则平移后的抛物线为y=﹣(x﹣t)2+4﹣t,由﹣(x﹣t)2+4﹣t=x+3,整理得:x2+(1﹣2t)x+t2+t﹣1=0,∵平移后的抛物线与直线BC最多只有一个公共点,∴Δ=(1﹣2t)2﹣4(t2+t﹣1)=0,解得:t=,∴平移后的抛物线的顶点为P′(,),平移的最短距离为.二.直角三角形的存在性4.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△P AB为直角三角形,请求出点P 的坐标.【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D (t ,t 2+t ﹣4),连接OD .令y =0,则x 2+x ﹣4=0,解得x =﹣4或2,∴A (﹣4,0),C (2,0),∵B (0,﹣4),∴OA =OB =4,∵S △ABD =S △AOD +S △OBD ﹣S △AOB =×4×(﹣﹣t +4)+×4×(﹣t )﹣×4×4=﹣t 2﹣4t =﹣(t +2)2+4,∵﹣1<0,∴t =﹣2时,△ABD 的面积最大,最大值为4,此时D (﹣2,﹣4); (3)如图2中,设抛物线的对称轴交x 轴于点N ,过点B 作BM ⊥抛物线的对称轴于点M .则N (﹣1.0).M (﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).5.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC 于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【解答】解:(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,∴,解得,∴y=﹣x2﹣3x+4;(2)过点D作DG⊥AB交于G,交AC于点H,设直线AC的解析式为y=kx+b,∴,解得,∴y=x+4,设D(n,﹣n2﹣3n+4),H(n,n+4),∴DH=﹣n2﹣4n,∵DH∥OC,∴==,∵OC=4,∴DH=3,∴﹣n2﹣4n=3,解得n=﹣1或n=﹣3,∴D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=90°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,∵∠DOF=45°,∴DF=DO,∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,∴∠NDO=∠MFD,∴△MDF≌△NOD(AAS),∴DM=ON,MF=DN,∴DN+ON=﹣t,DN=ON+(﹣t﹣4),∴DN=﹣t﹣2,ON=2,∴D点纵坐标为2,∴﹣x2﹣3x+4=2,解得x=或x=,∴D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,∴∠LFO=∠KDF,∵DF=FO,∴△KDF≌△LFO(AAS),∴KD=FL,KF=LO,∴KL=t+4﹣t=4,∴D点纵坐标为4,∴﹣x2﹣3x+4=4,解得x=0或x=﹣3,∴D(0,4)或(﹣3,4);综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).三.等腰三角形的存在性6.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O 为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.【解答】(1)解:设抛物线的表达式为y=ax2+bx+c,把A(﹣1,0)、B(0,3)、C(3,0)代入得:,解得,∴抛物线的表达式为:y=﹣x2+2x+3;(2)证明:∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;(3)解:∵抛物线交正方形OBDC的边BD于点E,∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,∴E(2,3),①如图,当M在线段BD的延长线上时,∠BDF为锐角,∴∠FDM为钝角,∵△MDF为等腰三角形,∴DF=DM,∴∠M=∠DFM,∴∠BDF=∠M+∠DFM=2∠M,∵BM∥OC,∴∠M=∠MOC,由(2)得∠BOF=∠BDF,∴∠BDF+∠MOC=3∠M=90°,∴∠M=30°,在Rt△BOM中,BM=,∴ME=BM﹣BE=3﹣2;②如图,当M在线段BD上时,∠DMF为钝角,∵△MDF为等腰三角形,∴MF=DM,∴∠BDF=∠MFD,∴∠BMO=∠BDF+∠MFD=2∠BDF,由(2)得∠BOF=∠BDF,∴∠BMO=2∠BOM,∴∠BOM+∠BMO=3∠BOM=90°,∴∠BOM=30°,在Rt△BOM中,BM=,∴ME=BE﹣BM=2﹣,综上所述,ME的值为:3﹣2或2﹣.7.(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P 运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.【解答】解:(1)在y=﹣x2+x+4中,令x=0得y=4,令y=0得x=8或x=﹣2,∴A(﹣2,0),B(8,0),C(0,4),设直线BC解析式为y=kx+4,将B(8,0)代入得:8k+4=0,解得k=﹣,∴直线BC解析式为y=﹣x+4;(2)过C作CG⊥PD于G,如图:设P(m,﹣m2+m+4),∴PD=﹣m2+m+4,∵∠COD=∠PDO=∠CGD=90°,∴四边形CODG是矩形,∴DG=OC=4,CG=OD=m,∴PG=PD﹣DG=﹣m2+m+4﹣4=﹣m2+m,∵CP=CE,CG⊥PD,∴GE=PG=﹣m2+m,∵∠GCE=∠OBC,∠CGE=90°=∠BOC,∴△CGE∽△BOC,∴=,即=,解得m=0(舍去)或m=4,∴P(4,6);(3)存在点P,使得CE=FD,理由如下:过C作CH⊥PD于H,如图:设P(m,﹣m2+m+4),由A(﹣2,0),C(0,4)可得直线AC解析式为y=2x+4,根据PF∥AC,设直线PF解析式为y=2x+b,将P(m,﹣m2+m+4)代入得:﹣m2+m+4=2m+b,∴b=﹣m2﹣m+4,∴直线PF解析式为y=2x﹣m2﹣m+4,令x=0得y=﹣m2﹣m+4,∴F(0,﹣m2﹣m+4),∴OF=|﹣m2﹣m+4|,同(2)可得四边形CODH是矩形,∴CH=OD,∵CE=FD,∴Rt△CHE≌Rt△DOF(HL),∴∠HCE=∠FDO,∵∠HCE=∠CBO,∴∠FDO=∠CBO,∴tan∠FDO=tan∠CBO,∴=,即=,∴﹣m2﹣m+4=m或﹣m2﹣m+4=﹣m,解得m=2﹣2或m=﹣2﹣2或m=4或m=﹣4,∵P在第一象限,∴m=2﹣2或m=4.8.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3;(2)连接CB交对称轴于点Q,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∵A、B关于对称轴x=1对称,∴AQ=BQ,∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,当C、B、Q三点共线时,△ACQ的周长最小,∵C(0,﹣3),B(3,0),设直线BC的解析式为y=kx+b,∴,解得,∴y=x﹣3,∴Q(1,﹣2);(3)当∠BPM=90°时,PM=PB,∴M点与A点重合,∴M(﹣1,0);当∠PBM=90°时,PB=BM,如图1,当P点在M点上方时,过点B作x轴的垂线GH,过点P作PH⊥GH 交于H,过点M作MG⊥HG交于G,∵∠PBM=90°,∴∠PBH+∠MBG=90°,∵∠PBH+∠BPH=90°,∴∠MBG=∠BPH,∵BP=BM,∴△BPH≌△MBG(AAS),∴BH=MG,PH=BG=2,设P(1,t),则M(3﹣t,﹣2),∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴M(1﹣,﹣2)或(1+,﹣2),∵M点在对称轴的左侧,∴M点坐标为(1﹣,﹣2);如图2,当P点在M点下方时,同理可得M(3+t,2),∴2=(3+t)2﹣2(3+t)﹣3,解得t=﹣2+(舍)或t=﹣2﹣,∴M(1﹣,2);综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).9.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE 内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,∴S△OPE =S△OPG+S△EPG=PG•AE=×3×(﹣m2+5m﹣3)=﹣(m2﹣5m+3)=﹣(m﹣)2+,∵﹣<0,∴当m=时,△OPE面积最大,此时,P点坐标为(,﹣);(3)由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).设直线x=2交OE于点M,交AE于点N,则E(3,3),∵直线OE的解析式为:y=x,∴M(2,2),∵点F在△OAE内(包括△OAE的边界),∴2≤﹣1+h≤3,解得3≤h≤4;(4)设P(m,m2﹣4m+3),分四种情况:①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y轴于M,交l于N,∴∠OMP=∠PNF=90°,∵△OPF是等腰直角三角形,∴OP=PF,∠OPF=90°,∴∠OPM+∠NPF=∠PFN+∠NPF=90°,∴∠OPM=∠PFN,∴△OMP≌△PNF(AAS),∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,同理得:2﹣m=m2﹣4m+3,解得:m1=(舍)或m2=,∴P的坐标为(,);③当P在对称轴的右边,且在x轴下方时,如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:m1=或m2=(舍);P的坐标为(,);④当P在对称轴的右边,且在x轴上方时,如图,同理得m2﹣4m+3=m﹣2,解得:m=或(舍),P的坐标为:(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).方法二:作直线DE:y=x﹣2,E(1,﹣1)是D点(2,0)绕O点顺时针旋转45°并且OD缩小倍得到,易知直线DE即为对称轴上的点绕O点顺时针旋转45°,且到O点距离缩小倍的轨迹,联立直线DE和抛物线解析式得x2﹣4x+3=x﹣2,解得x1=,x2=,同理可得x3=或x4=;综上所述,点P的坐标是:(,)或(,)或(,)或(,).10.(2023•澄城县一模)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B,与y轴交于点C(0,3),直线l是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在对称轴l上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)把点A(﹣1,0)、点C(0,3)分别代入y=﹣x2+bx+c,得.解得.故该抛物线解析式为:y=﹣x2+2x+3;(2)由(1)知,该抛物线解析式为:y=﹣x2+2x+3.则该抛物线的对称轴为直线x=﹣=1.故设M(1,m).∵A(﹣1,0)、点C(0,3),∴AC2=10,AM2=4+m2,CM2=1+(m﹣3)2.①若AC=AM时,10=4+m2,解得m=±.∴点M的坐标为(1,)或(1,﹣);②若AC=CM时,10=1+(m﹣3)2,解得m=0或m=6,∴点M的坐标为(1,0)或(1,6).当点M的坐标为(1,6)时,点A、C、M共线,∴点M的坐标为(1,0);③当AM=CM时,4+m2=1+(m﹣3)2,解得m=1,∴点M的坐标为(1,1).综上所述,符合条件的点M的坐标为(1,)或(1,﹣)或(1,0)或(1,1).11.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.【解答】解:(1)将点(﹣1,0),B(4,0)代入y=ax2+bx+2,∴a=﹣,b=,∴y=﹣x2+x+2;(2)∵BM=5﹣2t,∴M(2t﹣1,0),设P(2t﹣1,m),∵PC2=(2t﹣1)2+(m﹣2)2,PB2=(2t﹣5)2+m2,∵PB=PC,∴(2t﹣1)2+(m﹣2)2=(2t﹣5)2+m2,∴m=4t﹣5,∴P(2t﹣1,4t﹣5),∵PC⊥PB,∴×=﹣1,∴t=1或t=2,∴M(1,0)或M(3,0),∴D(1,3)或D(3,2).12.(2023•东洲区模拟)抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,与y轴正半轴交于点C.(1)求此抛物线解析式;(2)如图①,连接BC,点P为抛物线第一象限上一点,设点P的横坐标为m,△PBC的面积为S,求S与m的函数关系式,并求S最大时P点坐标;(3)如图②,连接AC,在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,请直接写出符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)点P作PF⊥x轴于点F,交BC于点E,设BC直线解析式为:y=kx+b,∵B(3,0),C(0,3),∴,解得,∴y=﹣x+3,由题意可知P(m,﹣m2+2m+3),E(m,﹣m+3),S=S△PBE+S△PCE,S=PE•OB=(﹣m2+2m+3+m﹣3)×3,,∵,∴当时,S有最大值,此时P点坐标为;(3)存在,M1(1,0),,,M4(1,1),①当AC=AM时,如图,设对称轴l与AB交于点E,则,∵AM2=AE2+EM2,∴,解得:,∴M点的坐标为或,②当AC=MC时,则OC为AM的垂直平分线.因此M与E重合,因此,M点的坐标为(1,0),③当AM=CM时,如图,设M点的坐标为(1,n),则AM2=22+n2=4+n2,CM2=12+(3﹣n)2,∴4+n2=12+(3﹣n)2,解得:n=1,∴M点的坐标为(1,1),综上可知,潢足条件的M点共四个,其坐标为M1(1,0),,,M4(1,1).13.(2023•三亚一模)如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,8),顶点为D,连接AC,CD,DB,直线BC 与抛物线的对称轴l交于点E.(1)求抛物线的解析式和直线BC的解析式;(2)求四边形ABDC的面积;(3)P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC =S△ABC时,求点P的坐标;(4)在抛物线的对称轴l上是否存在点M,使得△BEM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+3x+c(a≠0)过点A(﹣2,0)和C(0,8),∴,解得,∴抛物线的解析式为y=﹣x2+3x+8.令y=0,得.解得x1=﹣2,x2=8.∴点B的坐标为(8,0).设直线BC的解析式为y=kx+b.把点B(8,0),C(0,8)分别代入y=kx+b,得,解得,∴直线BC的解析式为y=﹣x+8.(2)如图1,设抛物线的对称轴l与x轴交于点H.∵抛物线的解析式为,∴顶点D的坐标为.∴S四边形ABDC =S△AOC+S梯形OCDH+S△BDH===70.(3)∵.∴.如图2,过点P作PG⊥x轴,交x轴于点G,交BC于点F.设点.∵点F在直线BC上,∴F(t,﹣t+8).∴.∴.∴.解得t1=2,t2=6.∴点P的坐标为(2,12)或P(6,8).(4)存在.∵△BEM为等腰三角形,∴BM=EM或BE=BM或BE=EM,设M(3,m),∵B(8,0),E(3,5),∴BE==5,EM=|m﹣5|,BM==,当BM=EM时,=|m﹣5|,∴m2+25=(m﹣5)2,解得:m=0,∴M(3,0);当BE=BM时,5=,∴m2+25=50,解得:m=﹣5或m=5(舍去),∴M(3,﹣5);当BE=EM时,5=|m﹣5|,解得:m=5+5或m=5﹣5,∴M(3,5+5)或(3,5﹣5),综上所述,点M的坐标为(3,0)或(3,﹣5)或(3,5+5)或(3,5﹣5).14.(2023•南海区一模)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a >0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC 于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣1,0),B(3,0)代入函数y=ax2+bx﹣3(a>0)中,得,解得,∴解析式为y=x2﹣2x﹣3,故抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=3,∴C(0,﹣3),∵B(3,0),∴∠OCB=∠OBC=45°,∵PN∥y轴,∴∠MNP=45°,∵PM⊥BC,∴PM=PN,则当PN最大时,PM也最大,设BC的解析式为y=mx+n,∴,解得,∴BC解析式为y=x﹣3,设P(x,x2﹣2x﹣3),N(x,x﹣3),∴PN=x﹣3﹣(x2﹣2x﹣3)=﹣(x﹣)2+,当x=时,PN最大,则PM=PN=×=,∴P(,),故PM最大值为,P点坐标为(,﹣);(3)存在,点E的坐标为(﹣5,0),(,0),(0,0),(,0).∵CEQ是以CQ为斜边的等腰直角三角形,∴设Q(x,x2﹣2x﹣3),①如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,∵∠CEQ=90°,∴∠QEM+∠CEN=90°,∵∠QEM+∠MQE=90°,∴∠EQM=∠CEN,∵∠CNE=∠QME=90°,EC=EQ,∴△EMQ≌△CNE(AAS),∴CN=EM=x2﹣2x﹣3,MQ=EN=3,∴|x Q|+MQ=CN,﹣x+3=x2﹣2x﹣3,解得x=﹣2,x=3(舍去),∴OE=CM=2+3=5,E(﹣5,0),②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴﹣x+x2﹣2x﹣3=3,解得x=,x=(舍去),∴OE=CM=,E(,0),③如图,点E和点O重合,点Q和点B重合,此时E(0,0),④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴x+3=x2﹣2x﹣3,解得x=,x=(舍去),∴OE=CM=,E(,0),综上所述,点E的坐标为(﹣5,0),(,0),(0,0),(,0)41。
中考压轴题等腰三角形存在性问题 -

中考压轴题等腰三角形存在性问题数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射.动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等.本专题原创编写面动形成的等腰三角形存在性问题模拟题.在中考压轴题中,面动形成的等腰三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类.原创模拟预测题1.如图,抛物线223y x x=-++与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.【答案】(122)或(122).【分析】当△PCD是以CD为底的等腰三角形时,则P点在线段CD的垂直平分线上,由C、D坐标可求得线段CD中点的坐标,从而可知P点的纵坐标,代入抛物线解析式可求得P 点坐标.【解析】∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作PE⊥y轴于点E,则E为线段CD的中点,∵抛物线223y x x=-++与y轴交于点C,∴C(0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在223y x x=-++中,令y=2,可得2232x x-++=,解得x=12±,∴P点坐标为(122)或(12,2),故答案为:(122)或(12,2).考点:二次函数图象上点的坐标特征;等腰三角形的判定;动点型.原创模拟预测题2.如图,在边长为2的正方形ABCD 中,G 是AD 延长线时的一点,且DG=AD ,动点M 从A 点出发,以每秒1个单位的速度沿着A→C→G 的路线向G 点匀速运动(M 不与A ,G 重合),设运动时间为t 秒,连接BM 并延长AG 于N .(1)是否存在点M ,使△ABM 为等腰三角形?若存在,分析点M 的位置;若不存在,请说明理由;(2)当点N 在AD 边上时,若BN ⊥HN ,NH 交∠CDG 的平分线于H ,求证:BN=HN ;(3)过点M 分别作AB ,AD 的垂线,垂足分别为E ,F ,矩形AEMF 与△ACG 重叠部分的面积为S ,求S 的最大值.【答案】(1)答案见试题解析;(2)证明见试题解析;(3)当t=238秒时,S 的最大值为38.(2)证明:在AB 上取点K ,使AK=AN ,连接KN .∵AB=AD ,BK=AB-AK ,ND=AD-AN ,∴BK=DN ,又DH 平分直角∠CDG ,∴∠CDH=45º,∴∠NDH=90º+45º=135º,∴∠BKN=180-∠AKN=135º,∴∠BKN=∠NDH ,∵在Rt △ABN 中,∠ABN+∠ANB=90º,又BN ⊥NH ,即∠BNH=90º,∴∠ANB+∠DNH=180º-∠BNH=180º-90º=90º,∴∠ABN=∠DNH .∴△BNK ≌△NHD (ASA ),∴BN=NH ;(3)①当点M 在AC 上时,即0<t≤22时,易知:△AMF 为等腰直角三角形.∵AM=t ,∴AF=FM=t22,∴S=24122222121tttFMAF=⋅⋅=⋅;当点M在CG上时,即22<t<24时,CM=t-22,MG=24-t.∵AD=DG,∠ADC=∠CDG,CD=CD,∴△ACD≌△GCD(SAS),∴∠ACD=∠GCD=45º,∴∠ACM=∠ACD+∠GCD=90º,∴∠G=90-∠GCD=90º-45º=45º,∴△MFG为等腰直角三角形,∴ttMGFG22422)24(45cos0-=⋅-=⋅=,∴ACG CMJ FMGS S S S∆∆∆=--=11142222CM CM FG FM⨯⨯-⨯⨯-⋅=221124(22)(4)222t t----= 234284t t-+-,∴221t0t2243-t42t-8 22t424S⎧<≤⎪⎪=⎨⎪+<<⎪⎩()();②在0<t≤22范围内,当t=22时,S的最大值为222412=⨯)(;在22<t<24范围内,38)238-t(432+-=S,当238t=时,S的最大值为38,∵823>,∴当t=238秒时,S的最大值为38.考点:四边形综合题;二次函数综合题;分段函数;二次函数的最值;最值问题;动点型;存在型;压轴题.学科网原创模拟预测题3.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a,b,c的值;(2)求证:在点P 运动的过程中,⊙P 始终与x 轴相交;(3)设⊙P 与x 轴相交于M (x1,0),N (x2,0)(x1<x2)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.【答案】(1)a=14,b=c=0;(2)证明见解析;(3)0或423+或423-.【解析】(2)设P (x ,y ),⊙P 的半径r=,又∵y=x2,则r=,化简得:r=>x2,∴点P 在运动过程中,⊙P 始终与x 轴相交;(3)设P (a ,a2),∵PA=,作PH ⊥MN 于H ,则PM=PN=,又∵PH=a2,则MH=NH==2,故MN=4,∴M (a ﹣2,0),N (a+2,0),又∵A (0,2),∴AM=,AN=,当AM=AN 时,=,解得:a=0,当AM=MN 时,=4,解得:a=2±2(负数舍去),则a2=4+2;当AN=MN 时,=4,解得:a=﹣2±2(负数舍去),则a2=4﹣2; 综上所述,P 的纵坐标为0或423+或423-.学科网考点:几何变换综合题;动点型;存在型;分类讨论;分段函数.原创模拟预测题4.如图1,在▱ABCD 中,AH ⊥DC ,垂足为H ,AB=4,AD=7,AH=.现有两个动点E ,F 同时从点A 出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC 方向匀速运动,在点E ,F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 与△ABC 在射线AC 的同侧,当点E 运动到点C 时,E ,F 两点同时停止运动,设运动时间为t 秒.(1)求线段AC 的长;(2)在整个运动过程中,设等边△EFG 与△ABC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式,并写出相应的自变量t 的取值范围;(3)当等边△EFG 的顶点E 到达点C 时,如图2,将△EFG 绕着点C 旋转一个角度α(0°<α<360°),在旋转过程中,点E 与点C 重合,F 的对应点为F′,G 的对应点为G′,设直线F′G′与射线DC 、射线AC 分别相交于M ,N 两点.试问:是否存在点M ,N ,使得△CMN 是以∠MCN 为底角的等腰三角形?若存在,请求出CM 的长度;若不存在,请说明理由.【答案】(1)7;(2)S=;(3)存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形,CM的长度为7或.【解析】试题分析:试题解析:(1)∵▱ABCD,∴CD=AB=4.在Rt△ADH中,由勾股定理得:DH===2,∴CH=DH,∴AC=AD=7.(2)在运动过程中,AE=t,AF=3t,∴等边△EFG的边长EF=EG=GF=2t.如答图1,过点G作GP⊥AC于点P,则EP=EG=t,GP=EG=t.∴AP=AE+EP=2t,∴tan∠GAC===.∵tan∠BAC=tan∠ACH===,∴tan∠GAC=tan∠BAC,∴点G始终在射线AB上.设∠BAC=∠ACH=θ,则sinθ==,cosθ==.①当0≤t≤时,如答图2﹣1所示,等边△EFG在△内部.S=S△EFG=EF2=(2t)2=t2;②当<t≤4时,如答图2﹣2所示,点G在线段AB上,点F在AC的延长线上.过点B作BQ⊥AF于点Q,则BQ=AB•sinθ=4×=4,AQ=AB•cosθ=4×=8,∴CQ=AQ﹣AC=8﹣7=1.设BC与GF交于点K,过点K作KP⊥AF于点P,设KP=x,则PF==x,∴CP=CF﹣PF=3t﹣7﹣x.∵PK∥BQ,∴,即,解得:x=(3t﹣7),∴S=S△EFG﹣S△CFK=t2﹣(3t﹣7)•(3t﹣7)=﹣t2+t﹣;③当4<t≤7时,如答图2﹣3所示,点G、F分别在AB、AC的延长线上,点E在线段AC 上.过点B作BQ⊥AF于点Q,则BQ=AB•sinθ=4×=4,AQ=AB•cosθ=4×=8,∴CQ=AQ﹣AC=8﹣7=1.设BC与GF交于点K,过点K作KP⊥AF于点P,设KP=x,则EP==x,∴CP=EP﹣CE=x﹣(7﹣t)=x﹣7+t.∵PK∥BQ,∴,即,解得:x=(7﹣t),∴S=S△CEK=(7﹣t)•(7﹣t)=t2﹣t+.综上所述,S与t之间的函数关系式为:S=.(3)设∠ACH=θ,则tanθ===,cosθ==.当点E与点C重合时,t=7,∴等边△EFG的边长=2t=14.假设存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形,①若点N为等腰三角形的顶点,如答图3﹣1所示,则∠NMC=∠MCN=θ.过点C作CP⊥F′M于点P,则CP=CF′=7,∴PM===14.设CN=MN=x,则PN=PM﹣MN=14﹣x.在Rt△CNP中,由勾股定理得:CP2+PN2=CN2,即:(7)2+(14﹣x)2=x2,解得:x=.过点N作NQ⊥CM于点Q,∴CM=2CQ=2CN•cosθ=2××=7;②若点M为等腰三角形的顶点,如答图3﹣2所示,则∠MNC=∠MCN=θ.学,科,网过点C作CP⊥G′N于点P,则CP=CF′=7,∴PN===14.设CM=MN=x,则PM=PN﹣MN=14﹣x.在Rt△CMP中,由勾股定理得:CP2+PM2=CM2,即:(7)2+(14﹣x)2=x2,∴CM=x=.综上所述,存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形,CM的长度为7或.考点:二次函数综合题;动点型;直线与圆的位置关系;分类讨论;等腰三角形的性质;勾股定理.。
【中考数学压轴题专题突破12】二次函数中的直角三角形存在性问题

【中考压轴题专题突破】二次函数中的直角三角形存在性问题1.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C(0,3),且OB=OC.直线y=x+1与抛物线交于A、D两点,与y轴交于点E,点Q是抛物线的顶点,设直线AD上方的抛物线上的动点P的横坐标为m.(1)求该抛物线的解析式及顶点Q的坐标.(2)连接CQ,直接写出线段CQ与线段AE的数量关系和位置关系.(3)连接P A、PD,当m为何值时S△APD=S△DAB?(4)在直线AD上是否存在一点H,使△PQH为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.2.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式.(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=).3.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),顶点为M.(1)求抛物线的解析式和点M的坐标;(2)点E是抛物线段BC上的一个动点,设△BEC的面积为S,求出S的最大值,并求出此时点E的坐标;(3)在抛物线的对称轴上是否存在点P,使得以A、P、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.4.综合与探究如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣3,0)、B两点,与y轴相交于点.当x=﹣4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC,BC.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,则t的值为,点P的坐标为;(4)抛物线对称轴上是否存在一点F,使得△ACF是以AC为直角边的直角三角形?若不存在,请说明理由;若存在,请直接写出点F的坐标.参考答案与试题解析1.【分析】(1)直线y=x+1与抛物线交于A 点,则点A(﹣1,0)、点E(0,1),可得出点B、C的坐标分别为:(3,0)、(0,3),用待定系数法求出二次函数解析即可求解;(2)求出CQ和AE的长,可得出CQ=AE,由两直线的解析式k相等可得出CQ 与AE平行;(3)联立直线y=x+1与抛物线的表达式,并解得x=﹣1或2.故点D(2,3),过点P作y轴的平行线交AD于点K,设点P(m,﹣m2+2m+3),则点K(m,m+1),根据面积关系可求出m的值;(4)分∠QOH=90°、∠PQH=90°、∠QHP=90°三种情况,分别求解即可.【解答】(1)直线y=x+1与抛物线交于A点,则点A(﹣1,0)、点E(0,1).∵OB=OC,C(0,3),∴点B的坐标为(3,0),故抛物线的表达式为y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),将点C的坐标代入,得﹣3a=3,解得a=﹣1,∴抛物线的表达式为y=﹣x2+2x+3,∴函数的对称轴为x=1,故点Q的坐标为(1,4).(2)CQ=AE,且CQ∥AE,理由:∵Q(1,4),C(0,3),∴CQ ==,CQ的解析式为y=x+3,又∵AE ==,直线AE的解析式为y=x+1,∴CQ=AE,CQ∥AE,(3)∵,∴,,∴点D的坐标为(2,3).如图1,过点P作y轴的平行线,交AD 于点K,设点P(m,﹣m2+2m+3),则点K(m,m+1)∴===.解得m=0或1.(4)存在,点P的坐标为(2,3)或(0,3)或.设点H(t,t+1),点P(m,n),n=﹣m2+2m+3,而点Q(1,4),①当∠QPH=90°时,如图2,过点P作y轴的平行线,过点H、点Q作x轴的平行线,交过点P且平行于y轴的直线于点M、G,∵∠GQP+∠QPG=90°,∠QPG+∠HPM=90°,∴∠HPM=∠GQP,∠PGQ=∠HMP=90°,PH=PQ,∴△PGQ≌△HMP(AAS),∴PG=MH,GQ=PM,即4﹣n|=|t﹣m|,|1﹣m|=|n﹣(t+1)|,解得m=2或n=3.当n=3时,3=﹣m2+2m+3,解得m1=0,m2=2,∴点P(2,3)或(0,3).②当∠PQH=90°时,如图3所示,同理可得m1=0,m2=3(舍去),故点P为(0,3).③当∠PHQ=90°时,同理可得n=2,解得(舍去),.故点P 为.综上可得,点P的坐标为(2,3)或(0,3)或.【点评】本题是二次函数综合题,主要考查了待定系数法求函数解析式(包括二次函数解析式,一次函数解析式),三角形面积,全等三角形的判定与性质,等腰直角三角形的判定与性质,坐标与图形的性质,正确进行分类是解题的关键.2.【分析】(1)用待定系数法即可求出直线BC和抛物线的解析式;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x =﹣1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.【解答】(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2﹣2x+3,∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=﹣1+3=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)如图,设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).【点评】本题是二次函数的综合题,考查了二次函数的图象与性质,待定系数法求函数的解析式,利用轴对称性质确定线段的最小长度,两点间的距离公式的运用,直角三角形的性质等知识点,熟练掌握二次函数的性质是解题的关键.3.【分析】(1)将点A、B的坐标代入函数解析式,列出方程组,通过解方程组求得a、b的值即可;利用配方法将函数解析式转化为顶点式,即可得到点M的坐标;(2)利用待定系数法确定直线BC解析式,由函数图象上点的坐标特征求得点E、F的坐标,然后根据两点间的距离公式求得EF长度,结合三角形的面积公式列出函数式,根据二次函数最值的求法求得点E的横坐标,易得其纵坐标,则点E的坐标迎刃而解了;(3)需要分类讨论:点A、P、C分别为直角顶点,利用勾股定理求得答案.【解答】(1)∵抛物线y=ax2+bx+3与x 轴交于点A(﹣1,0)、B(3,0),∴.解得.∴y=﹣x2+2x+3=﹣(x﹣1)2+4,则M (1,4);(2)如图,作EF∥y轴交BC于点F∵B(3,0),C(0,3),∴直线BC解析式为:y=﹣x+3.设E(m,﹣m2+2m+3),则F(m,﹣m+3).∴EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m.∴S =EF•OB =(﹣m2+3m)×3=﹣(m ﹣)2+.当m =时,S最大=.此时,点E 的坐标是(,);(3)设P(1,n),A(﹣1,0)、C(0,3),∴AC2=10,AP2=4+n2,CP2=1+(n﹣3)2=n2﹣6n+10.①当AC⊥AP时,AC2+AP2=CP2,即10+4+n2=n2﹣6n+10.解得n =﹣.②当AC⊥CP时,AC2+CP2=AP2,即10+n2﹣6n+10=4+n2.解得n =.③当AP⊥CP时,AP2+CP2=AC2,即4+n2+n2﹣6n+10=10.解得n=1或2.综上所述,存在,符合条件的点P的坐标是(1,﹣)或(1,)或(1,1)或(1,2),【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.4.【分析】(1)由对称性先求出点B的坐标,可设抛物线的解析式为y=a(x+3)(x﹣1),将C坐标代入y=a(x+3)(x﹣1)即可;(2)先判断△ABC为直角三角形,分别求出AB,AC,BC的长,由勾股定理的逆定理可证明结论;(3)因为点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,所以BM=BN=t,证四边形PMBN是菱形,设PM与y轴交于H,证△CPN∽△CAB,由相似三角形的性质可求出t的值,CH的长,可得出点P纵坐标,求出直线AC的解析式,将点P纵坐标代入即可;(4)求出直线BC的解析式,如图2,当∠ACF=90°时,点B,C,F在一条直线上,求出直线BC与对称轴的交点即可;当∠CAF=90°时,求出直线AF的解析式,再求其与对称轴的交点即可.【解答】(1)∵在抛物线y=ax2+bx+c中,当x=﹣4和x=2时,二次函数y=ax2+bx+c的函数值y相等,∴抛物线的对称轴为x ==﹣1,又∵抛物线y=ax2+bx+c与x轴交于A (﹣3,0)、B两点,由对称性可知B(1,0),∴可设抛物线的解析式为y=a(x+3)(x ﹣1),将C(0,)代入y=a(x+3)(x﹣1),得,﹣3a =,解得,a =﹣,∴此抛物线的解析式为y =﹣(x+3)(x﹣1)=﹣x2﹣x +;(2)△ABC为直角三角形,理由如下:∵A(﹣3,0),B(1,0),C(0,),∴OA=3,OB=1,OC =,∴AB=OA+OB=4,AC ==2,BC ==2,∵AC2+BC2=16,AB2=16,∴AC2+BC2=AB2,∴△ABC是直角三角形;(3)∵点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC 边运动,∴BM=BN=t,由翻折知,△BMN≌△PMN,∴BM=PM=BN=PN=t,∴四边形PMBN是菱形,∴PN∥AB,∴△CPN∽△CAB,设PM与y轴交于H,∴==,即==,解得,t =,CH =,∴OH=OC﹣CH =﹣=,∴y P =,设直线AC的解析式为y=kx +,将点A(﹣3,0)代入y=kx +,得,k =,∴直线AC的解析式为y =x +,将y P =代入y =x +,∴x=﹣1,∴P(﹣1,),故答案为:,(﹣1,);(4)设直线BC的解析式为y=kx +,将点B(1,0)代入y=kx +,得,k =﹣,∴直线BC的解析式为y =﹣x +,由(2)知△ABC为直角三角形,∠ACB =90°,如图2,当∠ACF=90°时,点B,C,F在一条直线上,在y =﹣x +中,当x=﹣1时,y=2,∴F1(﹣1,2);当∠CAF=90°时,AF∥BC,∴可设直线AF的解析式为y=﹣x+n,将点A(﹣3,0)代入y =﹣x+n,得,n=﹣3,∴直线AF的解析式为y =﹣x﹣3,在y =﹣x﹣3中,当x=﹣1时,y =﹣2,∴F2(﹣1,﹣2);∴点F的坐标为F1(﹣1,2),F2(﹣1,﹣2).【点评】本题考查了待定系数法求解析式,勾股定理,相似三角形的判定与性质,直角三角形的性质等,解题关键是注意分类讨论思想在解题过程中的运用.。
初三数学压轴题二次函数与等腰三角形、直角三角形、平行四边形、最值专题

二次函数与等腰三角形、直角三角形、平行四边形、最值专题1. 二次函数y= x2 2x 3图像如下,分别求:和最小,差最大(1)在对称轴上找一点P,使得PB+PC的和最小,求出P 点坐标.(2)在对称轴上找一点P,使得PB-PC的差最大,求出P 点坐标.讨论直角三角(3)连接AC,在对称轴上找一点P,使得ACP 为直角三角形,求出P坐标.(4)在抛物线上求点P,使△ACP是以AC为直角边的直角三角形.讨论等腰三角(5)连接AC,在对称轴上找一点P,使得ACP 为等腰三角形,求出P坐标.yyyB O A xB O A xB O A xCCCDDD122.已知抛物线y=ax +bx+c 经过A( -1,0) 、B(3 ,0) 、C(0 ,3) 三点,直线l 是抛物线的对称轴.(1) 求抛物线的函数关系式;(2) 设点P是直线l 上的一个动点,当△PAC的周长最小时,求点P的坐标;(3) 在直线l 上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.2. 已知:如图一次函数y=1x+1 的图象与x 轴交于点A,与y 轴交于点B;二次函数y=2 1 x22+bx+c 的图象与一次函数y=(1)求二次函数的解析式;1x+1 的图象交于B、C两点,与x 轴交于D、E两点且D点坐标为(1,0)2(2)求四边形BDEC的面积S;(3)在x 轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.yC 2BxA O D E22、(2013?连云港)如图,抛物线y=-x 2+mx+n与x 轴分别交于点A(4,0),B(-2 ,0),与y 轴交于点C.(1)求该抛物线的解析式;(2)M为第一象限内抛物线上一动点,点M在何处时,△ACM的面积最大;(3)在抛物线的对称轴上是否存在这样的点P,使得△PAC为直角三角形?若存在,请求出所有可能点P 的坐标;若不存在,请说明理由.4、(西宁)在平面直角坐标系中,现将一块等腰直角三角板A BC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0).如图所示, B 点在抛物线y=12 x2+2+12x-2 图象上,过点 B 作BD ⊥x 轴,垂足为D,且B 点横坐标为-3.(1)求证:△BDC ≌△COA;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.39、(潼南)如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90 °,AC=BC ,OA=1,OC=4,抛物线y=x 2+bx+c 经过A,B 两点,抛物线的顶点为D.(1)求b,c 的值;(2)点 E 是直角三角形ABC 斜边AB 上一动点(点A、B 除外),过点 E 作x 轴的垂线交抛物线于点F,当线段EF 的长度最大时,求点 E 的坐标;(3)在(2)的条件下:①求以点E、B、F、D 为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP 是以EF 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,说明理由.2 bx c a6.如图,已知抛物线y ax ( 0)的顶点坐标为Q 2, 1 ,且与y 轴交于点 C 0,3 ,与x轴交于A、B 两点(点A在点 B 的右侧),点P 是该抛物线上一动点,从点C沿抛物线向点 A 运动(点P 与A不重合),过点P作PD∥y 轴,交AC于点D.(1) 求该抛物线的函数关系式;(2) 当△ADP是直角三角形时,求点P 的坐标;(3) 在问题(2) 的结论下,若点E在x轴上,点 F 在抛物线上,问是否存在以A、P、E、F 为顶点的平行四边形?若存在,求点 F 的坐标;若不存在,请说明理由.4。
初中数学压轴题(等腰三角形问题)

(1)∵C(0, ),∴OC= .
∵tan ACO= ,∴OA=1.∴A(-1,0). ∵点 A,C 在抛物线 y=ax2-2ax+b 上,
∴
,解得
,
∴此抛物线的解析式为 y= x2-x- ;
∴P(3- ,0), 综上所述,当△MPQ 为等腰三角形时,点 P 的坐标为(1,0)或(3- ,0).
然后解方程并检验. 2.本题中等腰三角形的角度特殊,三种情况的点 P 重合在一起.
满分解答
(3)抛物线的对称轴是直线 x=2,设点 P 的坐标为(2, y). ①当 OP=OB=4 时,OP2=16.所以 4+y2=16.解得 y 2 3 . 当 P 在 (2, 2 3) 时,B、O、P 三点共线(如图 2). ②当 BP=BO=4 时,BP2=16.所以 42 ( y 2 3)2 16 .解得 y1 y2 2 3 . ③当 PB=PO 时,PB2=PO2.所以 42 ( y 2 3)2 22 y2 .解得 y 2 3 . 综合①、②、③,点 P 的坐标为 (2, 2 3) ,如图 2 所示.
满分解答
图2
图3
图4
②我们先讨论 P 在 OC 上运动时的情形,0≤t<4.
如图 1,在△AOB 中,∠B=45°,∠AOB>45°,OB=7, AB 4 2 ,所以 OB>AB.因此∠OAB>∠
AOB>∠B.
如图 4,点 P 由 O 向 C 运动的过程中,OP=BR=RQ,所以 PQ//x 轴.
图2
图3
考点伸展
如图 3,在本题中,设抛物线的顶点为 D,那么△DOA 与△OAB 是两个相似的等腰三角形.
由 y 3 x(x 4) 3 (x 2)2 2 3 ,得抛物线的顶点为 D(2, 2 3 ) .
初中数学等腰三角形存在性问题(含答案)

等腰三角形存在性问题几何图形存在性问题是中考二次函数压轴题一大常见类型,等腰三角形、直角三角形、平行四边形、矩形、菱形、正方形等均有涉及,本系列从等腰三角形开始,逐一介绍各种问题及常规解法.等腰三角形存在性问题【问题描述】如图,点 A坐标为( 1,1),点 B坐标为( 4,3),在 x轴上取点 C使得△ ABC是等腰三角形.几何法】“两圆一线”得坐标1)以点 A 为圆心, AB 为半径作圆,与 x 轴的交点即为满足条件的点 C,有AB=AC;2)以点 B 为圆心, AB 为半径作圆,与 x 轴的交点即为满足条件的点 C,有BA=BC;3)作 AB 的垂直平分线,与 x 轴的交点即为满足条件的点 C,有 CA=CB .y【注意】若有三点共线的情况,则需排除.作图并不难,问题是还需要把各个点坐标算出来,可通过勾股或者三角函数来求.AC1=AB= (4-1)2+(3-1)2= 13 作AH x轴于 H点, AH=1 C1H=C2H= 13-1=2 3C1(1-2 3,0) C2(1+2 3,0)C3、C4 同理可求,下求 C5.显然垂直平分线这个条件并不太适合这个题目,如果 A、B 均往下移一个单位,当点为( 1,0),点 B坐标为( 4,2)时,可构造直角三角形勾股解:AH =3, BH=2设AC5= x,则 BC5=x,C5H=3-x13解得: x=619故 C5坐标为( ,0)而对于本题的 C5 ,或许代数法更好用一些.A 坐标222(3-代数法】表示线段构相等1)表示点:设点 C 5坐标为( m , 0),又 A 点坐标( 1,1 )、 B 点坐标( 4,3),2)表示线段: AC 5 (m 1) (0 1) , BC 5 (m 4) (0 3) 3)分类讨论:根据 AC 5 BC 5 ,可得: (m 1)2 12(m 4)2 32 ,【小结】 几何法:( 1)“两圆一线 ”作出点;(2)利用勾股、相似、三角函数等求线段长,由线段长得点坐标.代数法:(1)表示出三个点坐标 A 、 B 、C ;(2)由点坐标表示出三条线段: AB 、AC 、BC ; (3)根据题意要求取① AB=AC 、②AB=BC 、③ AC=BC ; (4)列出方程求解.问题总结:1)两定一动:动点可在直线上、抛物线上;2)一定两动:两动点必有关联,可表示线段长度列方程求解; 3)三动点:分析可能存在的特殊边、角,以此为突破口. 2018 泰安 中考】4)求解得答案:解得: 23 6故 C 5 坐标为23,0如图,在平面直角坐标系中,二次函数 y ax2 bx c交x轴于点 A( 4,0) 、 B(2,0) ,交y轴于点 C(0,6) ,在y轴上有一点 E(0, 2) ,连接AE .1)求二次函数的表达式;2)若点D为抛物线在x 轴负半轴上方的一个动点,求ADE 面积的最大值;3)抛物线对称轴上是否存在点P,使AEP为等腰三角形?若存在,请直接写出所有P 点的坐标,若不存在请说明理由.分析】 1) y3x 2 3x 6; 422) 可用铅垂法,当点 D 坐标为 ( 2,6 )时,△ ADE 面积最大,最大值为 14; 3) 这个问题只涉及到 A 、 E 两点及直线 x=-1(对称轴)① 当 AE=AP 时,以 A 为圆心, AE 为半径画圆,与对称轴交点即为所求 P 点.∵AE=2 5 ,∴ AP 1=2 5,又 AH=3,∴ P 1H故P 1( 1, 11)、 P 2 ( 1, 11).② 当 EA=EP 时,以 E 点为圆心, EA 为半径画圆,故 P 5 ( 1,1) . P 5 ( 1,1).补充】“代数法”用点坐标表示出线段,列方程求解亦可以解决.P 1HP 4Bx11,与对称轴交点即为所求 P 点.过点 E 作EM 垂直对称轴于 M 点,则 EM=1, 1, 2 19)故P 3( 1, 2 19)、 P 4( 作 AE 的垂直平分线,与对称轴交点即为所求 ③当 PA=PE 时,P 点.设 P 5 ( 1,m ),P 5A 2 2 2 2 ( 1 4)2 (m 0)2, P 5E 2=( 1 0)2(m 2)2 ∴ m 2 9 (m2)2 1,解得: m=1 .综上所述, P 点坐标为 P 1( 1, 11)、P 2( 1, 11 )、P 3( 1,19 )、P 4 ( 1, 2 19)、19 ,P 3M P4 M【 2019 白银中考(删减)】如图,抛物线 y ax2 bx 4交x轴于 A( 3,0), B(4,0)两点,与y轴交于点 C ,连接AC ,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作 PM x轴,垂足为点M ,PM 交 BC 于点 Q .试探究点P在运动过程中,是否存在这样的点 Q,使得以A, C , Q为顶点的三角形是等腰三角形.若存在,请求出此时点 Q 的坐标,若不存在,请说明理由;yCP分析】1) y1x2 1x 4 ;332)①当 CA=CQ 时,∵ CA=5,∴ CQ=5,考虑到 CB 与 y 轴夹角为 45°,故过点 Q作 y 轴的垂线,垂足记为 H ,则 CH QH 5 2,故 Q 点坐标为5 2,4 5 2.2 2 2②当 AC=AQ 时,考虑直线 BC 解析式为 y=-x+4,可设 Q 点坐标为( m, -m+4),AQ (m 3)2( m 4 0)2,即(m 3) ( m 4 0) 5 ,解得: m=1 或 0(舍),故 Q 点坐标为( 1, 3).③当 QA=QC 时,作 AC 的垂直平分线,显然与线段 BC 无交点,故不存在.综上所述, Q点坐标为5 2 ,4 5 2或( 1, 3).22记直线 x=2 与 x 轴交点为 H 点, ∵ OH =2,∴ BH=1,故 B 点坐标为( 2,1)或( 2,-1),k=-1 或 -3. ②当 AO=AB 时,易知 B 点坐标为( 2,0),k=-2. 综上所述, k 的值为 -1或-2 或-3. 【 2018 贵港中考(删减) 】2019 盐城中考删减 】如图所示, 二次函数 y k (x 1)2 2 的图像与一次函数 y kx k 2 的图像交于 A 、B 两点, 点 B 在点 A 的右侧,直线 AB 分别与 x 、 y 轴交于 C 、 D 两点,其中 k 0 . 1)求 A 、 B 两点的横坐标;2)若 OAB 是以 OA 为腰的等腰三角形,求 k 的值.分析】1)A 、B 两点横坐标分别为 1、 2;B 点横坐标始终为 2 ,故点 B 可以看成是直线 x=2 上的一个动点, 满足△ OAB 是以 OA 为腰的等腰三角形, 又 A 点坐标为( 1, 2),故 OA 5 ① 当 OA=OB 时,即 OB 5 ,如图,已知二次函数 y ax2 bx c 的图像与x 轴相交于 A( 1,0) , B(3,0) 两点,与y 轴相交于点 C(0, 3) .(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图像上任意一点,P H x轴于点H ,与线段 BC 交于点M ,连接 PC .当 PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.y② 当 MP =MC 时,(表示线段列方程)设 P 点坐标为 (m,m 22m 3),则 M 点坐标为 (m, m 3), 故线段 PM (m 3) (m 2 2m 3) m 2 3m 故点M 作y 轴的垂线,垂足记为 N ,则 MN =m ,考虑△ MCN 是等腰直角三角形,故 MC 2m ,m 2 3m 2m ,解得 m 32 或 0(舍),故 P 点坐标为 (3 2,2 综上所述, P点坐标为( 2, -3)或 (3 2,2 分析】1) y x 2 2 x 3 ;2)①当 PM=PC 时,(特殊角分析) 考虑∠ PMC =45°,∴∠ PCM=45°, 即△ PCM 是等腰直角三角形, P 点坐标为( 2,-3);4 2 ).【2019 眉山中考删减】如图,在平面直角坐标系中,抛物线 y 4 x2 bx c经过点 A( 5,0)和点 B(1,0).9(1)求抛物线的解析式及顶点D 的坐标;(2)如图,连接AD、BD,点M在线段AB上(不与A 、B重合),作 DMN DBA,MN 交线段AD 于点 N ,是否存在这样点M ,使得 DMN 为等腰三角形?若存在,求出 AN 的长;若不存在,请说明理由.x分析】1) y 4 x2 16 x 20,顶点 D 坐标为( 2,4 );9 9 92)考虑到∠ DAB=∠DBA=∠DMN,即有△ BMD ∽△ ANM(一线三等角)①当 MD=MN 时,有△ BMD≌△ ANM,可得 AM=BD =5,故 AN=BM=1;②当 NM=ND 时,则∠ NDM =∠ NMD =∠DAB,③当 DM=DN时,∠ DNM =∠DMN =∠DAB,显然不成立,故不存在这样的点M.△ MAD ∽△ DAB ,可得AM=25,6BM116ANBMAM,即BDAN116256,5解得: AN5536AN 的值为 1 或55.综上,36【2019 葫芦岛中考(删减)】如图,直线 y x 4与x轴交于点B,与y轴交于点 C,抛物线 y x2 bx c经过B,C 两点,与x轴另一交点为A.点P以每秒 2个单位长度的速度在线段 BC上由点B向点 C 运动(点P 不与点B 和点 C 重合),设运动时间为 t 秒,过点P 作x 轴垂线交x轴于点E ,交抛物线于点M .(1)求抛物线的解析式;(2)如图,连接AM 交 BC 于点D ,当PDM 是等腰三角形时,直接写出 t 的值.y分析】1) y x2 3x 4 ;2)①考虑到∠ DPM =45°,当 DP=DM 时,即∠ DMP =45°,直线 AM :y=x+1,联立方程:x 3 x 4 x 1,解得: x1 3 , x2 1 (舍).此时 t=1 .②当 PD=PM 时,∠ PMD =∠ PDM =67.5°,∠ MAB=22.5°,考虑 tan∠ 22.5 °= 2 1 ,直线 AM :综上所述, t 的值为附: tan22.5 =° 2 1 .总结】具体问题还需具体分析题目给的关于动点的条件,选取恰当的方法,联立方程:x2 3 x 4 ( 2 1)x 21解得:x1 5 2 , x2 1 (舍).此时 t= 2 1.222.5 °tan 22.5 1 2 121可减轻计算量.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学压轴题
一、等腰三角形存在性
1 解题思想:分类讨论
2 解题技巧:坐标系内线段长度表示
(1)线段在坐标轴上或平行于坐标轴
在x轴或平行于x轴:x右-x左
在y轴或平行于y轴:y上-y下
(2)线段为倾斜(斜线段)A(X A,Y A)B(X B,Y B)C(X C,Y C)
由勾股定理得:AB2=
AC2=
BC2=
3 解题方法
(1)代数法:(1)根据条件用坐标表示三边或三边的平方
(2)分三种情况列方程,解方程
(3)根据题目条件及方程解确定坐标(注意重根)
(2)几何法:(1)先分三种情况A为顶点,B为顶点,C为顶点
(2)画图,作圆法,垂直平分线法
(3)计算:以两定点为腰则腰长已知,先求出腰长进行几何构造,注意不要漏解,以两定点为底则利用腰相等建立方程求解(表示腰长可结合代数法)。
例1. 如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B 两点,点C是抛物线与x轴的另一个交点(与A点不重合).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.
代数法:
几何法:
例2 如图△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以ED为边,在点A的异侧作正方形DEFG.
(1)试求△ABC 的面积;
(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设AD=x ,当△BDG 是等腰三角形时,求出AD 的长. 只能选择几何法 1 先分析三种情况
2 根据已知表示三边长度(相似)
3 列方程计算
同步练习:
1.如图,抛物线2
54y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC=BC .
(1)写出A,B,C 三点的坐标并求抛物线的解析式;
(2)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.
2.如图,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.
A
C B
y x
0 1
1
(1)求点B的坐标;
(2)求经过点A、O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.
3.(2016•临沂第26题)如图,在平面直角坐标系中,直线y=—2x+10与x轴、y轴相交于
A、B两点.点C的坐标是(8,4),连接AC、BC.
(1)求过O、A、C三点的抛物线的解析式,并判断△ABC的形状;
(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?
(3)在抛物线的对称轴上,是否存在点M,使以A、B、M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由。
二、直角三角形存在性
解题方法
(1)代数法:
(1)根据条件用坐标表示三边或三边的平方
(2)以直角顶点分三种情况,根据勾股定理列方程,解方程
(3)根据题目条件及方程解确定坐标
(2)几何法:
(1)先分三种情况进行构造:若已知边做直角边,过直角边的两端点作垂线,则第三个顶点在垂线上,若已知边为斜边,可取斜边为直径作圆,直角顶点在圆上
(2)计算:注意题目的几何背景,如有直接的相似则表示线段长度,进行相似求解,无直接相似则围绕顶点分别做坐标轴的平行线,构造一线三角模型进行相似求解。
例1.(2016•枣庄)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.
代数法:几何法:
例2. 如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.
(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
代数法:几何法:
2、如图,已知一条直线过点(0,4),且与抛物线y=x 2
交于A ,B 两点,其中点A 的横坐标是﹣2.
(1)求这条直线的函数关系式及点B 的坐标.
(2)在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,求出点C 的坐标,若不存在,请说明理由.
3.如图,在平面直角坐标系中,直线1
23
y x =-
+交x 轴于点P ,交y 轴于点A ,抛物线21
2
y x bx c =-++的图象过点(1,0)E -,并与直线相交于A 、B 两点.
⑴ 求抛物线的解析式(关系式);
⑵ 过点A 作AC AB ⊥交x 轴于点C ,求点C 的坐标;
⑶ 除点C 外,在坐标轴上是否存在点M ,使得MAB ∆是直角三角形?若存在,请求出点
M 的坐标,若不存在,请说明理由.
4. 如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,
抛物线2
23
(0)3
y ax x c a =-
+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;
(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;
5.(2016•甘肃)如图,已知抛物线y =﹣x 2+bx +c 经过A (3,0),B (0,3)两点. (1)求此抛物线的解析式和直线AB 的解析式;
(2)如图①,动点E 从O 点出发,沿着OA 方向以1个单位/秒的速度向终点A 匀速运动,同时,动点F 从A 点出发,沿着AB 方向以个单位/秒的速度向终点B 匀速运动,当E ,F 中任意一点到达终点时另一点也随之停止运动,连接EF ,设运动时间为t 秒,当t 为何值时,△AEF 为直角三角形?
A O
x y
B F C。