2017福州一中追梦计划招生数学卷
2017年福州一中面向福州七县、平潭综合实验区乡镇和农村地

2017 年福州一中面向福州七县、平潭综合实验区乡镇和农村地区( “追梦计划” )招生考试试卷 阅读与表达(满分 120 分,考试时间 120 分钟)学 校姓 名准考证号(本试卷共 18 题。
第1题 6 分;第 2-8 题,每题 3 分;第 9-16 题,每题 4 分;第 17 题 6 分;第 18 题 55 分。
共 120 分。
答案应全部填涂或填写在答题卡 的 相应位置 。
)矚慫润 .............. . ....厲钐瘗睞枥。
1.根据要求填空(每空 1 分,共 6 分) (1)在李白《行路难(其一) 》中, “______________,_______________”体现出诗人对 从政仍有所期待。
聞創沟燴鐺險爱氇。
(2)中国古典诗词常将“秋”与“愁”联系起来,刘禹锡却在《秋词》中一反悲秋传统,“_____________,_________骛楼諍锩瀨濟溆。
_”描绘出一幅壮丽开阔的秋日图景,抒发豪迈之情。
残(3)白居易《钱塘湖春行》中以“几处早莺争暖树,__________”表现了鸟儿迎春的喜悦;韩愈《早春呈水部张十八员外(其一) 》以“ _________,草色遥看近却无”描绘了春雨的 滋润与小草初出的模样。
酽锕极額閉镇桧猪。
2.下列加点字的注音和字形全都正确 的一项是( .. A.撺 掇(cuān) .砖。
) (3 分) 心无旁鹜 (wù)彈贸摄尔霁毙攬 .颦 蹙(pín) .嗔 怒(chēn) .B.枘 凿(nà) . C.骊 歌(lí) .谮 害(zèn) . 姿睢 (suī) .菡萏 (yàn) . 花圃 (bǔ) . 1 / 12深恶 痛疾(wù) . 浩瀚无垠 (yín)謀荞抟箧飆鐸 .怼类。
D.诓 骗(kuāng) .盡继。
攲 斜(qī ) .荣膺 (yīng) .颔 首低眉(hàn)厦礴恳蹒骈時 .3.下列句子中的加点成语使用正确 的一项是( ..) (3 分)A.我班的小张同学实力超群,在校运会 100 米决赛中白驹过隙 ,勇夺该项目冠军,为班级 .... 赢得了沉甸甸的荣誉。
2016年福州一中追梦计划数学

EDCBA2016年福州一中面向福州七县、平潭综合实验区乡镇和农村地区(“追梦计划”)招生考试数学与逻辑试卷(满分:150分 考试时间:120分钟)学 校 姓 名 准考证号 注意:请将选择题、填空题、解答题的答案填写在答题卡上.......的相应位置. 一、选择题(本大题共10小题,每小题4分,共 40分.在每小题给出的四个选项中,只有一个选项是正确的.)(1)如图所示,四边形ABCD 中,//AB DC ,过B 作//BE AD 交CD 于点E ,下列说法不正确的是(★★★) (A )A BED ∠=∠ (B )ABE BEC ∠=∠(C )D BEC ∠=∠(D )180A C ∠+∠=(2)下列等式正确的是(★★★)(A )239-=-(B )22532x y x y -=(C )437()()a a a -⋅-=- (D )22(23)(32)32x y y x y x +⋅-=- (3)某校九年级学生参加体育测试,一组10人的引体向上成绩如下表:这组同学完成引体向上的个数的众数和中位数依次是(★★★)(A )9,10(B )9.5,10(C )10,9(D )10,9.5(4)用半径为6cm 、圆心角为120︒的扇形围成一个圆锥的侧面,则这个圆锥的底面半径是(★★★)(A )2cm(B )3cm(C )4cm(D )6cm(5)从长度分别为1、3、5、7、9的五条线段中任取三条,这三条线段可构成三角形的概率是(★★★)(A )15(B )310(C )25(D )12(6)在ABC △中,BC BA >,BC CA >,F 、G 是BC 边上的两点,B ∠、C ∠的角平分线分别垂直AG 、AF ,垂足分别为D 、E .若ABC △的周长为20,BC 的长为8,则DE 的长为(★★★) (A )1(B )2(C )3(D )4第(1)题图第(7)题图 (7)如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,//a b ,Rt GEF △从如图所示的位置出发,沿直线b 向右匀速运动,直到E 与B 重合.运动过程中Rt GEF △与矩形ABCD 重合部分的面积S 随时间t 变化的函数关系的图像大致是(★★★)(A ) (B ) (C ) (D )(8)矩形ABCD 中,AB =1BC =,矩形内动点P 满足PA AD ≥,PB BC ≥,则动点P所在区域的面积为(★★★)(A 2π(B )3π(C 23π (D 3π(9)符号[]x 表示不超过x 的最大整数,例如[2.6]2=,[1]1-=-,[ 2.6]3-=-.若关于x 的方程[][3](0)x x kx k +=≠在01x <<内有解,则k 的取值范围是(★★★)(A )332k <≤ (B )23k <≤ (C )23k ≤≤ (D )322k <≤ (10)将正整数按如下规律排列:第一列 第二列 第三列 第四列 第五列 …… 第一行 1第二行 2 4 第三行 3 5 7第四行 6 8 10 12第五行 9 11 13 15 17 …… ……设2016在第i 行第j 列,则i j +等于(★★★) (A )79(B )80(C )81(D )82abDBECAFG第(17)题图第(18)题图BCD AGHFEOP AOyxBTCR二、填空题(本大题共5小题,每小题4分,共 20分.)(11)已知||x y <,给出下列三个不等式:①0x y +>;②0x y ->;③220x y ->.其中正确的不等式的序号为★★★(填上你认为正确的所有不等式的序号).(12)若方程组22251x y x y k +=⎧⎨-=+⎩的解满足条件14x y <+<,则k 的取值范围是★★★.(13)已知ABC △的三边长分别为13、13、10,则其内切圆半径为★★★. (14)数、学、好、玩这四个文字分别表示09之间的不同数字,且满足算式“数学×好玩=1988”,则四位数“玩好数学”为★★★.(15)若函数223(03)y x ax x =-+<<的图像恒在x 轴上方,则实数a 的取值范围是★★★. 三、解答题(本大题共7小题,共90分.解答应写出文字说明、证明过程或演算步骤.) (16)(本小题满分12分)(Ⅰ)计算:01(1tan 35)(12cos 452-+︒-+︒-;(Ⅱ)先化简,再求值:2211(286)(1)9x x x x -+÷-⨯-,其中12x =-.(17)(本小题满分12分)如图,(40)A -,,P R 、是函数6(0)y x x=>图像上 的两点,PB x ⊥轴于点B ,RT x ⊥轴于点T (T 在B 右侧),APB △面积为9.(Ⅰ)求直线AP 的解析式;(Ⅱ)若方程2(2)20x m x m -++=的两根等于 线段BT TR 、的长,求m 的值. (18)(本小题满分12分)如图,正方形ABCD 的边长为1,E 、F 、G 、H 分别 是AB 、BC 、CD 、DA 边上的动点(不含端点), 且EG 、FH 均过正方形的中心O . (Ⅰ)求证:四边形EFGH 是平行四边形;(Ⅱ)试探究:当线段CG 与CF 满足什么数量关系时, 四边形EFGH 为矩形.CBDA30°15°第(19)题图① 第(19)题图②(19)(本小题满分12分)(Ⅰ)试利用图①求tan15︒的值(结果用根式表示); (Ⅱ)利用(Ⅰ)的结果解答下面问题:如图②,一船以15千米/时的速度自西向东航行,在A 处看到灯塔C 在北偏东75︒方向.行驶4小时后,船到达B 处,看到这个灯塔在北偏东45︒方向,求这时船与灯塔的距离.(20)(本小题满分14分)如图,AC 是四边形ABCD 外接圆O 的直径,E 是AC 、BD 的交点,且BA BD =.(Ⅰ)证明:2ACD BAC ∠=∠; (Ⅱ)若10AC =,2511OE =,求AB 的长. (21)(本小题满分14分)我们知道,若1x ,2x 是方程20(0)ax bx c a ++=≠的两个实数根,则有212()()ax bx c a x x x x ++=--.即221212()ax bx c ax a x x x ax x ++=-++,于是12()b a x x =-+,12c ax x =.由此可得一元二次方程的根与系数关系(韦达定理):12b x x a +=-,12cx x a⋅=. 参考上述推理过程,解答下列问题:若1x ,2x ,3x 是关于x 的方程2(3)x x t -=的三个实数根,且123x x x <<.(Ⅰ)求122331x x x x x x ++,222123x x x ++的值; (Ⅱ)试用只含2x 的代数式表示31x x -,并求31x x -的最大值. (22)(本小题满分14分)已知抛物线2y ax bx c =++过点(03)M ,,且关于x 的方程2219(21)(34)04x a x b a b ---+-+=有两个相等的实数根. (Ⅰ)求抛物线的解析式;(Ⅱ)过点(0)P t ,作y 轴的垂线交抛物线于点A 和点B (点A 在点B 的左侧).(i )若2BP PA =,试求t 的值;(ii )设抛物线的顶点为E ,ABM △的外接圆'O 与抛物线交于另一点N ,若直线EN 与圆'O 相切,试求t 的值.北CBA。
福州一中2017年高中招生(面向市区以外)

福州一中年高中招生(面向市区以外)综合素质测试数学参考答案一、选择题(本大题共小题,每小题分,共分)二、填空题(本大题共小题,每小题分,共分)......三、解答题(本大题共小题,满分分). 本小题主要考查三角形全等、相似的判定方法;特殊四边形的性质及判定等基础知识,考查识图、辩图、逻辑推理能力,考查几何直观等形象思维.满分分.(Ⅰ)法一:证明:过作于,于,……………………分∵四边形是正方形,∴,∴四边形是矩形,又∵是的角平分线,∴……………………………………分∴四边形是正方形,∴,∵,∴,∴∴……………………………………分在和中,,∴≌(),……………………………………分∴……………………………………分 法二:连,由,两点都在以为直径的圆上,分∴分∵ 四边形是正方形, ∴,∴,∴分∴……………………………………分(Ⅱ)法一:∵ 四边形是矩形,∴, 又∵,∴∥,∴∽,∴,……………………………………分同理,,∴,∴,……………………………………分∵,,∴∽……………………………………分 ∴……………………………………分∴为定值.…………………………………分法二:连,由,两点都在以为直径的圆上,分,分∵分∴分(或证明). 本小题主要考查勾股定理、解直角三角形等基础知识,考查应用意识、运算求解能力,考查化归与转化思想等.满分分.解:在中作于点.…………………分在中,……………………………………分………………………………分依题意,以点为圆心,海里为半径的圆形区域为暗礁区域………………分∵所以,如果渔船不改变航线继续航行,有触礁危险.……………………………分在上取点使得,连接,.在中,,所以,……………………………分在中,……………………………分所以,在中,……………………………分因为该渔船到达点的时间小时.所以巡逻船速度海里小时. ………………………分所以,巡逻船要以北偏东的航向和至少每小时海里的速度前往拦截. ………………………分(注:没有取“”扣分). 本题考查一次函数和二次函数的图像与性质,综合了等腰直角三角形、圆、矩形的性质及垂直平分线的判定,解题过程中利用了图象平移的性质,蕴含了方程思想、化归及数形结合等数学思想.满分分.解:(Ⅰ)法一:当时即,则有两个不同的实根,(注:说明因二次函数开口向上,与轴交于、两点则亦可)……分由已知可得,,则解得或(舍),分分法二:过作轴于当时即,则有两个不同的实根,分解得,则由已知可得,,设直线与轴交于点,∵,为等腰直角三角形即解得,分分(Ⅱ)设交轴于.由题意可得,,,∵点和点关于轴对称,为等腰直角三角形且由平移的性质可知且分设,则,分解得或,则或分(Ⅲ)连接,∵,为等腰直角三角形,分由(Ⅱ)可知,∵四边形为矩形在的垂直平分线上分过作于,由垂线段最短可知即为线段的最小长度..... 分当点在处时,在的中点处,当点在处时,在上的点处由上可知.则,,,∵四边形为矩形得,∵即线段的最小长度为分。
【福州一中】2016-2017年高三第二学期模拟文科数学试卷(附答案)

19.解:(Ⅰ)取线段CD的中点Q,
连接KQ,直线KQ即为所求.
证明如下:
取EC中点G,连接FG,连接AC交BD于O.
则OG为 的中位线.
∴ ,∵ ,∴ ,
∴四边形FGOD为平行四边形,∴ .
∵K,Q分别为BC,CD中点,∴ ,∴ .
∵ , ,∴Байду номын сангаас.
(Ⅱ)由(Ⅰ)知, ,∵ , ,∴ ,
A. B. C. D.
11.已知 , 是焦点在 轴的双曲线 的上、下焦点,点 关于渐近线的对称点恰好落在以 为圆心, 为半径的圆上,则双曲线的离心率为()
A.3B. C.2D.
12.已知函数 , ,函数 ,若存在 , ,使得 成立,则实数a的取值范围是()
A. B. C. D.
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上)
室外工作
室内工作
合计
有呼吸系统疾病
150
无呼吸系统疾病
100
合计
200
(Ⅰ)请把 列联表补充完整;
(Ⅱ)你是否有95%的把握认为感染呼吸系统疾病与工作场所有关;
(Ⅲ)现采用分层抽样从室内工作的居民中抽取一个容量为6的样本,将该样本看成一个总体,从中随机抽取2人,求2人都有呼吸系统疾病的概率.
参考公式与临界表:
A.528B.1 020C.1 038D.1 040
5.某几何体的三视图如图所示(单位: ),则该几何体的体积等于()
A. B. C. D.
6.从1,2,3,4,5中任取3个不同的数,则取出的3个数可以作为三角形的三边边长的概率为()
A. B. C. D.
福州一中自主招生试卷福州一中自主招生考试_——数学试卷

福州一中自主招生试卷福州一中自主招生考试_——数学试卷福州一中自主招生试卷 2011福州一中自主招生考试_——数学试卷福州一中2011年高中招生综合素质测试数学试卷(满分100分,考试时间60分钟)学校姓名准考证号注意:请将选择题、填空题、解答题的答案填写在答题卡的相应位置上(一、选择题(本大题共6小题,每小题5分,共30分(在每小题给出的四个选项中,只有一个选项是正确的() 1(右图是某几何体的三视图及相关数据,则下列判断错误的是( ) ((A(4a,b c D(a,b c b c C(a c B(22;?2a3a 6a;?|2136222222|~2sin45 ,(~1)2011 0;b,cb(其中正确的个数有( ) a,caA(0 B(1 C(2D(33(某救灾募捐活动中,文艺工作者积极向灾区捐款(其中8人捐款统计如下表: 设这8人捐款数的众数为a,中位数为b,平均数为c,则下列各式正确的是( ) A(a b c B(a b c C(a b cD(a b c4(如右图,直角坐标系中一条圆弧经过网格点A、B、C,则该圆弧所在圆的圆心坐标为( )2A((2,0) B((2,1) C((1,2)D(无法确定5(如右图,在 ABC中,AB 5,AC 4,BC 3,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是( )125A(2 B( C( D(25A6(定义:直线l1与l2相交于点O,对于平面内任意一点M,点M 到直线l1、l2的距离分别为p、q,则称有序非负实数对(p,q)是点M 的“距离坐标”(根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A(1 B(2 C(3D( 4二、填空题(本大题共6小题,每小题5分,共30分()BD1x2~x~6x2,2x,1,) 7(化简(2的结果为。
x,3xx2~9x,38(如图,在两面墙之间有一根底端在A点的竹竿,当它3靠在一侧墙上时,竹竿的顶端在B点;当它靠在另一侧墙上时,竹竿的顶端在D点(已知BAC 60 , DAE 45 ,(墙面垂直地面) AC 2米,则DE的高度为米(9(若实数a,b满足a,b 1,则a,4b的最小值是。
2017福州一中追梦计划招生数学答案

2017年福州一中面向福州七县、平潭综合实验区乡镇和农村地区(“追梦计划”)招生考试数学与逻辑参考答案一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共5小题,每小题4分,共20分)11.5210258+=⎧⎨+=⎩x yx y12.5<x13.333333212345621+++++=14.4+15.13<≤n三、解答题(本大题共7小题,满分90分)16. 本小题主要考查实数的运算、代数式的化简等基础知识,考查代数运算能力、化简能力,分类与整合思想等.满分12分.解:(Ⅰ)原式=116+82-+⨯……………………5分=8……………………………………6分(Ⅱ)原式222241--=÷--x x xxx x……………………………………8分()()222122--=⋅-+-x x xx xx x…………………………9分1=.2-+x……………………………………11分当12=-x时,原式23=-.……………………………12分17. 本小题主要考查圆的几何性质、等腰三角形的判定及性质等基础知识,考查分析问题、解决问题的能力,考查演绎论证及度量计算的逻辑思想等.满分12分.证明:(Ⅰ)∵ 四边形ABED 为⊙O 的圆内接四边形∴ 180∠+∠=B ADE ……………………………………2分 又 ∵ 180∠+∠=CDE ADE∴ ∠=∠B CDE ……………………………………3分 ∵ =AB AC∴ ∠=∠B C ……………………………………4分 ∴ ∠=∠C CDE ……………………………………5分 ∴ ∆CDE 为等腰三角形……………………………………6分 (Ⅱ)法一:连接AE ,∵ ⊙O 的直径为AB∴ 90=∠AEB ∴BC AE ⊥...............................7分∵AC AB =∴421==BC CE .........................................8分 由(Ⅰ)知EDC C B ∠=∠=∠,C C ∠=∠ ∴ABC ∆∽EDC ∆ ∴ECACDC BC =...........................................10分 ∴332=⋅=DC CE BC AC .................................11分 ∵AC AB =∴⊙O 的半径为16.3……………………………………12分 法二:连接AE ,过点E 作⊥EF CD ,垂足为F 由(Ⅰ)知∆CDE 是以CD 为底边的等腰三角形∴ 1322==CF CD ………………7分 ∵ ⊙O 的直径为AB90∴∠=AEB ……………………8分 ∵ =AB AC4∴==BE CE …………………9分 ∵ ,∠=∠∠=∠B C AEB EFC∴ ∆EFC ∽∆AEB ,……………………………10分 ∴=FC CE BE AB……………………………………11分∴ 4432332⋅⨯===CE BE AB FC∴⊙O 的半径为16.3……………………………………12分 18.本题考察反比例函数图像及性质、一次函数解析式求解问题,及求平面四边形面积问题,涉及对称与割补思想方法.满分12分. 解:(Ⅰ)过点C 分别作CE AO ⊥于点E , 设点(,)C m n , ∵tan 2∠=COA 2,n m ∴=..................................1分 ∵//CB OA ,B y n ∴=∵D 为AE 的中点,,2D ny ∴=..............................................2分 又,C D 在反比例函数图象上,,D D mn x y k ∴=⋅=2,D x m ∴= ..............................................4分∵2,=B x 1,m ∴= 2,n ∴=.............................................5分2.k mn ∴==所以,反比例函数的解析式为2.=y x...........................................6分 (Ⅱ)由(Ⅰ)得(1,2),(2,1)C D ,法一:AOC ACD OCDA S S S ∆∆=+四边形......................9分 1152211222=⨯⨯+⨯⨯=..............12分法二: BCDOCDA OABC S S S ∆=-四边形四边形矩形∆∆=+-COE BCD ABCE S S S ...............9分115121211222=⨯⨯+⨯-⨯⨯=...........12分19. 本小题主要考查三角形全等、相似的判定方法;特殊四边形的性质及判定等基础知识,考查识图、辩图、逻辑推理能力,考查几何直观等形象思维.满分12分.(Ⅰ)法一:证明:过P 作⊥PM AB 于M ,⊥PN BC 于N ,……………………1分 ∵ 四边形ABCD 是正方形, ∴ 90∠=ABC , ∴ 四边形BMPN 是矩形,又 ∵ BD 是∠ABC 的角平分线,∴ =PM PN ……………………………………2分 ∴ 四边形BMPN 是正方形, ∴ 90∠=MPN , ∵ ⊥AP PE , ∴ 90∠= APE ,∴ ∠-∠=∠-∠APE MPE MPN MPE∴ ∠=∠APM EPN ……………………………………4分 在∆APM 和∆EPN 中,∠=∠⎧⎪=⎨⎪∠=∠⎩AMP ENP PM PNAPM EPN , ∴ ∆APM ≌∆EPN (ASA ),……………………………………5分 ∴ .=AP PE ……………………………………6分 法二:连AE ,由90ABC APE ︒∠=∠=,∴、B P 两点都在以AE 为直径的圆上,.....................2分∴ ∠=∠ABP AEP .....................3分 ∵ 四边形ABCD 是正方形,∴45ABP ︒∠=,∴ 45∠=AEP ,∴45EAP ︒∠=∴∠=∠EAP AEP ......................5分 ∴ .=AP PE ……………………………………6分(Ⅱ)法一:∵ 四边形ABCD 是矩形, ∴ 90∠=BAD , 又∵90∠= PBM , ∴ PM ∥AD , ∴ ∆BPM ∽∆BDA , ∴=PM BPAD BD ,……………………………………7分 同理,PN BPCD BD=,∴PM PNAD CD =, ∴63==42=PM AD PN CD ,……………………………………9分 ∵ 90∠=∠=AMP ENP ,∠=∠MPA EPN , ∴ ∆APM ∽.∆EPN ……………………………………10分 ∴=AP PMPE PN……………………………………11分 ∴ :3:2.=AP PE 为定值.…………………………………12分 法二:连AE ,由90ABC APE ︒∠=∠=,∴、B P 两点都在以AE 为直径的圆上,..................8分∴ABP AEP ∠=∠,......................9分 tan tan ∴∠=∠ABP AEP∵ tan tan ,∠=∠=AP AD AEP ABP AE AB....................11分 ∴3.2==AP AD AE AB .....................12分 (或证明AEP ABD ∆∆∽)20. 本小题主要考查勾股定理、解直角三角形等基础知识,考查应用意识、运算求解能力,考查化归与转化思想等.满分14分.解:在ΔABD 中作DA B C ⊥于点C .…………………2分 在ABC Rt ∆中, 1645AB BAC ︒=∠=,,28==∴AC BC ……………………………………3分2628214=-=-=∴AC AD CD ………………………………4分依题意,以点D 为圆心,12海里为半径的圆形区域为暗礁区域………………5分∵ 12<所以,如果渔船不改变航线继续航行,有触礁危险.……………………………6分在BC 上取点E 使得12=ED ,连接AE ,ED . 在CED Rt ∆中,12=ED ,26=CD所以,222CD ED CE -=26=∴CE ……………………………8分在A C E Rt ∆中,222AC CE AE +=210=∴AE ……………………………9分所以,在A C E Rt ∆中,53sin ==∠AE CE EAC '3652EAC ︒∴∠= ……………………………11分因为该渔船到达点E 的时间224224===BE t 小时. 所以巡逻船速度2022210==≥t AE v 海里/小时. ………………………13分 所以,巡逻船要以北偏东''9036525308︒︒︒-=的航向和至少每小时20海里的速度前往拦截. ………………………14分 (注:没有取“=”扣1分)21.本题考察学生的阅读理解能力,解一元二次方程及求解二次函数最值的能力,蕴含了数形结合的思想. 满分14分.解:(I )由题意知,{}3,22max --=-,......................................2分 所以方程变为 2228x x -=-+,化简为 2410x x --=...................3分解得 12x =或 22x =所以方程{}23,228max x x --=-+的解为2+或2分 (II )(1)当2236x x x x +-≥-即32x ≥时, {}22236,36,y max x x x x x x =+--=+-...................................7分∵ 236=+-y x x 的对称轴为3,2x =-而32x ≥在对称轴32x =-的右侧,y ∴随着x 的增大而增大,32x ∴=时,y 取最小值,且最小值为2333()36224y =+⨯-=.................9分(2)当2236x x x x +-<-即32x <时,{}22236,,y m a x x x x x x x =+--=-.....................................11分∵ 2=-y x x 的对称轴为1,2x =而1322<, 12x ∴=时,y 取最小值,且最小值为2111()224y =-=-..................13分由(I )(II )得 函数{}2236,y max x x x x =+--的最小值为14-..........14分(注:若用数形结合作答的酌情给分.)22. 本题考查用待定系数法求函数解析式及一次函数和二次函数的性质,综合了等腰直角三角形、圆、矩形的性质及垂直平分线的判定,解题过程中利用了图象平移的性质,蕴含了化归及数形结合的数学思想.满分14分.解:(I )由已知设)0(2)1(:21≠--=a x a y C 过)0,3(B ,........................1分则024=-a ,21=a ..........................2分 23212)1(21:221--=--=∴x x x y C ..........................3分抛物线1C 的对称轴方程为1=x ,由对称性可得)0,1(-A ....................4分(II )法一:设直线)0(≠+=k b kx y l :由已知得⎩⎨⎧=+-=+032b k b k ,解得3,1-==b k 3:-=∴x y l ................5分设直线l 交y 轴于)3,0(-D∵ =OB OD ,45=∠∴ODB由平移的性质可知BC PQ = ∵=PF BC ,22==∴PF PQ ∵⊥PF l ,PQF ∆∴为等腰直角三角形.ODB FQP ∠==∠∴ 45,4=QFy FQ //∴轴 ....................7分设)3,(-t t Q ,则)2321,(2--t t t F ,4|)3(2321|2=----=t t t FQ 解得1-=t 或5,则)0,1(-F 或)6,5( ....................9分 法二:连接FQ 并延长交x 轴于H ,连接AF∵ 22==BC AC ,4=AB∴ABC ∆为等腰直角三角形...............5分90=∠ACB , 45=∠=∠BAC ABC∵ l FP ⊥ ∴90=∠FPQ ∴PF AC //∵ BC PF =∴AC PF =∴四边形ACPF 为矩形 ∴AF PC // ∴ 45=∠FAH由平移的性质可知BC PQ =∴PFQ ∆为等腰直角三角形, 45=∠FQP∴ 45=∠AFH ∴AFH ∆为等腰直角三角形..........................7分设)2321,(2--m m m F ,则FH AH =即2321)1(2--=--m m m 解得1-=m 或5,即)0,1(-F 或)6,5( ..............................9分(Ⅲ)连接QR AR MQ NQ ,,,由(II )可知 90=∠=∠FPQ ACB ,)2,5(QPF AC //∴∵=AC PF∴四边形ACPF 为矩形90=∠∴MAN RQ MN AR ==∴21R ∴在AQ 的垂直平分线上,即R 的路径是线段....11分当点M 在C 处时,R 在AQ 的中点1R 处,当点M 在A 处时,R 在AN 上的点2R 处 ∵122190,∠=∠=∠ AR R AQC R AR ∵121sin ∠==R R AC NAQ CQ AR∵===AC CQ AQ 21021=∴R R 即R 的路径长度为210......................................14分。
福州一中2017年高中招生(面向福州以外地区)

福州一中2017年高中招生(面向福州以外地区)综合素质测试理科综合试卷(考试时间:50分钟 满分:50分)学校 姓名 准考证号一、选择题(共12小题,每小题2分,共24分,每小题仅有一个选项是正确的,请将正确答案用.......2B ..铅笔填涂在答题卡上.........)1. 关于染色体、DNA 、基因三者关系的叙述中,正确的是( )A .染色体存在于DNA 分子中B .染色体数目和基因数目一样多C .一个DNA 分子中含有一个基因D .DNA 主要存在于染色体上2.下列有关人体消化系统的叙述中,正确的是( )A .消化腺是由胃腺、肠腺和胰腺共同组成的B .胃是消化食物和吸收营养物质的最主要部位C .所有的消化腺都能分泌消化液D .所有的消化液中都含有消化酶3. 右图是植物新陈代谢示意图,甲、乙、丙分别表示不同的生理活动,①②③代表相关的物质, 以下描述正确的是( )A. 播种前要松土,与乙所代表的生理活动有关B. 图中甲表示光合作用,①代表二氧化碳C. 根吸收的②绝大部分经甲过程蒸发到空气中D. 丙所代表的生理活动,能为植物体各项生命活动提供能量4.以下各项中,能正确表示一条食物链的是( )A .阳光→草→兔→狼B .昆虫→蜘蛛→青蛙→蛇C .草→兔→狼→细菌D .草→兔→狐5.常温下,下列溶液中,pH 最小的是 ( )A .pH 等于7的溶液B .使无色酚酞溶液变红的溶液C .使紫色石蕊溶液变红的溶液D .使红色石蕊试纸变蓝的溶液6.右图表示的是纯净物、单质、化合物、含氧化合物、氧化物之间的包含与不包含关系,若整个大圆代表纯净物,则①③所属的类别是( )A .① 单质、③ 氧化物B .① 单质、③ 含氧化合物C .① 氧化物、③化合物D .①化合物、③ 含氧化合物7.下列说法正确的是( )A .灼烧并闻气味一定能鉴别纯棉线和羊毛线B .能与盐酸反应生成二氧化碳的钠盐一定是碳酸钠C .酸碱中和反应生成盐和水,则生成盐和水的反应一定是中和反应D .带火星的细木条伸入集气瓶中,木条不复燃,则集气瓶中一定不含氧气①② ③ ④8.某白色粉末可能含有CaCl2、Na2SO4、Ba(NO3)2、K2CO3中的一种或几种。
2017福州一中追梦计划招生数学答案

2017年福州一中面向福州七县、平潭综合实验区乡镇和农村地区(“追梦计划”)招生考试数学与逻辑参考答案一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共5小题,每小题4分,共20分)11.5210258+=⎧⎨+=⎩x yx y12.5<x13.333333212345621+++++=14.4+15.13<≤n三、解答题(本大题共7小题,满分90分)16. 本小题主要考查实数的运算、代数式的化简等基础知识,考查代数运算能力、化简能力,分类与整合思想等.满分12分.解:(Ⅰ)原式=116-+……………………5分=8……………………………………6分(Ⅱ)原式222241--=÷--x x xxx x……………………………………8分()()222122--=⋅-+-x x xx xx x…………………………9分1=.2-+x……………………………………11分当12=-x时,原式23=-.……………………………12分17. 本小题主要考查圆的几何性质、等腰三角形的判定及性质等基础知识,考查分析问题、解决问题的能力,考查演绎论证及度量计算的逻辑思想等.满分12分.证明:(Ⅰ)∵ 四边形ABED 为⊙O 的圆内接四边形∴ 180∠+∠=oB ADE ……………………………………2分 又 ∵ 180∠+∠=oCDE ADE∴ ∠=∠B CDE ……………………………………3分 ∵ =AB AC∴ ∠=∠B C ……………………………………4分 ∴ ∠=∠C CDE ……………………………………5分 ∴ ∆CDE 为等腰三角形……………………………………6分 (Ⅱ)法一:连接AE ,∵ ⊙O 的直径为AB∴ο90=∠AEB ∴BC AE ⊥...............................7分∵AC AB =∴421==BC CE .........................................8分 由(Ⅰ)知EDC C B ∠=∠=∠,C C ∠=∠ ∴ABC ∆∽EDC ∆ ∴ECAC DC BC =...........................................10分 ∴332=⋅=DC CE BC AC .................................11分∵AC AB =∴⊙O 的半径为16.3……………………………………12分 法二:连接AE ,过点E 作⊥EF CD ,垂足为F 由(Ⅰ)知∆CDE 是以CD 为底边的等腰三角形 ∴ 1322==CF CD ………………7分 ∵ ⊙O 的直径为AB90∴∠=oAEB ……………………8分 ∵ =AB AC4∴==BE CE …………………9分 ∵ ,∠=∠∠=∠B C AEB EFC∴ ∆EFC ∽∆AEB ,……………………………10分 ∴=FC CE BE AB……………………………………11分∴ 4432332⋅⨯===CE BE AB FC∴⊙O 的半径为16.3……………………………………12分 18.本题考察反比例函数图像及性质、一次函数解析式求解问题,及求平面四边形面积问题,涉及对称与割补思想方法.满分12分. 解:(Ⅰ)过点C 分别作CE AO ⊥于点E , 设点(,)C m n , ∵tan 2∠=COA 2,n m ∴=..................................1分 ∵//CB OA ,B y n ∴= ∵D 为AE 的中点,,2D ny ∴=..............................................2分 又,C D 在反比例函数图象上,,D D mn x y k ∴=⋅=2,D x m ∴= ..............................................4分∵2,=B x 1,m ∴= 2,n ∴=.............................................5分 2.k mn ∴==所以,反比例函数的解析式为2.=y x...........................................6分 (Ⅱ)由(Ⅰ)得(1,2),(2,1)C D ,法一:AOC ACD OCDA S S S ∆∆=+四边形......................9分 1152211222=⨯⨯+⨯⨯=..............12分法二:BCDOCDA OABC S S S ∆=-四边形四边形矩形∆∆=+-COE BCD ABCE S S S ...............9分115121211222=⨯⨯+⨯-⨯⨯=...........12分 19. 本小题主要考查三角形全等、相似的判定方法;特殊四边形的性质及判定等基础知识,考查识图、辩图、逻辑推理能力,考查几何直观等形象思维.满分12分.(Ⅰ)法一:证明:过P 作⊥PM AB 于M ,⊥PN BC 于N ,……………………1分 ∵ 四边形ABCD 是正方形, ∴ 90∠=oABC , ∴ 四边形BMPN 是矩形,又 ∵ BD 是∠ABC 的角平分线,∴ =PM PN ……………………………………2分 ∴ 四边形BMPN 是正方形, ∴ 90∠=oMPN , ∵ ⊥AP PE , ∴ 90∠=o APE ,∴ ∠-∠=∠-∠APE MPE MPN MPE∴ ∠=∠APM EPN ……………………………………4分 在∆APM 和∆EPN 中,∠=∠⎧⎪=⎨⎪∠=∠⎩AMP ENP PM PNAPM EPN , ∴ ∆APM ≌∆EPN (ASA ),……………………………………5分 ∴ .=AP PE ……………………………………6分 法二:连AE ,由90ABC APE ︒∠=∠=,∴、B P 两点都在以AE 为直径的圆上,.....................2分∴ ∠=∠ABP AEP .....................3分 ∵ 四边形ABCD 是正方形,∴45ABP ︒∠=,∴ 45∠=oAEP ,∴45EAP ︒∠=∴∠=∠EAP AEP ......................5分∴ .=AP PE ……………………………………6分 (Ⅱ)法一:∵ 四边形ABCD 是矩形, ∴ 90∠=oBAD , 又∵90∠=o PBM , ∴ PM ∥AD , ∴ ∆BPM ∽∆BDA , ∴=PM BPAD BD ,……………………………………7分 同理,PN BPCD BD=,∴PM PNAD CD=, ∴ 63==42=PM AD PN CD ,……………………………………9分∵ 90∠=∠=oAMP ENP ,∠=∠MPA EPN , ∴ ∆APM ∽.∆EPN ……………………………………10分 ∴=AP PMPE PN……………………………………11分 ∴ :3:2.=AP PE 为定值.…………………………………12分 法二:连AE ,由90ABC APE ︒∠=∠=,∴、B P 两点都在以AE 为直径的圆上,..................8分 ∴ABP AEP ∠=∠,......................9分tan tan ∴∠=∠ABP AEP∵ tan tan ,∠=∠=AP ADAEP ABP AE AB....................11分 ∴3.2==AP AD AE AB .....................12分 (或证明AEP ABD ∆∆∽)20. 本小题主要考查勾股定理、解直角三角形等基础知识,考查应用意识、运算求解能力,考查化归与转化思想等.满分14分.解:在ΔABD 中作DA B C ⊥于点C .…………………2分 在ABC Rt ∆中, 1645AB BAC ︒=∠=,,28==∴AC BC ……………………………………3分2628214=-=-=∴AC AD CD ………………………………4分依题意,以点D 为圆心,12海里为半径的圆形区域为暗礁区域………………5分 ∵ 6212<所以,如果渔船不改变航线继续航行,有触礁危险.……………………………6分 在BC 上取点E 使得12=ED ,连接AE ,ED . 在CED Rt ∆中,12=ED ,26=CD所以,222CD ED CE -=26=∴CE ……………………………8分在A C E Rt ∆中,222AC CE AE +=210=∴AE ……………………………9分所以,在A C E Rt ∆中,53sin ==∠AE CE EAC '3652EAC ︒∴∠= ……………………………11分因为该渔船到达点E 的时间224224===BE t 小时. 所以巡逻船速度2022210==≥t AE v 海里/小时. ………………………13分 所以,巡逻船要以北偏东''9036525308︒︒︒-=的航向和至少每小时20海里的速度前往拦截. ………………………14分 (注:没有取“=”扣1分)21.本题考察学生的阅读理解能力,解一元二次方程及求解二次函数最值的能力,蕴含了数形结合的思想. 满分14分.解:(I )由题意知,{}3,22max --=-,......................................2分 所以方程变为 2228x x -=-+,化简为 2410x x --=...................3分解得 12x =或 22x =所以方程{}23,228max x x --=-+的解为2 或2.................5分 (II )(1)当2236x x x x +-≥-即32x ≥时, {}22236,36,y max x x x x x x =+--=+-...................................7分 ∵ 236=+-y x x 的对称轴为3,2x =-而32x ≥在对称轴32x =-的右侧, y ∴随着x 的增大而增大,32x ∴=时,y 取最小值,且最小值为2333()36224y =+⨯-=.................9分 (2)当2236x x x x +-<-即32x <时,{}22236,,y max x x x x x x =+--=-.....................................11分∵ 2=-y x x 的对称轴为1,2x =而1322<, 12x ∴=时,y 取最小值,且最小值为2111()224y =-=-..................13分由(I )(II )得 函数{}2236,y max x x x x =+--的最小值为14-..........14分(注:若用数形结合作答的酌情给分.)22. 本题考查用待定系数法求函数解析式及一次函数和二次函数的性质,综合了等腰直角三角形、圆、矩形的性质及垂直平分线的判定,解题过程中利用了图象平移的性质,蕴含了化归及数形结合的数学思想.满分14分.解:(I )由已知设)0(2)1(:21≠--=a x a y C 过)0,3(B ,........................1分则024=-a ,21=a ..........................2分 23212)1(21:221--=--=∴x x x y C ..........................3分抛物线1C 的对称轴方程为1=x ,由对称性可得)0,1(-A ....................4分(II )法一:设直线)0(≠+=k b kx y l :由已知得⎩⎨⎧=+-=+032b k b k ,解得3,1-==b k 3:-=∴x y l ................5分 设直线l 交y 轴于)3,0(-D ∵ =OB OD ,ο45=∠∴ODB 由平移的性质可知BC PQ = ∵=PF BC ,22==∴PF PQ ∵⊥PF l ,PQF ∆∴为等腰直角三角形.ODB FQP ∠==∠∴ο45,4=QFy FQ //∴轴 ....................7分设)3,(-t t Q ,则)2321,(2--t t t F ,4|)3(2321|2=----=t t t FQ 解得1-=t 或5,则)0,1(-F 或)6,5( ....................9分 法二:连接FQ 并延长交x 轴于H ,连接AF ∵ 22==BC AC ,4=AB∴ABC ∆为等腰直角三角形...............5分ο90=∠ACB ,ο45=∠=∠BAC ABC∵ l FP ⊥ ∴ο90=∠FPQ ∴PF AC // ∵ BC PF =∴AC PF =∴四边形ACPF 为矩形 ∴AF PC // ∴ο45=∠FAH由平移的性质可知BC PQ =∴PFQ ∆为等腰直角三角形,ο45=∠FQP∴ο45=∠AFH ∴AFH ∆为等腰直角三角形..........................7分设)2321,(2--m m m F ,则FH AH =即2321)1(2--=--m m m 解得1-=m 或5,即)0,1(-F 或)6,5( ..............................9分 (Ⅲ)连接QR AR MQ NQ ,,,由(II )可知ο90=∠=∠FPQ ACB ,)2,5(QPF AC //∴∵=AC PF∴四边形ACPF 为矩形ο90=∠∴MANRQ MN AR ==∴21R ∴在AQ 的垂直平分线上,即R 的路径是线段....11分当点M 在C 处时,R 在AQ 的中点1R 处,当点M 在A 处时,R 在AN 上的点2R 处∵122190,∠=∠=∠oAR R AQC R AR∵121sin ∠==R R AC NAQ CQ AR ∵22,42,210===AC CQ AQ21021=∴R R 即R 的路径长度为210......................................14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年福州一中面向福州七县、平潭综合实验区乡镇
和农村地区(“追梦计划”)招生考试
数学与逻辑试卷
(满分:150分 考试时间:120分钟)
学 校: 姓 名: 准考证号: 注意:请将选择题、填空题、解答题的答案填写在答题卡上.......
的相应位置. 一、选择题(本大题共10小题,每小题4分,共 40分.在每小题给出的四个选项中,只有一个选项是正确的.)
1.下列运算正确的是( )
A .
22423+=a a a B .2242-=a a a C .22422⋅=a a a D .22
22÷=a a a 2.下列大学的校徽图案是轴对称图形的是( )
清华大学 北京大学 浙江大学 中国人民大学
3.代数式3231212x x x -+分解因式,结果正确的是( )
A .23(44)-+x x x
B .23(4)x x -
C .3(2)(2)x x x +-
D .23(2)x x -
4.下列命题错误..
的个数是( ) ① 经过三个点一定可以作一个圆;
② 三角形的外心到三角形各顶点的距离相等;
③ 对角线相等的四边形是矩形;
④ 一组对边平行且另一组对边相等的四边形是平行四边形.
A .1
B .2
C .3
D .4 5.无论x 取何值时,点)2,(2x x x P +-不可能...
在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
6.如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为( )
A .288
B .144
C .216
D .120
A . B. C. D.
7.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①2甲s >2乙s ;②2甲s <2
乙s ;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是( )
A .①③
B .①④
C .②③
D .②④
8.2017年5月14日,福州一中将喜迎建校两百周年华诞,当天正好是星期日,以当天作为第1天开始算起,则第366天是( ) A .星期六 B .星期日 C .星期一 D .星期二
9.如图,A 、B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )
A .
625 B .15
C .425
D .725 10.已知关于x 的不等式组0243(2)
-⎧>⎪⎨⎪-<-⎩x m x x 的解集为1x >,且使关于x 的方程
1322
x m x x -+=--有非负整数解,则符合条件的实数m 的取值之和为( ) A. 8- B .7- C .2- D .0
二、填空题(本大题共5小题,每小题4分,共 20分.请将正确答案填在答题卡相应位置)
11. 《九章算术》是我国传统数学最重要的著作,奠定了我国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就. 《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”
译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”
设每头牛值金x 两,每只羊值金y 两,可列方程组为 .
M B
A 12.若函数=-y kx b 的图象如图所示,则关于x 的不等式(3)0k x b -->的解集为 .
13.观察下列等式:332123+=,33321236++=,333321+2+3+410=,…,根据上述规律,第五个等式为________________.
14. 如图,AB 是⊙O 的直径,8=AB ,点M 在⊙O 上,45∠=MAB ,N 是劣弧MB 的三等分点(靠近点B ),
P 是直径AB 上的一动点,则∆PMN 周长的最小值为______________.
15.定义二次函数的图象与直线x y =交点的横坐标为二次函数的不动点.已知二次函数 ()21324
=+-+-y x mn x mn 有唯一不动点,若3-≤m 且0<mn ,则n 的取值范围是 .
三、解答题(本大题共7小题,共90分.解答应写出文字说明、证明过程或演算步骤)
16.(本小题满分12分)
(Ⅰ)计算:()()3
0201713.1416302π-⎛⎫--+⨯︒+ ⎪⎝⎭cos ; (Ⅱ)先化简,再求值:222311-⎛⎫÷-- ⎪--⎝⎭x x x x x x ,其中1.2=-x
17. (本小题满分12分)
如图,已知三角形ABC ,=AB AC ,以AB 为直径的⊙O 分别交AC 、BC 于D 、E 两点,连接.ED
(Ⅰ)求证:∆CDE 为等腰三角形;
(Ⅱ)若3=CD ,8=BC ,求⊙O 的半径.
18. (本小题满分12分)
如图,四边形OABC ,顶点,B C 在第一象限,顶点A 在x 轴的正半轴上,//,CB OA BA x ⊥轴,点B 的横坐标为2,tan 2,COA ∠=D 为AB 的中点,反比例函数k y x
=的图
象经过,C D 两点.
(Ⅰ)求反比例函数的解析式;
(Ⅱ)求四边形OCDA 的面积.
19.(本小题满分12分) 已知四边形ABCD ,点E 在边BC 上,P 为对角线BD 上的动点,满足⊥AP PE . (Ⅰ)当四边形ABCD 为正方形时(如图1),求证:=PA PE ;
(Ⅱ)当四边形ABCD 为矩形,且6=AD ,4=CD 时(如图2),试探究:AP PE 是否为定值,若是,求出该定值;若不是,请说明理由.
20. (本小题满分14分)
如图,海中有一小岛D ,它周围12海里内有暗礁.一艘巡逻船在D 岛海域例行巡逻,某时刻航行至A 处时,测得其东北方向与它相距16海里的B 处有一渔船,且D 岛位于巡逻船正东214海里处.观测中发现,此渔船正以每小时4海里的速度沿正南方向航行.如果渔船不改变航线继续前行,有没有触礁危险?请通过计算加以说明.如果有危险,巡逻船的速度至少为多少时,才能将该渔船拦截在暗礁区域之外,并确定此时巡逻船的航向.
(参考数据:sin 3652'0.6︒≈,sin 5308'0.8︒
≈)
21.(本小题满分14分)
对于两个实数,a b ,我们规定{},max a b 表示,a b 中的较大值,当a b ≥时,
{},max a
b a =;当a b <时,{},max a b b =,例如:{}1,33max =. (Ⅰ)求方程{}23,228max x x --=-+的实数解;
(Ⅱ)求函数{}2236,y max x x x x =+--的最小值.
22.(本小题满分14分)
如图,已知抛物线1C 的顶点坐标为)2,1(-C ,抛物线1C 与x 轴交于、A B 两点,其中()3,0B .直线l 经过、B C 两点,连接AC .
(Ⅰ)求点A 的坐标及抛物线1C 的解析式;
(Ⅱ)将抛物线1C 平移,并保持抛物线的顶点在直线l 上,当B 、C 两点分别平移到点P 、
Q 处时,过点P 作直线l 的垂线交抛物线1C 于点F ,此时恰有BC PF =,求点F 的坐标;
(Ⅲ)在(Ⅱ)的条件下,取在x 轴上方的点F ,连接AF ,设M 、N 分别为线段AC 、AF 上的动点,以MN 为直径的⊙R 经过点Q ,当点M 从C 运动到A 时,试求圆心R 经过的路径长.。