平面几何学基本知识
高中数学平面几何知识点总结

高中数学平面几何知识点总结平面几何是数学中的一个重要分支,也是高中数学中的重要部分。
平面几何主要研究平面上的点、线、角等基本概念及其相互关系。
平面几何是一门具有实际应用意义的数学,它的研究对象广泛,包括建筑、工程、艺术等诸多领域。
本文将对高中数学平面几何知识点进行总结。
一、基本概念1. 点:空间中没有大小和形状的基本对象,用大写字母表示。
2. 直线:由无数个点组成的、没有宽度和厚度的对象,用小写字母表示,或用两个点表示。
3. 射线:起点为一个确定的点,沿着一定方向无限延伸出去的对象,用一个点表示。
4. 线段:有两个端点的、有限长的直线部分,用两个点表示。
5. 角:由两条射线公共端点组成的图形,用大写字母表示公共端点,用小写字母表示两条射线,或用符号“∠”表示。
6. 垂线:与另一直线或平面垂直的直线。
二、图形的性质1. 三角形:三条边和三个角,有三个顶点的图形。
2. 直角三角形:其中一个角是90度的三角形。
3. 等腰三角形:两边长度相等的三角形。
4. 等边三角形:三边长度都相等的三角形。
5. 相似三角形:三角形的对应角相等,对应边成比例。
6. 平行四边形:具有两组对边平行的四边形。
7. 矩形:具有四个直角的平行四边形。
8. 正方形:具有四个直角和四边相等的矩形。
9. 梯形:具有一组对边平行的四边形。
三、角的性质1. 垂角:两条互相垂直的直线所形成的角。
2. 对顶角:两条直线交叉而形成的相对角。
3. 同位角:两条平行线与一条直线相交所形成的对应角。
4. 内角和定理:任意$n$边形的内角和为$(n-2)\times 180^\circ$。
5. 外角和定理:任意凸$n$边形的外角和为$360^\circ$。
四、圆的性质1. 圆:平面上所有到圆心距离相等的点所组成的图形。
2. 圆周角定理:圆周角等于圆心角的一半。
3. 切线:与圆相切的直线。
4. 弦:连接圆上两点的线段。
5. 弧:圆上两点之间的一段曲线。
6. 弧长公式:弧长等于圆周率$\pi$乘以弧所对圆心角的度数再除以180度。
平面几何入门

平面几何入门平面几何是数学中的一个重要分支,它研究的是二维空间中平面图形的性质和关系,是几何学的基础。
在本文中,我们将带您入门平面几何的基本概念和理论,让您对这一学科有一个全面的了解。
一、点、线和面的概念平面几何的基本元素包括点、线和面。
点是平面上最基本的对象,不占据空间,用大写字母标记,如A、B、C等。
线由无数个点组成,它是一维的,没有宽度和厚度,用小写字母表示,如l、m、n等。
面是由无数个线构成的,它是二维的,拥有长度和宽度,用大写字母表示,如P、Q、R等。
二、基本图形的性质1. 点的性质:点没有大小和形状,可以在平面上移动。
2. 直线的性质:直线无限延伸,在平面上任意两点可以确定一条直线,直线上的点不限定数量。
3. 射线的性质:射线由一个端点和一个方向组成,在平面上只能延伸一个方向。
4. 线段的性质:线段由两个端点组成,有固定的长度,在平面上不能无限延伸。
5. 角的性质:角由两条射线的公共端点和位于这两条射线之间的部分组成,用大写字母表示,如∠ABC。
角的大小可以用度、弧度或直角来度量。
6. 三角形的性质:三角形是由三条线段组成的平面图形,它有三个顶点和三个边。
根据边长和角度的不同,三角形可以分为等边三角形、等腰三角形和一般三角形。
7. 四边形的性质:四边形是由四条线段组成的平面图形,它有四个顶点和四条边。
根据边长和角度的不同,四边形可以分为正方形、长方形、菱形、平行四边形等。
8. 圆的性质:圆是由一个固定点到平面上任意点的距离相等的点的集合。
圆由圆心和半径确定,圆心用大写字母表示,如O,半径用小写字母表示,如r。
三、平面几何的定理与推理平面几何的定理是通过逻辑推理和证明得出的,它们是描述平面图形性质和关系的真实命题。
下面介绍几个常见的定理:1. 垂直平分线定理:如果一条线段的中点处于另一条线段上,并且这条线段与另一条线段垂直相交,那么这条线段就是另一条线段的垂直平分线。
2. 同位角定理:当两条直线被一条交叉直线切割时,同位角是对应于同一边的内角或外角,它们互补。
初中平面几何知识点汇总

初中平面几何知识点汇总
1.平面直角坐标系和点的坐标
2.向量的定义和运算:向量加减、数乘
3. 向量点积和向量夹角的定义
4.线段、射线、直线的定义和区别
5.直线方程的表示:点斜式、截距式、两点式
6.平行和垂直的概念和性质
7.相交线和平行线之间的性质
8.三角形和四边形的定义和性质
9.三角形的内角和、外角和、内切圆、外接圆,三角形的相似性质
10.正方形、长方形、菱形、平行四边形的定义和性质
11.圆的基本概念:圆心、半径、直径、弧长、圆周、面积
12.圆的切线和切点,切线和半径的关系,切线和弦的关系
13.圆的相交和相切的性质和方法
14. 圆的内接和外接多边形的性质
15.三角形中垂线、中线、角平分线和高的概念和性质
16.正多边形的概念和性质,正多边形内角和、外角和
17.相似三角形和全等三角形的定义和性质,相似三角形的判定
18.三角形的勾股定理和解题方法
19.平面镜像和旋转的基本概念和性质
20.平面几何综合题的解答方法
以上就是初中平面几何的所有知识点,希望对您的学习有所帮助。
高中数学竞赛基础平面几何知识点总结

⾼中数学竞赛基础平⾯⼏何知识点总结⾼中数学竞赛平⾯⼏何知识点基础1、相似三⾓形的判定及性质相似三⾓形的判定:(1)平⾏于三⾓形⼀边的直线和其他两边(或两边的延长线)相交,所构成的三⾓形与原三⾓形相似;(2)如果⼀个三⾓形的两条边和另⼀个三⾓形的两条边对应成⽐例,并且夹⾓相等,那么这两个三⾓形相似(简叙为:两边对应成⽐例且夹⾓相等,两个三⾓形相似.);(3)如果⼀个三⾓形的三条边与另⼀个三⾓形的三条边对应成⽐例,那么这两个三⾓形相似(简叙为:三边对应成⽐例,两个三⾓形相似.);(4)如果两个三⾓形的两个⾓分别对应相等(或三个⾓分别对应相等),则有两个三⾓形相似(简叙为两⾓对应相等,两个三⾓形相似.).直⾓三⾓形相似的判定定理:(1)直⾓三⾓形被斜边上的⾼分成两个直⾓三⾓形和原三⾓形相似;(2)如果⼀个直⾓三⾓形的斜边和⼀条直⾓边与另⼀个直⾓三⾓形的斜边和⼀条直⾓边对应成⽐例,那么这两个直⾓三⾓形相似.常见模型:相似三⾓形的性质:(1)相似三⾓形对应⾓相等(2)相似三⾓形对应边的⽐值相等,都等于相似⽐(3)相似三⾓形对应边上的⾼、⾓平分线、中线的⽐值都等于相似⽐(4)相似三⾓形的周长⽐等于相似⽐(5)相似三⾓形的⾯积⽐等于相似⽐的平⽅2、内、外⾓平分线定理及其逆定理内⾓平分线定理及其逆定理:三⾓形⼀个⾓的平分线与其对边所成的两条线段与这个⾓的两边对应成⽐例。
如图所⽰,若AM平分∠BAC,则该命题有逆定理:如果三⾓形⼀边上的某个点与这条边所成的两条线段与这条边的对⾓的两边对应成⽐例,那么该点与对⾓顶点的连线是三⾓形的⼀条⾓平分线外⾓平分线定理:三⾓形任⼀外⾓平分线外分对边成两线段,这两条线段和夹相应的内⾓的两边成⽐例。
如图所⽰,AD平分△ABC的外⾓∠CAE,则其逆定理也成⽴:若D是△ABC的BC边延长线上的⼀点,且满⾜,则AD是∠A的外⾓的平分线内外⾓平分线定理相结合:如图所⽰,AD平分∠BAC,AE平分∠BAC的外⾓∠CAE,则3、射影定理在Rt△ABC中,∠ABC=90°,BD是斜边AC上的⾼,则有射影定理如下:BD2=AD·CDAB2=AC·ADBC2=CD·AC对于⼀般三⾓形:在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA4、旋转相似当⼀对相似三⾓形有公共定点且其边不重合时,则会产⽣另⼀对相似三⾓形,寻找⽅法:连接对应点,找对应点连线和⼀组对应边所成的三⾓形,可以得到⼀组⾓相等和⼀组对应边成⽐例,如图中若△ABC∽△AED,则△ACD∽△ABE5、张⾓定理在△ABC中D为BC边上⼀点,则sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD6、圆内有关⾓度的定理圆周⾓定理及其推论:(1)圆周⾓定理指的是⼀条弧所对圆周⾓等于它所对圆⼼⾓的⼀半(2)同弧所对的圆周⾓相等(3)直径所对的圆周⾓是直⾓,直⾓所对的弦是直径(4)圆内接四边形对⾓互补(5)圆内接四边形的外⾓等于其内对⾓弦切⾓定理:顶点在圆上,⼀边和圆相交,另⼀边和圆相切的⾓叫做弦切⾓。
小学平面几何知识及习题

1、平面图形的分类及概念2、立体图形的分类及概念1、距离:从直线外一点到这条直线所垂直线段的长度叫做距离。
2、三角形的内角和等于180°。
3、周长:围成一个图形的所有边长的总和叫做这个图形的周长。
4、面积:物体的表面或围成的平面图形的大小,叫做它们的面积。
5、表面积:一个立体图形所有的面的面积总和,叫做它的表面积。
6、体积:一个立体图形所占空间的大小,叫做它的体积。
7、容积:一个容器所能容纳物体体积的多少叫做该容器的容积。
8、角的计量单位是"度",用符号"°"表示。
9、角的大小要看两条边叉开的大小,叉开的越大,角越大。
角的大小与角的两边画出的长短没有关系。
10、平行线间的距离都相等。
11、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合。
这个图形叫做轴对称图形。
12、对称轴:这条直线叫做对称轴。
13、两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
5、关于几何的一些操作知识1、画一个角的步骤如下:⑴画一条射线,使量角器的中心和射线的端点重合,零刻度线和射线重合;⑵在量角器所取刻度线的地方点一个点;⑶以画出的射线的端点为端点,通过刚画的点,再画一条射线。
2、垂线的画法: 1)过直线上一点画这条直线的垂线。
2)过直线外一点画这条直线的垂线。
3、画平行线的步骤是:⑴固定三角板,沿一条直角边先画一条直线;⑵用直尺紧靠三角板的另一条直线边,固定直尺然后平移三角板;⑶再沿一条直角边画出另一条直线4、例:画一个长是2.5厘米,宽是2厘米的长方形。
画的步骤如下:⑴画一条2.5厘米长的线段;⑵从画出的线段两端,在同侧画两条与这条线段垂直的线段,使它们分别长2厘米。
⑶把这两条线段另外的端点连接起来。
5、圆的画法:⑴分开圆规的两脚,在直线上确定半径:⑵固定圆规有针尖的脚,确定圆心;⑶旋转有铅笔尖的一只脚画出一个圆。
平面几何的知识与问题单遵

平面几何的知识与问题单遵平面几何是几何学的一个重要分支,研究平面内的点、线、面和其相关性质以及解决相关问题。
在学习平面几何时,我们需要掌握一些基本概念和定理,并能够运用这些知识解决一些实际问题。
1. 点、线、面的概念在平面几何中,点是最基本的图形元素,它没有大小和方向。
线是由无数个点组成的,无限延伸的集合体。
面则是由无限多条线围成的,有无限个点的集合。
点、线、面是平面几何中最基本的概念,我们需要清楚它们的定义和特征。
2. 直线与线段在平面几何中,直线是由无数个点组成,无限延伸且没有弯曲的线。
而线段则是直线上的两个点之间的部分,有起点和终点。
我们可以通过直线和线段的性质来解决一些直线与线段的问题,比如求两条直线的交点、线段长度等。
3. 角的概念与性质角是由两条射线共享一个公共端点而形成的图形。
在平面几何中,我们常常遇到角的问题,需要研究角的性质。
比如两个角是否相等、角的大小如何比较等。
通过掌握角的概念和性质,我们可以解决一些与角相关的问题。
4. 三角形的性质三角形是由三条线段组成的图形,在平面几何中占据重要地位。
我们需要研究三角形的性质,比如三角形的内角和为180度、三角形的三边关系等。
掌握了三角形的性质,我们可以在解决三角形问题时更加得心应手。
5. 平行线与相交线在平面几何中,平行线和相交线是常见的情况。
平行线是在同一个平面上永不相交的直线,而相交线则是有一个公共交点的直线。
我们需要研究平行线和相交线的关系,进行相关问题的求解。
比如判断两条直线是否平行、相交线的交点坐标等。
通过以上的学习,我们可以确保对平面几何的基本知识有一个全面的了解。
在解决与平面几何相关的问题时,我们需要把握好问题的要点,正确运用相应的定理和性质,建立合适的数学模型,得出准确的结论。
需要注意的是,平面几何的问题往往需要一些几何图形的绘制,因此在解题过程中,我们需要用尺规作图工具来进行意义明确的图形构造。
同时,我们也要注重理论与实践的结合,通过解决实际问题来巩固我们所学的平面几何知识。
平面解析几何知识点汇总

1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[︒∈α,︒=90α斜率不存在. (2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ).2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+bya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:BA k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =.已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....⇔直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......⇔直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......⇔直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直:(1)若111:l y k x b =+,222:l y k x b =+① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且.② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式:(111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=.线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x .6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200BA CBy Ax d +++=.7.两平行直线间的距离:两条平行直线002211=++=++C By Ax l C By Ax l :,:距离:2221BA C C d +-=.8.直线系方程:(1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=. ③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x x B y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=. ② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除2l ),其中λ是待定的系数.9.曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x yg x y ==的解.10.圆的方程:(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x . (3)圆的直径式方程:若),(),(2211y x B y x A ,,以线段AB 为直径的圆的方程是:0))(())((2121=--+--y y y y x x x x .注:(1)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=.(2)一般方程的特点:① 2x 和2y 的系数相同且不为零;② 没有xy 项; ③ 0422>-+F E D (3)二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的等价条件是:① 0≠=C A ; ② 0=B ; ③ 0422>-+AF E D .11.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y kx x k AB -+=-+= (其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解)12.点与圆的位置关系:点),(00y x P 与圆222)()(r b y a x =-+-的位置关系有三种①P 在在圆外22020)()(r b y a x r d >-+-⇔>⇔. ②P 在在圆22020)()(r b y a x r d <-+-⇔<⇔.③P 在在圆上22020)()(r b y a x r d =-+-⇔=⇔. 【P 到圆心距离d =13.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA C Bb Aa d +++=):圆心到直线距离为d ,由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .14.两圆位置关系:设两圆圆心分别为21,O O ,半径分别为21,r r ,d O O =21条公切线外离421⇔⇔+>r r d ; 无公切线内含⇔⇔-<21r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线内切121⇔⇔-=r r d ;条公切线相交22121⇔⇔+<<-r r d r r .15.圆系方程:)04(02222>-+=++++F E D F Ey Dx y x (1)过点11(,)A x y ,22(,)B x y 的圆系方程:1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程.(2)过直线0=++C By Ax l :与圆C :022=++++F Ey Dx y x 的交点的圆系方程:0)(22=+++++++C By Ax F Ey Dx y x λ,λ是待定的系数.(3)过圆1C :011122=++++F y E x D y x 与圆2C :022222=++++F y E x D y x 的交点的圆系方程:0)(2222211122=+++++++++F y E x D y x F y E x D y x λ,λ是待定的系数.特别地,当1λ=-时,2222111222()0x y D x E y F x y D x E y F λ+++++++++=就是121212()()()0D D x E E y F F -+-+-=表示两圆的公共弦所在的直线方程,即过两圆交点的直线. 16.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- .(3)过圆220x y Dx Ey F ++++=上的点),(00y x P 的切线方程为:0000()()022D x x E y y x x y y F ++++++=. (4) 若P(0x ,0y )是圆222x y r +=外一点,由P(0x ,0y )向圆引两条切线, 切点分别为A,B则直线AB 的方程为200xx yy r +=(5) 若P(0x ,0y )是圆222()()x a y b r -+-=外一点, 由P(0x ,0y )向圆引两条切线, 切点分别为A,B 则直线AB 的方程为200()()()()x a x a y b y b r --+--=(6)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线0x x =.17.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D . 18.空间两点间的距离公式:若A 111(,,)x y z ,B 222(,,)x y z ,则AB =19、简单线性规划(确定可行域,求最优解,建立数学模型)⑴、目标函数:要求在一定条件下求极大值或极小值问题的函数。
平面几何基础知识

平面几何基础知识
平面几何是几何学的一个分支,研究平面上的图形和它们之间的关系。
以下是一些平面几何的基础知识:
1. 点:平面上的位置,用字母表示,如A、B、C等。
2. 直线:由无限多个点组成的轨迹,用一条直线上的两个点的大写字母表示,如AB。
3. 线段:直线上的一部分,由两个点确定,用两个点间的线段上的小写字母表示,如AB。
4. 射线:直线上有一个起点,向无限远方延伸出去的部分,用起点和一个穿过起点的点的大写字母表示,如OA。
5. 平行线:在同一个平面内,永远不会相交的直线。
6. 垂直线:两条直线相交,且相交的角度为90度。
7. 角:由两条射线共享起点的一部分平面,用顶点上的字母表示,如∠A。
8. 三角形:由三条线段组成的图形,用三个顶点的大写字母表示,如△ABC。
9. 直角三角形:一个角是90度的三角形。
10. 相似三角形:具有相同形状但大小不同的三角形。
它们的
对应角度相等,对应边的比例相等。
11. 圆:平面上所有与一个固定点的距离相等的点的轨迹。
12. 弧:圆上的一部分,由两个端点和该弧上的一段曲线组成。
13. 弦:连接圆上的两个点的线段。
14. 弧长:弧上的一段曲线所对应的长度。
15. 弧度:用于衡量角度的单位,1弧度等于圆的半径所对应
的弧长。
以上是平面几何的基础知识,掌握这些概念和性质可以帮助我们更好地理解和解决平面几何问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面几何学基本知识
一、相关数学名词
命题:表达判断的语言形式,叫做命题。
每个命题都由“题设”和“结论”两部分组成。
其形式常写成“如果......,那么……”。
真命题:正确的命题,叫做真命题。
假命题:戳物的命题,叫做假命题。
逆命题:两个命题中,如果第一个命题的题设是第二个命题的结论,而第二个命题的题设是第一个命题的结论,那么这两个命题就叫做互逆命题。
如果把其中一个命题叫做原命题,那么另一个命题就叫做原命题的逆命题。
公理:一些命题的正确性是人们在长期的实践中总结出来的,并把它们作为判断其他命题真假的依据,这样的真命题称为公理。
定理:有些命题的正确行使通过推理证实的,这样的真命题叫做定理。
逆定理:
推论:由定理或公理直接推出的结论,叫做推论。
二、最基本的图形
1、点:通常表示一个物体的位置。
点只有位置,没有大小。
2、线段
线段的定义:一条直线上两个点和它们之间的部分,叫做线段。
线段的特征:有两个端点,两个端点可用字母命名。
线段具有一定的长度。
线段的基本性质(线段公理):在所有连接两点的线中,线段最短。
两点距离的定义:连接两点的线段的长度,叫做这两点的距离。
线段中点的定义:把一条线段分成两条相等线段的点,叫做线段的中点。
任何一条线段都只有一个中点。
3、射线
射线的定义:把线段向一方无限延长所形成的图形(直线上的一点和它一旁的部分),叫做射线。
射线的特征:只有一个端点,射线不能用长度来量度,即射线无限长。
射线具有方向性,可以向一个方向无限延长。
用字母表示射线时,必须把表示端点的字母写在前面,如“射线OA”。
4、直线
直线的定义:把线段向两个方无限延长所形成的图形,叫做直线。
直线的特征:没有端点,不能用长度来量度,即直线无限长。
可以向两个方向无
限延长。
直线的基本性质(直线公理):经过两点有一条直线,并且只有一条直线。
三、角
角的定义:由两条有公共端点的射线组成的图形,叫做角。
角的特征:两条边都是射线,两条射线有公共端点。
角的种类:平角;周角;直角;锐角;钝角
平角:始边和终边成一直线的角,叫做平角。
周角:一条射线绕着端点转动到始边和终边重合所形成的角,叫做周角。
直角:平角的一半,叫做直角。
锐角:小于直角且始边和终边不重合的角,叫做锐角。
钝角:小于平角且大于直角的角,叫做钝角。
角平分线的定义:从一个角的顶点引出的一条射线,把该角分成两个相等的角,
这条射线叫做这个角的平分线。
角平分线的性质:一个角的角平分线,平分这个角(把这个角分成两个相等的角)。
互为余角(互余)的定义:两个角的和等于一个直角(90°)时,这两个角互为余角,简称互余。
同角或等角的余角相等。
互为补角(互补)的定义:两个角的和等于一个平角(180°)时,这两个角互为补角,简称互补。
同角或等角的补角相等。
对顶角的定义:如果一个角的两边分别是另一个角的两边的反向延长线,这两个
角叫做对顶角。
对顶角的特征:两个角具有公共的顶点;一个角的两边分别是另一个角两边的反
向延长线
对顶角的性质:对顶角相等。
#相等的两个角不一定是对顶角。
四、在同一平面内,两条不重合直线的位置关系——相交(一般相交、垂直)
相交的两条直线只有一个交点,形成四个角,两组对顶角,四组互补角。
1、一般相交
2、垂直
垂直的定义:两条直线相交所形成的四个角中有一个为直角时,称这两条直线互
相垂直。
其中一条直线叫做另一条直线的垂线,这两条直线的交点,叫做垂足。
垂线的性质:
⑴在同一平面内,经过直线外或直线上的一点,有且只有一条直线与已知直
线垂直。
⑵直线外一点与直线上各点连接的所有线段中,垂线段最短(简说成:垂线
段最短)
点到直线的距离的定义:点到直线的垂线段的长度,叫做点到直线的距离。
线段的垂直平分线的定义:垂直于一条线段并且平分这条线段的直线,叫做这条
线段的垂直平分线。
线段的垂直平分线的性质(定理):线段的垂直平分线上的点和这条线段两个端
点的距离相等。
线段的垂直平分线定理的逆定理:和一条线段两个端点距离相等的点,都在这条
线段的垂直平分线上。
五、相交线中的角
1、两条直线相交,可以形成4个角:对顶角、邻补角。
对顶角2对;邻补角4对。
邻补角的定义:具有一个公共顶点,一条公共边且另一条边互为反向延长线的两
个角称为邻补角。
邻补角的特征:两个邻补角成互补关系(两角的和为180°)。
2、三条直线(指两条直线与第三条直线)相交可以形成8个角:同位角、内错角、同旁内角。
同位角的特征:在两条直线的同侧,同时它们都在第三条直线的同侧的两个角。
同位角共有4对。
内错角的特征:在两条直线的内侧(之间),同时它们分别在第三条直线的两侧
的两个角。
内错角共有2对。
同旁内角的特征:在两条直线的内侧(之间),同时它们都在第三条直线的同侧
的两个角。
同位角共有2对。
六、在同一平面内,两条不重合直线的位置关系——平行
平行线的定义:在同一平面内,不相交(没有交点)的两条直线,叫做平行线。
平行线的性质(平行公理):过直线外一点,有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也平行。
平行线的性质:
1、两条平行线被第三条直线所截,同位角相等——两直线平行,同位角相等
2、两条平行线被第三条直线所截,内错角相等——两直线平行,内错角相等
3、两条平行线被第三条直线所截,同旁内角互补—两直线平行,同旁内角互补平行线判定定理:
1、两条直线被第三条直线所截,如果同位角相等,那么这两直线平行。
2、两条直线被第三条直线所截,如果内错角相等,那么这两直线平行。
3、两条直线被第三条直线所截,如果同旁内角互补,那么这两直线平行。
4、如果两条直线同时平行于第三条直线,那么这两条直线平行。
5、如果两条直线同时垂直于第三条直线,那么这两条直线平行。
两条平行线的距离的定义:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做两条平行线的距离。
七、欧几里德平面几何学等量公理
①等于同量的量相等;(等量代换)
②等量加等量其和相等;
③等量减等量其差相等;
④可重合的图形全等;
⑤全体大于部分。