有理数复习题(提高版)
有理数的概念复习题

有理数概念(一)一、选择题(每小题3分,共36分) 1. 下列各数不是正数的是( ) A. 3.5B. +7C. +5.3D. -5.62. 在数轴上表示数-3,0,5,2,52的点中,在原点右边的有( )A. 0个B. 1个C. 2个D. 3个3. 一个数的绝对值是正数,则这个数是( ) A. 正数; B. 不等于零的有理数; C. 任意有理数; D. 非负数.4. 比较-2,-21,0,0.02的大小,正确的是( )A. -2<-21<0<0.02 B. -21<-2<0<0.02 C. -2<-21<0.02<0 D. 0<-21<-2<0.025. 文具店、书店和玩具店依次坐落在上海市南京路东西走向的大街上,文具店在书店西边20m 处,玩具店位于书店东边100m 处,小明从书店沿街向东走了40m ,接着又向西走了60m ,此时小明的位置在( )A. 文具店 B. 玩具店 C. 文具店西边40m D. 玩具店东边-60m6. 如果a <0,那么 ( )A. |a |<0B. -(-a )>0C. |a |>0D. -a <07. 若a 、b 为有理数,那么下列结论中一定正确的是( )A. 若a <b ,则|a|<|b|B. 若a >b ,则|a|>|b|C. 若a =b ,则|a|=|b|D. 若a ≠b ,则|a|≠|b|8. 下列各式中,正确的是( )A. -16->0 B.2.0>2.0 C.74->75- D.6-<09、如果|a |=|b 1|,那么a 与b 之间的关系是 ( )A. a 与b 互为倒数B. a 与b 互为相反数C. a ·b =-1D. a ·b =1或a ·b =-1 10、若320m n -++=,则2m n +的值为( ).A. 4- B. 1- C. 0 D. 411. 如图所示,正确的是:( ) A. b >c >0>aB. a >b >c >0C. a >c >b >0D. a >0>c >b12. 若 |a|+ |b|= |a -b|,则a 与b 的关系为( )A. a 与b 同号B. a 与b 异号 C. a 与b 同号或a 与b 中有一个为0 D. a 与b 异号或a 与b 中有一个为0二、填空题(每题3分,共30分)1. 如果-150元表示支出150元,那么+300元表示_____. 2. 若|a|=|b|,则a 和b 的关系为__________.3. 绝对值大于1且不大于3的负整数有 个,它们是.4. 若│a │=a ,则a 是数;若│a │>a ,则a 是数.5. 数轴上点M 表示2,点N 表示-3.5,点A 表示-1,在点M 和点N 中,距离A 较远的点的是 .6、在数轴上,A 点表示3,现在将A 点向右移动5个单位,再向左移动12个单位,这时A 点必须向 移动 个单位,才能到达原点.7、绝对值小于4的整数是____8. 如果a >0,则|a +5 |( ) |a |+|5 |. 9. 大于-8且小于-3的整数是( )。
有理数复习题

有理数复习1、已知有理数a、b在数轴上的对应点如图所示,则下列式子正确的是()...考查知识点:有理数的相关概念2、比较-12,-13,14的大小,下列选项中正确的结果是()A. ...考查知识点:有理数的相关概念3、若ab≠0,则︱a︱a+︱b︱b的取值不可能是()A.0 ...考查知识点:有理数的除法4、有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果...考查知识点:有理数的定义及其分类5、23,33和43分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数...考查知识点:有理数的乘法6、零上13℃记作+13℃,零下2℃可记作()A. 2 B. ...考查知识点:有理数的相关概念7、-5的相反数是()A. 5 B. -5 C. 15 ...考查知识点:有理数的相关概念8、-2的绝对值是()A. -2 B. 2 C. -12...考查知识点:有理数的相关概念9、-8的倒数是() A.8 B. -8 C. 18 ...考查知识点:有理数的相关概念10、如果︱a︱=-a,下列成立的是()A. a>0 B. a<...考查知识点:有理数的相关概念11、的相反数是()A、B、C、D、...考查知识点:有理数的相关概念12、某商品涨价20%后又降价20%,这时的价格比原价格()A、高...考查知识点:有理数运算法则的应用13、某商贩以相同的进价进两件衣服,一件盈利20%,另一件亏损20%,两件衣服...考查知识点:有理数运算法则的应用14、如果规定符号“﹡”的意义是a﹡b=aba+b,则2﹡(-3)﹡4=(...考查知识点:有理数的乘法15、已知︱x+1︱=4,(y+2)2=4,求x+y的值()A. 3 ...考查知识点:有理数的混合运算16、-9÷3+(12-23)×12+32()A. -4 B....考查知识点:有理数的混合运算17、计算-32-|(-5)3|×(-)2-18÷|-(-3)2|的值是(...考查知识点:有理数的混合运算18、已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,则x2-(a+...考查知识点:有理数的混合运算19、若-1<a<0,则a,,-a,a2的大小关系是( ) A. -a...考查知识点:有理数比较大小20、下列各对数中,数值相等的个数为( ) ①32与23;②-32与(-...考查知识点:有理数的乘方;有理数的乘法法则21、下列判断正确的是( ) A.若,则B.若,则...考查知识点:有理数比较大小;绝对值;相反数22、若x>0,xy<0,则化简-的结果为( ) A.-1 ...考查知识点:有理数的乘法法则;绝对值23、计算所得的结果为( ) A.-2 B. C. ...考查知识点:有理数的乘方;有理数的乘法运算律;有理数的加法法则24、如图,在数轴上标出若干点,每相邻的两个点相距一个单位长度,点A,B,C,...考查知识点:数轴25、计算的结果是( ) A. B. C. ...考查知识点:有理数的混合运算26、有一种纸的厚度是0.1毫米,若拿两张重叠在一起,将它们对折一次后,厚度为...考查知识点:有理数的乘方27、数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意...考查知识点:数轴28、规定一种新运算:=,=,则+的值是( ) A. 2 ...考查知识点:有理数的乘法法则;有理数的加法法则;有理数的减法法则。
人教版初一数学上册《有理数》全章复习与巩固(提高)知识讲解

《有理数》全章复习与巩固(提高)知识讲解【学习目标】1.理解正负数的意义,掌握有理数的概念.2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算.3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.4. 理解科学记数法及近似数的相关概念并能灵活应用;5. 体会数学知识中体现的一些数学思想.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:作用举例表示数的性质0是自然数、是有理数2.数轴:规定了原点、正方向和单位长度的直线. 要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可. (3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负. 4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离. 要点二、有理数的运算 1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a÷b=a·1b(b≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0. (6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36. (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ;(2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc) (3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.要点四、科学记数法、近似数及精确度1.科学记数法:把一个大于10的数表示成10na ⨯的形式(其中110a ≤<,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯.2.近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.3.精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度. 要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度有两种形式:①精确到哪一位.②保留几个有效数字.这两种的形式的意义不一样,一般来说精确到哪一位可以表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米,而有效数字往往用来比较几个近似数哪个更精确些. 【典型例题】类型一、有理数相关概念1.已知x 与y 互为相反数,m 与n 互为倒数,|x+y |+(a-1)2=0,求a 2-(x+y+mn)a+(x+y)2009+(-mn)2010的值.【思路点拨】(1)若有理数x 与y 互为相反数,则x+y =0,反过来也成立. (2)若有理数m 与n 互为倒数,则mn =1,反过来也成立. 【答案与解析】解:因为x 与y 互为相反数,m 与n 互为倒数,(a-1)2≥0, 所以x+y =0,mn =1,a =1,所以a 2-(x+y+mn)a+(x+y)2009+(-mn)2010=a 2-(0+1)a+02009+(-1)2010=a 2-a+1.∵a=1,∴原式=12-1+1=1【总结升华】要全面正确地理解倒数,绝对值,相反数等概念. 举一反三:【高清课堂:有理数的复习与提高 357129 复习例题2】【变式1】选择题 (1)已知四种说法:①|a|=a 时,a>0;|a|=-a 时, a<0. ②|a|就是a 与-a 中较大的数. ③|a|就是数轴上a 到原点的距离. ④对于任意有理数,-|a|≤a≤|a|.其中说法正确的个数是( ) A .1 B .2 C .3 D .4 (2)有四个说法:①有最小的有理数 ②有绝对值最小的有理数 ③有最小的正有理数 ④没有最大的负有理数 上述说法正确的是( )A .①② B.③④ C.②④ D.①② (3)已知(-ab)3>0,则( )A .ab<0B .ab>0C .a>0且b<0D .a<0且b<0 (4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是( ) A .120 B .-15 C .0 D .-120 (5)下列各对算式中,结果相等的是( )A .-a 6与(-a)6B .-a 3与|-a|3C .[(-a)2]3与(-a 3)2D .(ab)3与ab 3【答案】(1)C ;(2)C ;(3)A ;(4)D ;(5)C【变式2】(2015•呼伦贝尔)中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 . 【答案】9.6×106.2.(2016•江西校级模拟)如果m ,n 互为相反数,那么|m+n ﹣2016|=________. 【思路点拨】先用相反数的意义确定出m+n=0,从而求出|m+n ﹣2016|. 【答案】2016.【解析】解:∵m ,n 互为相反数, ∴m+n=0,∴|m+n ﹣2016|=|﹣2016|=2016; 故答案为2016.【总结升华】此题是绝对值题,主要考查了绝对值的意义,相反数的性质,熟知相反数的意义是解本题的关键.类型二、有理数的运算【高清课堂:有理数专题复习 357133 有理数的混合运算】3.(1)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-----+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)5153()( 1.5)()1244-÷⨯-÷- ()()23541(3)24121522⎛⎫-÷-⨯-⨯-+ ⎪⎝⎭(4)137775111 2.534812863⎡⎤⎛⎫⎛⎫⎛⎫+--÷--÷⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(5)()1003221511221132⎛⎫----÷- ⎪⎝⎭+--⨯【答案与解析】 解:(1)原式21111143622332412=-++-= (2)原式543421215239=-⨯⨯⨯=-(3)原式3132(4)12(1516)104=-÷-⨯-⨯-+=-(4)原式12561[1(2)1]()233253=+-++-⨯⨯-=(5)1125112()41192---÷-=+--⨯原式 3.9=-【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a(b+c)=ab+ac ;逆向应用分配律:ab+ac =a(b+c)等. 举一反三: 【变式】(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯【答案】解:(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--251471834()199(2)492584929=⨯⨯-⨯-⨯- 118343()199(2)449292=-⨯-⨯-⨯20(3)3=--2033=-+123=(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯955515()()()()499289=⨯---⨯-+-⨯5951()()942817224=-⨯++=-4. 先观察下列各式:11111434⎛⎫=- ⎪⨯⎝⎭;111147347⎛⎫=- ⎪⨯⎝⎭; 11117103710⎛⎫=- ⎪⨯⎝⎭;…;1111(3)33n n n n ⎛⎫=- ⎪++⎝⎭,根据以上观察,计算: 1111447710+++⨯⨯⨯ (1)20052008+⨯的值. 【答案与解析】 解:原式111111111111343473710320052008⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭… 111111111344771020052008⎛⎫=-+-+-+⋅⋅⋅+- ⎪⎝⎭1113200812007320086692008⎛⎫=- ⎪⎝⎭=⨯=【总结升华】根据题中提供的拆项方法把每一项拆成11133n n ⎛⎫- ⎪+⎝⎭的形式,然后再进行计算.举一反三:【高清课堂:有理数的复习与提高 例2】 【变式】用简单方法计算:120180148124181++++ 【答案】解:原式=1111111111115(...)244668810101222446101224++++=-+-++-=⨯⨯⨯⨯⨯ 类型三、数学思想在本章中的应用5.(2014•香洲区校级二模)(1)阅读下面材料:点A ,B 在数轴上分别表示实数a ,b ,A ,B 两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.【答案与解析】解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4.②数轴上表示x和﹣1的两点A和B之间的距离是|x﹣(﹣1)|=|x+1|,如果|AB|=2,那么x为1或﹣3.③当代数式|x+1|十|x﹣2|取最小值时,∴x+1≥0,x﹣2≤0,∴﹣1≤x≤2.④当x≤﹣1时,﹣x﹣1﹣x+2=5,解得x=﹣2;当﹣1<x≤2时,3≠5,不成立;当x>2时,x+1+x﹣2=5,解得x=3.故答案为:3,3,4,|x+1|,1或﹣3,﹣1≤x≤2.【总结升华】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,体现了数形结合的优点.类型四、规律探索6.下面两个多位数1248624…,6248624…都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ).A.495 B.497 C.501 D.503【思路点拨】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和. 【答案】A【解析】按照法则可以看出此数为362 486 248…,后面6248循环,所以前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495,所以选A .【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并表示出来. 举一反三:【变式】世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是( ).A .1132 B .1360 C .1495 D .1660【答案】B 提示:观察发现:分子总是1,第n 行的第一个数的分母就是n ,第二个数的分母是第一个数的(n-1)倍,第三个数的分母是第二个数的分母的(1)2n-倍.根据图表的规律,则第10行从左边数第3个位置上的数是111094360=⨯⨯.附录资料:方程的意义(基础)知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质.【要点梳理】【高清课堂:从算式到方程一、方程的有关概念】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).【高清课堂:从算式到方程二、一元一次方程的有关概念】要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.【高清课堂:从算式到方程三、解方程的依据——等式的性质】要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【典型例题】类型一、方程的概念1.下列各式哪些是方程?①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x2-2x-1=0;⑥x+2≠3;⑦251x=+;⑧28553x x-=.【答案与解析】解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.【总结升华】方程的判断必须看两点,一个是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.举一反三:【变式】下列四个式子中,是方程的是()A. 3+2=5B. x=1C. 2x﹣3<0D. a2+2ab+b2 【答案】B.2.(2015春•孟津县期中)下列方程中,以x=2为解的方程是()A. 4x﹣1=3x+2B. 4x+8=3(x+1)+1C. 5(x+1)=4(x+2)﹣1D. x+4=3(2x﹣1)【答案】C.【总结升华】检验一个数是不是方程的解,根据方程解的概念,只需将所给字母的值分别代入方程的左右两边,若两边的值相等,则这个数就是此方程的解,否则不是.举一反三:【变式】下列方程中,解是x=3的是( )A.x+1=4 B.2x+1=3 C.2x-1=2 D.217 3x+=类型二、一元一次方程的相关概念3.(2016春•南江县期末)在下列方程中①x2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有()个.A.1 B.2 C.3 D.4【思路点拨】根据一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1次的整式方程,可以逐一判断.【答案】B.【解析】解:①x2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;③x=0,是一元一次方程;④3﹣=2,是等式,不是方程;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B.【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.举一反三:【变式】下列方程中是一元一次方程的是__________(只填序号).①2x-1=4;②x =0;③ax =b ;④151x-=-. 【答案】①②. 类型三、等式的性质4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的.(1)如果41153x -=,那么453x =+________; (2)如果ax+by =-c ,那么ax =-c +________; (3)如果4334t -=,那么t =________. 【答案与解析】解: (1). 11;根据等式的性质1,等式两边都加上11;(2).(-by ); 根据等式的性质1,等式两边都加上-by ;(3).916-; 根据等式的性质2,等式两边都乘以34-. 【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下列说法正确的是( ).A .在等式ab =ac 两边都除以a ,可得b =c.B .在等式a =b 两边除以c 2+1,可得2211a b c c =++. C .在等式b c a a=两边都除以a ,可得b =c. D .在等式2x =2a-b 两边都除以2,可得x =a-b.【答案】B.类型四、设未知数列方程5.根据问题设未知数并列出方程:一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题?【答案与解析】解:设小明要做对x 道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80. 可以采用列表法探究其解显然,当x =21时,4x-(25-x)×1=80.所以小明要做对21道题.【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式. 举一反三:【变式】根据下列条件列出方程.(l)x的5倍比x的相反数大10;(2)某数的34比它的倒数小4;(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?【答案】(1)5x-(-x)=10;(2)设某数为x,则1344xx-=;(3)设甲用x分钟追上乙,由题意得11(5)3020x x+=.。
经典《有理数》总复习_拔高题及易错题精选附答案

) +( 3 )]+[ ( 4 )+ ( )+ (15 )]
37
37
37
4
4
2
=0
1 (2) 0.125 12 ( 16) ( 2 2 )
解:原式 =[- 0.125× (- 16) ]×[ 12× ( =2× (- 30) =- 60
三、解答题 (共 82 分 )
1. ( 12 分)计算:
10
15
5
1
9
(1) ( 12 37 ) 3 37 ( 4.25) ( 37 ) ( 15 2 ) ( 4 )
10
15
1
51
9
解:原式 =( 12
1307
)+ (
3
5
37
)+(
15
4
4 )+ ( 137
)+ (15
9
21)+ (
4)
=[ ( 12 )+ (
它跳第 100 次落下时,落点处离 O 点的距离是
个单位.
三、解答题 (共 82 分 )
1. ( 12 分)计算:
10
15
5
1
9
(1) ( 12 37 ) 3 37 ( 4.25) ( 37 ) ( 15 2 ) ( 4 )
1 (2) 0.125 12 ( 16) ( 2 2 )
2. (5 分)计算 1- 3+ 5- 7+ 9- 11+… +97- 99.
值.其中 x 和 y 满足 (x 12)2 |1 3 y | 0 .
1
1111
1
1
(4) 2 1 3 2 4 3 … 1000 999
5. (6 分) 已知 a 1 b 2 2 0 ,求 (a+ b) 2016+ a2017.
初中七年级上册数学基础习题练习:33.有理数及其运算专题

有理数及运算专题复习姓名: 日期:【知识要点归纳总结】1. 有理数的分类2. 数轴的三要素3. 若a+b=0,则a 与b 的关系是4. 若两个数的绝对值相等,则这两个数的关系是 5.若a =a -,则a 0,若a =a,则a 0.6.倒数等于它本身的数是 ,平方等于它本身的数是 , 立方等于它本身的是巩固练习A一、选择题.1.下列语句中正确的是( ) A 、若a 为有理数,则必有0||=-a a B 、两个有理数的差小于被减数 C 、两个有理数的和大于或等于每一个加数D 、0减去任何数都得这个数的相反数2.点A 在数轴上距原点3个单位长度,将A 向右移动4个单位长度,再向左移动7个单位长度,此时A 点所表示的数是( ) A 、0B 、-6C 、0或-6D 、0或63.实数b a ,在数轴上的位置如下图所示,下列各式错误的是( ) A 、0<-b aB 、0<+b aC 、0<abC 、a b >|| 4.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为21单位长度,则这个数是( )A 、21或21-B 、41或41-C 、21或41D 、21-或41-5.如果一个有理数的平方是正数,那么这个有理数的立方是( ) A 、正数B 、负数C 、正数或负数D 、整数6.下列各式中不正确的是( ) A |4||4|=-、 B 、)3(|3|--=- C 、|3||7|->- D 、0|5|<-二、填空题1.今年我省元月份某一天的天气预报中,A 市最低温为C ︒-6,B 市最低气温为C ︒2,这一天A 市的最低气温比B 市的最低气温低 .2.绝对值小于3的整数有 .3.在有理数9,4,8,8.3,0,71,6.2,5,4----中,请找出其中的整数 .4.一根长70厘米的弹簧,一端固定,若另一端挂上物体,那么在正常情况下物体的质量每增加1千克,便可使弹簧增长2厘米,则在正常情况下挂x 千克的物体弹簧的长度增长到 厘米. 5.若a a -=||,则a 是 .6.若b a ,互为相反数,d c ,互为倒数,则=++20082003)()(cd b a . 7.数轴上表示3的点和表示-6的点的距离是 .8.87-与1513-的大小关系是 .9.若a a =2,则=a ,若a a =3,则=a 。
2020-2021学年七年级数学上册期末复习第一章《有理数》提高卷原卷

2020-2021学年人教版七年级上册期末真题单元冲关测卷(提高卷)第一章有理数试卷满分:100分考试时间:120分钟姓名:班级:学号:题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共8小题,满分24分,每小题3分)1.(2019秋•无为县期末)数轴上点C是A、B两点间的中点,A、C分别表示数﹣1和2,则点B表示的数( )A.2B.3C.4D.52.(2019秋•温州期末)如图,数轴的单位长度为1,点A,B表示的数互为相反数,若数轴上有一点C到点B的距离为2个单位,则点C表示的数是( )A.﹣1或2B.﹣1或5C.1或2D.1或53.(2019秋•普宁市期末)下列运算错误的是( )A.﹣3﹣(﹣3+19)=﹣3+3―19B.5×[(﹣7)+(―45)]=5×(﹣7)+5×(―45)C.[14×(―73)]×(﹣4)=(―73)×[14×(﹣4)]D.﹣7÷2×(―12)=﹣7÷[2×(―12)]4.(2019秋•石家庄期末)已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是( )A.B.C.D.5.(2019秋•南京期末)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:如图所示.如果自然数m恰好经过7步运算可得到1,则所有符合条件的m的值有( )A.3个B.4个C.5个D.6个6.(2019秋•松滋市期末)如图,O,A,B,C四点在数轴上,其中O为原点,且AC=2,OA=2OB,若C 点所表示的数为m,则B点所表示的数正确的是( )A.﹣2(m+2)B.m―22C.m+22D.2―m27.一台机器有大、小齿轮用同一传送带连接,若大小齿轮的齿数分别为36和12个,大齿轮每分钟2.5×103转,则小齿轮10小时转( )A.1.5×106转B.5×105转C.4.5×106转D.15×106转8.对正整数n,记1×2×…×n=n!若M=1!×2!×…×10!,则M的正因数中共有完全立方数( )个.A.468B.684C.846D.648第Ⅱ卷(非选择题)评卷人得分二.填空题(共10小题,满分20分,每小题2分)9.(2分)(2019秋•桂林期末)1930年,德国汉堡大学的学生考拉兹,曾经提出过这样一个数学猜想:对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能够得到1.这一猜想后来成为著名的“考拉兹猜想”,又称“奇偶归一猜想”.虽然这个结论在数学上还没有得到证明,但举例验证都是正确的,例如:取正整数5,最少经过下面5步运算可得1,即:5×3+1→16÷2→8÷2→4÷2→2÷2→1如果正整数m最少经过6步运算可得到1,则m的值为 .10.(2分)(2019秋•西宁期末)点A表示数轴上的数﹣2,将点A移动10个单位长度后得到点B,则点B 表示的数是 .11.(2分)(2019秋•台州期末)定义一种对正整数n的“C运算”:①当n为奇数时,结果为3n+1;②当n为偶数时,结果为n2k (其中k是使n2k为奇数的正整数)并且运算重复进行,例如,n=66时,其“C运算”如下:若n=26,则第2019次“C运算”的结果是 .12.(2分)(2016秋•龙泉驿区期末)如果x、y都是不为0的有理数,则代数式x|x|+|y|y―xy|xy|的最大值是 .13.(2分)(2016秋•大邑县期末)有理数a、b在数轴上的位置如图所示化简:|a+2|﹣|a|+|b﹣1|+|a+b|可得到 .14.(2分)(2013秋•成都期末)观察下列等式:112+2×1=12×(1―13),122+2×2=12×(12―14),132+2×3=1 2×(13―15),142+2×4=12×(14―16),…根据你得出的规律写出第n个等式为 ,并根据该规律计算:112+2×1+122+2×2+132+2×3+⋯+182+2×8= .15.(2分)(2020秋•陆川县期中)某种细胞开始有两个,1小时后分裂成4个并死去一个,2个小时后分裂成6个并死去一个,3小时后分裂成10个并死去1个,按此规律,请你计算经过n个小时后,细胞存活的个数为 个(结果用含n的代数式表示)16.(2分)(2020秋•海淀区校级期中)若不等式|x﹣2|+|x+3|+|x﹣1|+|x+1|≥a对一切数x都成立,则a的取值范围是 .17.(2分)(2019秋•渝中区校级期中)已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是 .18.(2分)(2014春•青羊区期末)大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和.如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3“分裂”后,其中有一个奇数是211,则m的值是 .评卷人得分三.解答题(共10小题,满分56分)19.(4分)(2019秋•厦门期末)借助有理数的运算,对任意有理数a,b,定义一种新运算“⊕”规则如下:a⊕b=|a+b|例如,2⊕(﹣1)=|2+(﹣1)|=1.(1)求[5⊕(﹣2)]⊕4的值;(2)我们知道有理数加法运算具有交换律和结合律,请你探究这种新运算“⊕”是否也具有交换律和结合律?若具有,请说明理由;若不具有,请举一个反例说明.20.(4分)(2019秋•曹县期末)出租车司机小明某天下午的营运全是在东西走向的长江路上进行的,如果规定向东为正,向西为负,他这天下午行车路程(单位:千米)如下:﹣13,﹣2,+6,+8,﹣3,﹣5,+4,﹣6,+7,若小明家位于距离出车地点的西边15千米处,送完最后一名乘客,小明还要行驶多少千米才能到家?21.(5分)(2019秋•济源期末)如图,数轴上点A、B分别对应数a、b,其中a<0,b>0.(1)当a=﹣3,b=7时,线段AB的中点对应的数是 .(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=3,b>3,且AM=2BM时,求代数式a+2b+2010的值;②a=﹣3.且AM=3BM时学生小朋通过演算发现代数式3b﹣4m是一个定值,老师点评;小朋同学的演算发现还不完整!请你通过演算解释为什么“小朋的演算发现”是不完整的?22.(5分)(2019秋•海安市期末)定义:对于一个两位数x,如果x满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S(x).例如,a=13,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S(13)=4.(1)下列两位数:20,29,77中,“相异数”为 ,计算:S(43)= ;(2)若一个“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10,求相异数y;(3)小慧同学发现若S(x)=5,则“相异数”x的个位数字与十位数字之和一定为5,请判断小慧发现”是否正确?如果正确,说明理由;如果不正确,举出反例.23.(5分)(2019秋•丰台区期末)小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M,N所表示的数分别为0,12.将一枚棋子放置在点M处,让这枚棋子沿数轴在线段MN上往复运动(即棋子从点M出发沿数轴向右运动,当运动到点N处,随即沿数轴向左运动,当运动到点M处,随即沿数轴向右运动,如此反复…).并且规定棋子按照如下的步骤运动:第1步,从点M开始运动t个单位长度至点Q1处;第2步,从点Q1继续运动2t个单位长度至点Q2处;第3步,从点Q2继续运动3t 个单位长度至点Q3处….例如:当t=3时,点Q1,Q2,Q3,的位置如图2所示.解决如下问题:(1)如果t=4,那么线段Q1Q3= ;(2)如果t<4,且点Q3表示的数为3,那么t= ;(3)如果t≤2,且线段Q2Q4=2,那么请你求出t的值.24.(5分)(2019秋•鸡泽县期末)用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;☆3)=8,求a的值.(2)若(a+1225.(6分)(2019秋•荔湾区期末)数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm,4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM﹣BM=OM,求ABOM的值.26.(6分)(2020秋•西工区期中)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c﹣b 0,a﹣b 0,c﹣a 0.(2)化简:|c﹣b|+|a﹣b|﹣|c﹣a|.27.(8分)(2020秋•岳麓区校级月考)计算题(1)(﹣6)+(+11)(2)﹣28+(﹣4)+29+(﹣24)(3)(﹣0.6)﹣(314)﹣(+725)+234―2(4)12.32﹣14.17﹣|﹣2.32|+(﹣5.83)28.(8分)(2020秋•兰州期中)一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.2升,那么这辆货车此次送货共耗油多少升?。
有理数综合提高题
11.若 ,且 ,那么 的值是________
12.已知|a|=3,|b|=2,|a+b|=a+b,则a-b=______
13.若 且 则 _.
14.若x是不等于1的数,我们把 称为x的差倒数,如2的差倒数是 =-1,-1的差倒数为 = .已知x1=- ,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…依次类推,则x2019=________
15.将从1开始的连续自然数按如下规律排列:
则2019在第行.
三.解答题
1.计算
(1)
(2)
(3)
2.如图,在单位长度为1的数轴上有,A、B、C、D四个点,点A、C表示的有理数互为相反数
(1)请在数轴上标出原点O,并在点A、B、C、D上方标出它们所表示的有理数;
(2)A、C两点间的距离AC=,B、D两点间距离BD=;
C、相等且都不小于0D、m是n的绝对值
4.若 是有理数,则 的值( )
A、可能是正数B、一定是正数
C、不可能是负数D、可能是正数,也可能是负数
5.两个数的差为负数,这两个数()
A、都是负数B、两个数一正一负
C、减数大于被减数D、减数小于被减数
6.已知 ,则化简 所得的结果为( )
A. B. C. D.
有理数综合提高题
一.选择题
1.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a-b+c=( )
A.-1 B.0 C.1 D.2
2.下列结论中,正确的是()
A.-a—定是负数B.-|a|一定是非正数
C.|a|—定是正数D.-|a|—定是负数
(完整版)有理数提高题(有答案)
2有理数基础训练题一、填空:1、 在数轴上表示一2的点到原点的距离等于( )。
2、 若 I a I =— a,则 a () 0.3、 任何有理数的绝对值都是( )。
4、 如果a+b=O,那么a 、b 一定是()。
5、 将0.1毫米的厚度的纸对折20次,列式表示厚度是( )。
6 已知 |a| 3,| b| 2,| a b| a b ,则 a b ( )7、 |x 2| |x 3|的最小值是()。
1 18、 在数轴上,点A 、B 分别表示 -,则线段AB 的中点所表示的数是()4 2a b20109、 若a,b 互为相反数,m, n 互为倒数,P 的绝对值为3,则 ------- mn p 2 p ()。
10、若 abc ^0,则 |a| |b|a b|c|的值是( c).11、下列有规律排列的一列数:.32531、 一、 一、一、 一、•…,其中从左到右第100个数是( ) 二、解答问题:1、已知x+3=0,|y+5|+4的值是4, z 对应的点到-2对应的点的距离是7, 求 x 、y 、 z 这三个数两两之积的和。
3、若2x |4 5x| |1 3x| 4的值恒为常数,求x 满足的条件及此时常数的值4、若 a,b,c 为整数,且 |a b |2010 |c a |2010 1,试求 |c a| |a b| |b c| 的值5 7 9 11 13 15 171 5、计算:一—+ _ 一----- 1 --- ——-- 1 --- — ----- 1--- 66 12 20 30 42 56 720 1能力培训题知识点一:数轴例1:已知有理数a 在数轴上原点的右方,有理数 b 在原点的左方,那么()2、利用数轴能直观地解释相反数;例2:如果数轴上点 A 到原点的距离为 3,点B 到原点的距离为 5,那么A 、B 两点的距离 为 ________________ 。
拓广训练:1、 在数轴上表示数a 的点到原点的距离为 3,则a 3__________ .2、 已知数轴上有 A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么所有满 足条件的点 B 与原点O 的距离之和等于 _____________________ 。
天津市第一中学七年级数学上册第一单元《有理数》-填空题专项经典复习题(培优提高)
一、填空题1.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < >【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可.【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<->故答案为:<,<,<,>【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.2.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.3.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案. 4.若2(1)20a b -+-=,则2015()a b -= _______________.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1.【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.5.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=-则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.一个数的25是165-,则这个数是______.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位1解析:−8【分析】把这个数看成单位“1”,它的25对应的数量是165-,求这个数用除法 【详解】 (165-)÷25=−8. 故答案为−8.【点睛】 此题考查有理数的除法,解题关键在于这个数看成单位“1”7.已知2x =,3y =,且x y <,则34x y -的值为_______.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 8.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.5×108【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n是正数;当原数解析:5×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.给下面的计算过程标明运算依据:(+16)+(-22)+(+34)+(-78)=(+16)+(+34)+(-22)+(-78)①=[(+16)+(+34)]+[(-22)+(-78)]②=(+50)+(-100)③=-50.④①______________;②______________;③______________;④______________.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加解析:①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则,相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).依此即可求解.【详解】第①步,交换了加数的位置;第②步,将符号相同的两个数结合在一起;第③步,利用了有理数加法法则;第④步,同样应用了有理数的加法法则.故答案为加法交换律;加法结合律;有理数加法法则;有理数加法法则.【点睛】考查了有理数的加法,关键是熟练掌握计算法则,灵活运用运算律简便计算.10.点A,B表示数轴上互为相反数的两个数,且点A向左平移8个单位长度到达点B,则这两点所表示的数分别是____________和___________.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A、B距离原点的距离是4,∵点A,B互为相反数,A在B的右侧,∴A、B表示的数是4,-4.11.绝对值小于100的所有整数的积是______.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝解析:0【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.一个跳蚤在一条数轴上,从0开始,第1次向右跳1单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,依此规律下去,当它跳第100落下时,落点在数轴上表示的数是_________ .-50【分析】根据题意列出式子然后计算即可【详解】根据题意落点在数轴上表示的数是0+1-2+3-4+ (99)100=(1-2)+(3-4)+……+(99-100)===-50故答案为:-50【点解析:-50【分析】根据题意,列出式子,然后计算即可.【详解】根据题意,落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)=()()()10021111÷--+-+-个=150-⨯=-50故答案为:-50.【点睛】此题考查的是有理数的加减法的应用,掌握有理数的加、减法法则和加法结合律是解决此题的关键.13.若三个互不相等的有理数,既可以表示为3,a b+,b的形式,也可以表示为0,3a b ,a的形式,则4a b-的值________.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3ab=-3,解得b=-3.a=3,然后代入4a b-进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b+、b的形式,也可以表示为0、3ab、a的形式∴0b≠,∴a b+=0,∴3a3b=-,∴b=3-,a=3,∴4a b-=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3ab=-3是解答本题的关键.14.绝对值小于4.5的所有负整数的积为______.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题解析:24【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【详解】解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,∴积为:4(3)(2)(1)24-⨯-⨯-⨯-=,故答案为:24.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.15.气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.16.在有理数3.14,3,﹣12,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于__.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.17.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.18.计算:(1)(2)(3)(4)(2019)(2020)++-+++-++++-=_____.【分析】第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两解析:1010-【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】原式(12)(34)(20192020)11111010 =-+-++-=-----=-.故答案为:1010-.【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.19.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10na⨯的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.某电视塔高468 m,某段地铁高-15 m,则电视塔比此段地铁高_____m.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m.故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.21.计算1-2×(32+12)的结果是 _____.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12)=1-2×(9+12)=1-2×19 2=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键.22.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是___.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45. 【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5; 第四个数是45, ∴满足条件所有x 的值是131或26或5或45. 故答案为131或26或5或45. 【点睛】 此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键. 23.若230x y ++-= ,则x y -的值为________.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.24.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.25.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.26.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.27.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B '=可得点A '为12,再根据A 与A '以C 为折点对折,即C 为A ,A '中点即可求解.【详解】解:翻折后A '在B 右侧,且3A B '=.所以点A '为12,∵A 与A '以C 为折点对折,则C 为A ,A '中点, 即1216:22C -=-. 【点睛】 本题考查数轴上两点间的距离,得到C 为A ,A '中点是解题的关键.28.23(2)0x y -++=,则x y 为______.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键.29.绝对值小于2的整数有_______个,它们是______________.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.30.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.。
人教版初一数学上册《有理数》全章复习与巩固(提高)巩固练习
【巩固练习】 一、选择题1.计算106×(102)3÷104之值为( ).A .108B .109C .1010D .10122.(2015•永州)在数轴上表示数﹣1和2014的两点分别为A 和B ,则A 和B 两点间的距离为( ) A .2013 B . 2014 C . 2015 D . 2016 3.下列语句中,正确的个数是( ).①一个数与它的相反数的商为-1;②两个有理数之和大于其中任意一个加数;③若两数之和为正数,则这两个数一定都是正数;④若0m n <<,则mn n m <-. A .0 B .1 C .2 D .34.已知||5m =|,||2n =,||m n n m -=-,则m n +的值是( ).A .-7B .-3C .-7或-3D .±7或±35.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”、“15cm ”分别对应数轴上的 3.6x -和,则( ).A .910x <<B .1011x <<C .1112x <<D .1213x << 6. 如图:数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、 D 对应的数分别是整数a,b,c,d ,且b-2a=9,那么数轴的原点对应点是 ( ). A .A 点 B .B 点 C .C 点 D .D 点7.有理数a,b,c 的大小关系如图:则下列式子中一定成立的是( ).A .0a b c ++>B .a b c +<C .a c a c -=+D .b c c a ->- 8.记12n n S a a a =+++…,令12nn S S S T n+++=…,称n T 为1a ,2a ,…,n a 这列数的“理想数”.已知1a ,2a ,…,500a 的“理想数”为2004,那么8,1a ,2a ,…,500a 的“理想数”为( ).A .2004B .2006C .2008D .2010 二、填空题 9.(2015•烟台)如图,数轴上点A 、B 所表示的两个数的和的绝对值是 .10.2011年成市承接产业转移示范区建设成效明显,第一季度完成固定资产投资238亿元,用科学记数法可记作________元.11.一种零件的尺寸在图纸上是0.050.027+-(单位:mm ),表示这种零件加工要求最大不超过________,最小不小于________. 12.(2016•巴中)|﹣0.3|的相反数等于 .13.如图,有理数,a b 对应数轴上两点A ,B ,判断下列各式的符号:a b +________0;a b -________0;()()________a b a b +-0; 2(1)ab ab +________0.14.已知,,a b c 满足()()()0,0a b b c c a abc +++=<,则代数式a b ca b c++的值是 .15.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,则此处的高度是 千米.16.观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在观察规律之后并用你得到的规律填空:250___________=+⨯. 三、 解答题 17.(2016春•新泰市校级月考)计算: (1)24+(﹣22)﹣(+10)+(﹣13) (2)(﹣1.5)+4+2.75+(﹣5)(3)(﹣8)+(﹣7.5)+(﹣21)+(+3) (4)(﹣24)×(﹣++)18.(2015•顺义区一模)居民用电计费实行“一户一表”政策,以年为周期执行阶梯电价,即:一户居民全年不超过2880度的电量,执行第一档电价标准为0.48元/度;全年用电量在2880度到4800度之间(含4800),超过2880度的部分,执行第二档电价标准为0.53元/度;全年用电量超过4800度,超过4800度的部分,执行第三档电价标准为0.78元/度.小敏家2014年用电量为3000度,则2014年小敏家电费为多少元?19.已知三个互不相等的有理数,即可以表示为1,a+b ,a 的形式,又可表示为0,b a,b 的形式,且x 的绝对值为2,求200820092()()()a b ab a b ab x ++-+-+的值.20.一粒米微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重10克.现在请你来计算 (1)一粒大米重约多少克?(2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)(3)假若我们把一年节约的大米卖成钱,按2元∕千克计算,可卖得人民币多少元?(用科学记数法表示)(4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?(5)经过以上计算,你有何感想和建议? 【答案与解析】 一、选择题 1.【答案】 A【解析】126234664124841010(10)1010101010101010⨯÷=⨯÷=÷==. 2.【答案】C.【解析】|﹣1﹣2014|=2015,故A ,B 两点间的距离为2015,故选:C . 3.【答案】 B【解析】只有④正确,其他均错. 4.【答案】C 【解析】n m ≥,2,5n m =±=-,所以7m n +=-或3-. 5.【答案】C【解析】( 3.6)15,11.4x x --==6.【答案】C【解析】由图可知:4b a -=,又29b a -=,所以5a =-. 7.【答案】C【解析】由图可知:0a b c <<<,且c a c a -=-表示数轴上数a 对应点与数c 对应点之间的距离,此距离恰好等于数a 对应点到原点的距离与数c 对应点到远点的距离之和,所以选项C 正确. 8.【答案】C 【解析】∵ 1a ,2a ,…,500a 的“理想数”为2004,∴125002004500S S S +++=,∴ 125002004500S S S +++=⨯.8,1a ,2a ,…,500a 中,18S '=;218S S '=+;328S S '=+;…,5005008S S '=+ ∴ 8,1a ,2a ,…,500a 的理想数为:12350012500501888888501501501S S S S S S S T +++++++++⨯++++==850120045002008501⨯+⨯== 二、填空题9.【答案】1. 【解析】从数轴上可知:表示点A 的数为﹣3,表示点B 的数是2,则﹣3+2=﹣1,|﹣1|=1. 10.【答案】102.3810⨯11.【答案】 7.05mm, 6.98mm【解析】7+0.05=7.05mm, 7-0.02=6.98mm. 12.【答案】-0.3【解析】解:∵|﹣0.3|=0.3,0.3的相反数是﹣0.3,∴|﹣0.3|的相反数等于﹣0.3. 故答案为:﹣0.3.13.【答案】>, >, >, <【解析】由图可得:1,10a b >-<<,特殊值法或直接推理可得:0,0,ab a b <+>20,10a b ab ->+>.14.【答案】1【解析】()()()0,a b b c c a +++=又0abc <可得:三数必一负两正,不防设:0,0,0a b a c >=-<>,代入原式计算即可.15.【答案】 10【解析】21-(-39)÷6×1=10(千米). 16.【答案】 24852450⨯+=【解析】观察可得规律为:2(4)4(2)n n n ⨯++=+. 三、解答题 17.【解析】 解:(1)24+(﹣22)﹣(+10)+(﹣13)=24﹣22﹣10﹣13 =2﹣23 =﹣21; (2)(﹣1.5)+4+2.75+(﹣5)=﹣1.5﹣5.5+4.25+2.75=﹣7+7 =0;(3)(﹣8)+(﹣7.5)+(﹣21)+(+3)=﹣8﹣21﹣7.5+3.5 =﹣30﹣4=﹣34;(4)(﹣24)×(﹣++)=﹣24×(﹣)﹣24×﹣24×=16﹣18﹣2=﹣4. 18.【解析】解:根据题意得:2880×0.48+(3000﹣2880)×0.53=1446(元), 则2014年小敏家电费为1446元. 19.【解析】解:由1,a+b ,a 与0,ba,b 相同, 由ba得:分母有0a ≠,所以0a b +=, 又由三数互不相等,所以1b =,ba a=,化简得:1a =-,1b =,0a b +=,1ab =-,∴ 200820092()()()01142a b ab a b ab x ++-+-+=--+=.20.【解析】 解:(1)10÷500≈0.02(克) 答:一粒大米重约0.02克.(2)0.02×1×3×365×1300000000÷1000=2.847×107(千克)答:一年大约能节约大米2.847×107千克.(3)2×2.847×107=5.694×107(元)答:可卖得人民币5.694×107元.(4)5.694×107÷500=1.1388×105答:可供11388名失学儿童上一年学.(5)一粒米虽然微不足道,但是我们一年节约下来的钱数大的惊人.所以提倡节约,杜绝浪费,我们要行动起来.附录资料:【巩固练习】一、选择题1.从左边看图1中的物体,得到的是图2中的( ).2.如图所示是正方体的一种平面展开图,各面都标有数,则标有数“-4”的面与其对面上的数之积是( ).A.4 B.12 C.-4 D.03.(2016•宜昌)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短4.如图所示,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数是( ).A.3 B.4 C.5 D.75.如图所示的图中有射线( ).A.3条 B.4条 C.2条 D.8条6.(2015•宝应县校级模拟)在地理课堂上,老师组织学生进行寻找北极星的探究活动时,李佳同学使用了如图所示的半圆仪,则下列四个角中,最可能和∠AOB互补的角为()A .B .C .D .7.十点一刻时,时针与分针所成的角是( ).A .112°30′B .127°30′C .127°50′D .142°30′ 8.在海面上有A 和B 两个小岛,若从A 岛看B 岛是北偏西42°,则从B 岛看A 岛应是( ). A .南偏东42° B .南偏东48° C .北偏西48° D .北偏西42°二、填空题9.把一条弯曲的公路改为直道,可以缩短路程,其理由是________.10.已知∠α=30°18′,∠β=30.18°,∠γ=30.3°,则相等的两角是________. 11.用平面去截一个几何体,如果得出的横截面是圆形,那么被截的几何体是________(填一个答案即可). 12.(2015秋•泾阳县期中)如图是一个正方体的展开图,和C 面的对面是 面.13.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3,其根据是________.14.若∠α是它的余角的2倍,∠β是∠α的2倍,那么把∠α和∠β拼在一起(有一条边重合)组成的角是________度.15.一副三角板如图摆放,若∠BAE=135 °17′,则∠CAD 的度数是 .16.如下图,点A 、B 、C 、D 代表四所村庄,要在AC 与BD 的交点M 处建一所“希望小学”,请你说明选择校址依据的数学道理 .三、解答题17.(2015春•淄博校级期中)如图,已知点C 为AB 上一点,AC=12cm ,CB=AC ,D 、E 分别为AC 、AB 的中点,求DE 的长.MB CDA18.(2016春•启东市月考)如图,∠AOB=90°,∠AOC是锐角,OD平分∠BOC,OE平分∠AOC.求∠DOE的度数.19.在一张城市地图上,如图所示,有学校、医院、图书馆三地,图书馆被墨水染黑,具体位置看不清,但知道图书馆在学校的北偏东45°方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?20.如图所示,线段AB=4,点O是线段AB上一点,C、D分别是线段OA、OB的中点,小明据此很轻松地求得CD=2.在反思过程中突发奇想:若点O运动到AB的延长线上,原来的结论“CD=2”是否仍然成立?请帮小明画出图形并说明理由.【答案与解析】一、选择题1.【答案】B【解析】从左边看,圆台被遮住一部分,故选B.2.【答案】B【解析】由正方体的平面展开图可知,标有数-4的面的对面是标有数-3的面,故两个数之积为12.3.【答案】D;【解析】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选D .4.【答案】C 【解析】因为∠COB =90°,所以∠BOD+∠COD =90°,即∠BOD =90°-∠COD .因为∠DOE=90°,所以∠EOC+∠COD =90°,即∠EOC =90°-∠COD ,所以∠BOD =∠EOC .同理∠AOE =∠COD .又因为∠AOC =∠COB =∠DOE =90°(∠AOC =∠COB ,∠AOC =∠DOE ,∠COB =∠DOE),所以图中相等的角有5对,故选C .5.【答案】D 6.【答案】D .【解析】根据图形可得∠AOB 大约为135°,∴与∠AOB 互补的角大约为45°, 综合各选项D 符合. 7.【答案】D【解析】一刻是15分钟,十点一刻,即10点15分时,时针与分针所成的角为:34304⎛⎫+⨯ ⎪⎝⎭°=142.5°=142°30′,故选D .8.【答案】A【解析】方位角存在这样的规律:甲、乙两地之间的方位角,方向相反,角度相等.由此可知从B 岛看A 岛的方向为南偏东42°,故选A .二、填空题9. 【答案】两点之间,线段最短【解析】本题是应用线段的性质解释生活中的现象,由于这是两点之间连线长度的比较,符合“两点之间,线段最短”. 10.【答案】∠α和∠γ 【解析】30.3601810︒''=⨯=,于是∠α=∠γ. 11.【答案】圆柱(圆锥、圆台、球体等)【解析】答案不唯一,例如用平面横截圆锥即可得到圆形. 12.【答案】F .【解析】这是一个正方体的平面展开图,共有六个面,其中面“B”与面“D”相对,面“A”与面“E”相对,“C”与面“F”相对. 13.【答案】同角的余角相等【解析】根据余角的性质解答问题. 14.【答案】60度或180【解析】先求出∠α=60°,∠β=120°;再分∠α在∠β内部和外部两种情况来讨论. 15.【答案】44°43′;【解析】∠BAD +∠CAE =180°,即∠BAE +∠CAD =180°,所以 ∠CAD =180°-135°17′=44°43′. 16.【答案】两点之间,线段最短. 三、解答题 17.【解析】解:∵AC=12cm,CB=AC , ∴CB=6cm,∴AB=AC+BC=12+6=18cm,∵E为AB的中点,∴AE=BE=9cm,∵D为AC的中点,∴DC=AD=6cm,所以DE=AE﹣AD=3cm.18.【解析】解:如图,∵OD平分∠BOC,OE平分∠AOC,∠AOB=90°,∴∠COD=∠BOC=(∠AOB+∠AOC)=45°+∠AOC,∠COE=∠AOE=∠AOC,∴∠DOE=∠COD﹣∠AOE=45°+∠AOC﹣∠AOC=45°即:∠DOE=45°.19.【解析】解:如图所示.在医院A处,以正南方向为始边,逆时针转60°角,得角的终边射线AC.在学校B处,以正北方向为始边,顺时针旋转45°角,得角的终边射线BD.AC与BD的交点为点O,则点O就是图书馆的位置.20.【解析】解:原有的结论仍然成立,理由如下:当点O在AB的延长线上时,如图所示,CD=OC-OD=12(OA-OB)=12AB=1422⨯=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 有理数复习题
一、选择题
1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( )
.0 C 2、下列说法中正确的是( )
A.两个负数相减,等于绝对值相减;
B.两个负数的差一定大于零
C.负数减去正数,等于两个负数相加;
D.正数减去负数,等于两个正数相减 3、若三个不等的有理数的代数和为0,则下面结论正确的是( ) 个加数全为0 B.最少有2个加数是负数 C.至少有1个加数是负数 D.最少有2个加数是正数 4、以下命题正确的是( ). (A )如果 那么a 、b 都为零 (B )如果 ,那么a 、b 不都为零 (C )如果
,那么a 、b 都为零 (D )如果
,那么a 、b 均不为零
5、2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C 的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C,峰顶的温度为(结果保留整数)( ) A .-26°C B.-22°C C .-18°C D .22°C
6、若2
3(2)0m n -++=,则2m n +的值为( ) A .4-
B .1-
C .0
D .4
7、绝对值大于 1 小于 4 的整数的和是( ) A 、0 B 、5 C 、-5 D 、10
8、a,b 互为相反数,下列各数中,互为相反数的一组为( )
A. a 2
与b 2
B. a 3与b 3
C. a 2n
与b 2n
(n 为正整数) D. a 2n+1
与b
2n+1
(n 为正整数)
9、若a
2003
·(-b)
2004
<0,则下列结论正确的是( )
A .a>0,b>0 <0,b>0 C.a<0,b<0 <0,b≠0。
14、如果某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场( )
A . 不赔不赚
B . 赚160元 C. 赚80元 D. 赔80元 11、若实数a 、b 互为相反数,则下列等式中恒成立的是( ) A 0a b -= B 0a b +=
C 1ab =
D 1ab =- 12、用四舍五入法得到a 的近似数是,精确地说,这个数的范围是( )
A 、3.795 3.805a ≤〈
B 、3.75 3.85a ≤〈
C 、3.75 3.85a 〈〈
D 、3.795 3.805a 〈≤ 13、a 是有理数,代数式112++a 的最小值是( A ) (A) 1 (B) 2 (C) 3 (D) 4 14、有理数的大小关系如图2所示,则下列式子中一定成立 的是( ) (A )>0 (B )
< (C )
(D )
>
二、填空题
1、若 n 为自然数,那么(-1)2n
+(-1)
2n +1
=__。
2、在数轴上表示 a 的点到原点的距离为 3,则 a -3=___。
3、罗马数字共有 7 个:I (表示 1),V (表示 5),X (表示 10),L (表示 50),C (表示 100),D (表示 500),M (表示 1000),这些数字不论位置怎样变化,所表示的数目都是不变的,其计数方法是用“累积符号”和“前减后加”的原则来计数的:如IX =10-1=9,VI =5+1=6,CD =500-100=400,则XL =__,XI =__。
4、让我们轻松一下,做一个数字游戏: 第一步:取一个自然数n 1=5 ,计算n 12
+1得a 1; 第二步:算出a 1的各位数字之和得n 2,计算n 22
+1得a 2; 第三步:算出a 2的各位数字之和得n 3,再计算n 23+1得a 3; …………
依此类推,则a 2008=_______________.
5、平方与绝对值都是它的相反数的数是________,这个数的立方和它的关系是_________。
6、已知P 是数轴上的一个点。
把P 向左移动3个单位后,再向右移动一个单位,这时它到原点的距离是4个单位,则P 点表示的数是______。
7、数轴上哪个数与-24和40的距离相等_____,与数轴上数a 和b 距离相等的点表示的数是_______。
8、已知│a│=4,│b│=3, │a-b│=b -a,那么a +b 的值为____。
9、若,,,,,a b c d e f 是六个有理数,且
11111
,,,,23456
a b c d e b c d e f =-==-==-,则_______.f
a
= 10、规定图形
表示运算a-b+c,图形
表示运算x+z —y —w.则
+=_______
11、已知3a =,且0a a +=,则321a a a +++=___________. 12、2005a -与2b 互为相反数,则a b +=___________. 三、解答题
1、比较下列各对数的大小: (1)54-与4
3- (2)54+-与54+- (3)25与5
2 (4)232⨯与2)32(⨯ 2、
1) 111117(113)(2)92844
⨯-+⨯- 2) 4
19932(4)(1416)4
1313
⎡⎤--⨯-÷-⎢⎥⎣
⎦
3)2004
2
3
)
1()2(161)1()21
()21
(-÷-⨯⎥⎦⎤
⎢⎣⎡--÷-- 4) 100()()222
---÷3
)2(32-+⎪⎭
⎫ ⎝⎛-
÷
5)()()()()()⎪⎭
⎫ ⎝⎛-÷⎥⎥⎦⎤⎢⎢⎣⎡-÷-+-⨯-
⎪⎭⎫ ⎝⎛-+-⨯-24
23
4
31625.6134313825.0
3、若用A 、B 、C 、D 分别表示有理数a 、b 、c,0为原点如图2-6-1所示.已知a<c<0,b>0. (1)比较a 、b 、c 的大小;
(2)化简2c+│a+b│+│c -b│-│c -a│.
C B
A O
4、若 求 的值.
5、已知 与2互为相反数, 互为倒数,试求代数式 的值.
6、在-7与37之间插入三个数,使这5个数的每相邻两个之间的距离相等。
7、若a<0,且ab<0,化简|b-a+4|-|a-b-7|. 21、计算1-2+3-4+…+(-1)n+1
·n.
24、已知2a —b=5,求代数式4a —2b+7的值
26、在正数范围内规定一种运算※,其规则为 a※b=b
a b
a +-。
根据这个规则, 求3※2及2※3的值.并说明※运算满足交换律吗
40、已知022=-+-a ab ,求
()()()()
()()2006200612211111+++⋅⋅⋅+++++++b a b a b a ab 的值
41、(1)当x 取何值时,3-x 有最小值这个最小值是多少 (2)当x 取何值时,25+-x 有最大值这个最大值是多少 (3)求54-+-x x 的最小值。
42、如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为1
2
的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为1
8
的矩形.如
此进行下去,试利用图形揭示的规律计算:11111111
248163264128256
+++++++
.。