窄带随机过程的模拟

合集下载

随机信号分析_第五章_窄带随机过程

随机信号分析_第五章_窄带随机过程

定义复指数函数: ~s (t) ae j (t) ae j e j0t a~e j0t 式中 a~ ae j ,称为复包络。 可以看出s(t)是~s (t) 的实部,即:
s(t) Re[~s (t)]
某些情况下,用复指数形式来分析 问题更加简便,可以简化信号和滤波器 的分析。
复信号~s (t) 的频谱为:
1. s(t) Re[~s (t)]
2.
X~ (
)
2 0
X
(
)
0 0
式中X~ ( )为~s (t)的频谱。
可以证明:满足上面要求的 ~s (t) 是 存在的,称为解析信号。把它用解析表 达式表示为:~s (t) s(t) jsˆ(t)
可以推导出: sˆ(t)
1
s( ) d
t
上式称为希尔伯特(Hilbert)变换,记做
0
ω ω0-ωc ω0 ω0+ωc
|X~H(ω)|
0
ω0-ωc ω0 ω0+ωc
ω
2. 复指数表示
设s(t)为窄带信号,其频谱为X(ω) 。 定义窄带信号s(t)的复指数函数 ~se (t) 为:
~se (t) A(t)e j[0t (t)] A~(t)e j0t 其中A~(t)=A(t)e j (t) sc (t) jss (t)
用复数表示为:
s(t)=acosφ(t)=a[ejφ(t)+ e-jφ(t)]/2
因为 e j0t ( 0 )
所以s(t)的频谱为:
X(ω)= a[ejθδ(ω-ω0)+e-jθδ(ω+ω0)]/2 |X(ω)|= a[δ(ω-ω0)+δ(ω+ω0)]/2 说明正弦型信号包含正负两种频率成分, 其频谱为对称的两根单一谱线。

09第八章窄带随机过程

09第八章窄带随机过程

4S (w) w 0 (t)的 功 率 谱 密 度 S (w) X 5) 解 析 过 程 X X w 0 0 ˆ 解 : 已 知 R X ( ) 2[ R X ( ) jR X ( )], 等 式 两 边 做 傅 氏 变 换 可 得 : ˆ S X ( w ) 2[ S X ( w ) jS X ( w )] ˆ 其 中 , S X ( w ) j sgn( w ) S X ( w ) 所 以 : S X ( w ) 2[ S X ( w ) s g n ( w ) S X ( w )] 4SX (w) w 0 w 0 0
三、窄带随机过程的莱斯表达式
任 何 一 个 实 平 稳 随 机 过 程 X(t)都 可 以 表 示 为 : X ( t ) = ( t ) c o s w 0 t b ( t ) s in w 0 t 式 中 , 对 于 窄 带 随 机 过 程 来 说 , w 0一 般 为 窄 带 滤 波 器 的 中 心 频 率 。
( t ) , b ( t )为 另 外 两 个 随 机 过 程 。
ˆ ( t ) = X ( t ) c o s w 0t X ( t ) s i n w 0t ˆ b( t ) = - X ( t ) s i n w 0 t X ( t ) c o s w 0 t 证明:
证明: 若 X(t)为 实 随 机 过 程 , 则 其 解 析 过 程 为 : ˆ X ( t ) = X ( t ) jX ( t ) 用乘e
复随机过程
定义: 设{Xt, t∈T},{Yt, t∈T}是取实数值的两个随机过程,若对任意t∈T
Zt X
t
iY t
其中 i
1
,则称{Zt, t∈T}为复随机过程。

《随机信号分析》第五章-窄带随机过程

《随机信号分析》第五章-窄带随机过程
高斯 同一时刻不相关
独立
2020/10/24
06-9-27 28
5.3.2 结论1
对于均值为零的窄带平稳高斯过程
其同相分量和正交分量同样是平稳高斯过程, 而且均值都为零,方差也相同;
在同一时刻上的同相分量与正交分量是不相 关的或统计独立的。
2020/10/24
29
5.3.2
Rc Rs R cos 2 fc Rˆ sin 2 fc
15
2.随机信号的复信号表示
X (t) X (t) jXˆ (t)
R X
(
)
E
X
(t
)
X
*
(t)
E{[ X (t ) jXˆ (t )][ X (t) jXˆ (t)]}
RX ( ) RXˆ ( ) j[RXˆX ( ) RXXˆ ( )]
RX ( ) RXˆ ( ) RXˆX ( ) Rˆ X ( ) RXXˆ ( )
2020/10/24
2
希尔伯特变换 (Hilbert Transform)
1.定义
正变换定义:
H[x(t)] xˆ(t) 1 x( ) d
t
xˆ(t) x(t) 1
t
反变换:
H 1[xˆ(t)] x(t) 1 xˆ( ) d
t
H 1[xˆ(t)] xˆ(t) 1
第5章 窄带随机过程
Narrow-band Random Process
希尔伯特变换 信号的复信号表示 窄带随机过程的统计特性 窄带正态随机过程包络和相位的分布
2020/10/24
1
希尔伯特,D.(Hilbert,David,1862~ 1943)德国著名数学家。
希尔伯特领导的数学学派是19世纪末20 世纪初数学界的一面旗帜,希尔伯特被称 为“数学界的无冕之王”。

窄带随机过程

窄带随机过程




相频特性为:
()
/ 2
/
2
0 0
波 器
二、希尔伯特变换的性质
(1) H[xˆ(t)] x(t)
(2) H[cos(0t )] sin(0t )
H[sin(0t )] cos(0t )
(3) 如果a(t)是低频信号
H[a(t) cos0t] a(t)sin 0t H[a(t)sin 0t] a(t) cos0t
低频信号
是窄带确知信号,其解析信号为
x%(t) A(t)cos0t+(t) jA(t)sin0t+(t)
A(t)e j0t+ (t) A%(t)e j0t
其中 A%(t) A(t)e j (t) ,称为复包络。
一、确知信号的复信号表示
对解析信号取傅里叶变换,得
X%() X () jX ()
第五章 窄带随机过程
窄带随机过程
5.1 窄带随机过程 5.2 信号的复信号表示 5.3 窄带随机过程的统计特性 5.4 窄带正态随机过程包络和相位的分布
5.1 窄带随机过程
一、希尔伯特变换的定义
假定一实函数x(t),其希尔伯特变换为:
H[x(t)] xˆ(t) 1 x( ) d
t
其反变换为:
4、同相分量和正交分量的统计特性
RY ( ) cos0t cos0 (t ) RYˆY ( ) sin 0t cos0 (t )
RYYˆ ( ) cos0t sin 0 (t ) RYˆ ( ) sin 0t sin 0 (t ) 利用如下关系 RY ( ) RYˆ ( ) RYYˆ ( ) RˆY ( ) RYˆY ( )
具有系统函数为 jsgn 的网络是一个使相位滞 π 后 2 弧度的宽带相移全通网络。

窄带随机过程

窄带随机过程
0
0 为高频载波。
窄带随机过程----- 若一个随机过程的功率谱密度,只分布在高频载波
ω0 附近的一个较窄的频率范围∆ω内,且满足ω0>>∆ω 时,则称该过程为窄带随机过程。记为:Z( t ) 。
例:图6.1为以窄带随机过程的功率谱密度函数
GZ(ω)
0
0
0
0
问题: 对应于功率谱密度GZ (ω)的窄带随机过程Z(t)的表达 式为何?即如何 Gz ( ) Z(t ) 。
t t
称为Hilbert变换。
Hilbert 变换与反变换:
sˆ(t) H[s(t)] 1 s( ) d
t
s(t) H 1[sˆ(t)] 1 sˆ( ) d sˆ(t) * 1
t
1
全通滤
| H( )|
波器
H ( )
0
90
1
0
f
0
f
0
90
表达式(二): Z(t) X (t)cos 0t Y (t)sin0t
其中:
X (t ) B(t )cos (t ) Y (t ) B(t )sin(t )
B(t ) X 2 (t ) Y 2 (t ), tan (t) Y (t) / X (t)
由于 cos 0t 与sin0t 正交,故称 X( t )-----Z( t )的同相分量, Y( t )-----Z( t )的正交分量。
窄带随机过程的定义 解析信号与希尔伯特变换 窄带随机过程的性质 窄带高斯随机过程Z(t)的高斯分布 余弦波加窄带高斯过程
§6.1 窄带随机过程的定义
窄带系统---------很多无线电系统的通频带 是比较窄的,
它们远小于其中心频率 ,0 这种系统只允许输入信号靠近

《随机信号分析》第五章-窄带随机过程_第三讲

《随机信号分析》第五章-窄带随机过程_第三讲

c
s
t t
t cos 2 ˆ t cos 2
fct fct
ˆ t sin 2 t sin 2
fct fct
■ 若E t 0,E c t E s t 0.
■ 若 t 是高斯过程,c t 和s t 也是高斯过程. ■ 若 t 是广义平稳过程,c t 和s t 是联合广义平稳随机
(t
)
arctan
s c
(t (t
) )
2020/7/24
2
窄带随机过程的低通表示
■ t 的等效低通表示
(t ) (t ) jˆ(t ) L (t )e j2 fct
复包络 复载波
其中L (t) ~(t)e j2fct
L (t) c (t) js (t) a (t)e j (t)
(t ) Re t Re L (t)e j2 fct
2020/7/24
3
5.3.2窄带随机过程的统计特性
解析信号的统计特性
■ R E * t t E (t) jˆ(t) (t ) jˆ(t )
R Rˆ jRˆ jRˆ 2 R jRˆ
P ( f ) A
0
fc
fc fc f
f
A P ( f fc )
0
2 fc
fc
0 f
f
A P ( f fc )
0
f 0
fc
2 fc
f
2020/7/24
Pc ( f ) Ps ( f )
2A
f 0 f
f
10
5.4 窄带随机过程包络和相位的分布
窄带正态噪声的包络和相位分布
一维分布 二维分布
12
5.4.1
J 为Jocabian行列式。

Matlab仿真窄带随机过程

随机过程数学建模分析任何通信系统都有发送机和接收机,为了提高系统的可靠性,即输出信噪比,通常在接收机的输入端接有一个带通滤波器,信道内的噪声构成了一个随机过程,经过该带通滤波器之后,则变成了窄带随机过程,因此,讨论窄带随机过程的规律是重要的。

一、窄带随机过程。

一个实平稳随机过程X(t),若它的功率谱密度具有下述性质:中心频率为ωc,带宽为△ω=2ω0,当△ω<<ωc时,就可认为满足窄带条件。

若随机过程的功率谱满足该条件则称为窄带随机过程。

若带通滤波器的传输函数满足该条件则称为窄带滤波器。

随机过程通过窄带滤波器传输之后变成窄带随机过程。

图1 为典型窄带随机过程的功率谱密度图。

若用一示波器来观测次波形,则可看到,它接近于一个正弦波,但此正弦波的幅度和相位都在缓慢地随机变化,图2所示为窄带随机过程的一个样本函数。

图1 典型窄带随机过程的功率谱密度图图2 窄带随机过程的一个样本函数二、窄带随机过程的数学表示1、用包络和相位的变化表示由窄带条件可知,窄带过程是功率谱限制在ωc附近的很窄范围内的一个随机过程,从示波器观察(或由理论上可以推知):这个过程中的一个样本函数(一个实现)的波形是一个频率为ƒc且幅度和相位都做缓慢变化的余弦波。

写成包络函数和随机相位函数的形式:X(t)=A(t)*cos[ωc t+ Φ(t)]其中:A(t)称作X(t)的包络函数; Φ(t)称作X(t)的随机相位函数。

包络随时间做缓慢变化,看起来比较直观,相位的变化,则看不出来。

2、莱斯(Rice)表示式任何一个实平稳随机过程X(t)都可以表示为:X(t)=A c(t) cosωc t-A S(t) sinωc t其中同相分量:A c(t)= X(t) cosφt= X(t) cosωc t+sinωc t=LP[X(t) *2cosωc t]正交分量:A S(t) = X(t)sinφt=cosωc t— X(t) sinωc t= LP[-X(t) *2sinωc t](LP[A]表示取A的低频部分)。

Matlab仿真窄带随机过程

随机过程数学建模分析任何通信系统都有发送机和接收机,为了提高系统的可靠性,即输出信噪比,通常在接收机的输入端接有一个带通滤波器,信道内的噪声构成了一个随机过程,经过该带通滤波器之后,则变成了窄带随机过程,因此,讨论窄带随机过程的规律是重要的。

一、窄带随机过程。

一个实平稳随机过程X(t),若它的功率谱密度具有下述性质:中心频率为ωc,带宽为△ω=2ω0,当△ω<<ωc时,就可认为满足窄带条件。

若随机过程的功率谱满足该条件则称为窄带随机过程。

若带通滤波器的传输函数满足该条件则称为窄带滤波器。

随机过程通过窄带滤波器传输之后变成窄带随机过程。

图1 为典型窄带随机过程的功率谱密度图。

若用一示波器来观测次波形,则可看到,它接近于一个正弦波,但此正弦波的幅度和相位都在缓慢地随机变化,图2所示为窄带随机过程的一个样本函数。

图1 典型窄带随机过程的功率谱密度图图2 窄带随机过程的一个样本函数二、窄带随机过程的数学表示1、用包络和相位的变化表示由窄带条件可知,窄带过程是功率谱限制在ωc附近的很窄范围内的一个随机过程,从示波器观察(或由理论上可以推知):这个过程中的一个样本函数(一个实现)的波形是一个频率为ƒc且幅度和相位都做缓慢变化的余弦波。

写成包络函数和随机相位函数的形式:X(t)=A(t)*cos[ωc t+ Φ(t)]其中:A(t)称作X(t)的包络函数; Φ(t)称作X(t)的随机相位函数。

包络随时间做缓慢变化,看起来比较直观,相位的变化,则看不出来。

2、莱斯(Rice)表示式任何一个实平稳随机过程X(t)都可以表示为:X(t)=A c(t) cosωc t-A S(t) sinωc t其中同相分量:A c(t)= X(t) cosφt= X(t) cosωc t+sinωc t=LP[X(t) *2cosωc t]正交分量:A S(t) = X(t)sinφt=cosωc t— X(t) sinωc t= LP[-X(t) *2sinωc t](LP[A]表示取A的低频部分)。

窄带随机过程ppt课件

5
表达式(二): Z(t) X (t)cos 0t Y (t)sin0t
其中:
X (t ) B(t )cos (t ) Y (t ) B(t )sin(t )
B(t ) X 2 (t ) Y 2 (t ), tan (t) Y (t) / X (t)
由于 cos 0t 与 sin0t正交,故称 X( t )-----Z( t )的同相分量, Y( t )-----Z( t )的正交分量。
Fourier 变换
S ()
时域复信号。
问题:如何由给定的时域实信号构造对应的时域复信号?
10
2.解析信号的构造
对给定的时域实信号s(t),设构造的时域复信号为
z(t) s(t) jsˆ(t)
其中,sˆ(t ) 为一由s(t)构造的信号,其构造方法可为,
s( t )
h( t )
ˆs( t )
即, z(t ) s(t ) js(t ) h(t)
引入表达式 2 的目的是将Z( t )分解成两个相互正交的分量,
以便于分别分析。 6
表达式 1 和表达式 2 两者间的几何关系: 表达式1:Z(t) B(t)cos[0t (t)], B(t) 0 表达式2:Z(t ) X (t )cos 0t Y (t )sin0t
B( t ) Y(t )
令 0
RZ (0) RX (0) RY (0)
即: X(t),Y(t),Z(t) 的平均功率相同
∵ 前面假设窄带平稳随机过程的均值为零, ∴
2 Z
2 X
2 Y
24
性质性质4证明:
Z (t) X (t) cos0t Y (t) sin 0t Z (t) X (t) sin 0t Y (t) cos0t

6.窄带与正弦波加窄带随机过程


于是, 由式(3.5 - 9)及式(3.5 - 10)得到
Rsc(0)=Rcs(0)=0
(3.5 - 15)
于是,由式(3.5 - 9)及式(3.5 - 10)得到
Rξ(0)=Rc(0)=Rs(0)
(3.5 - 16)
即σ2ξ=σ2c=σ2s
(3.5 - 17)
பைடு நூலகம்
这表明ξ(t)、ξc(t)和ξs(t)具有相同的平均功率或方差(因
3.5 窄带随机过程
•窄带过程: 随机过程通过以fc为中心频率的窄带系统的输出. •窄带系统: 是指其通带宽度Δf<<fc,且fc远离零频率的系统。 •窄带随机过程 实际中,大多数通信系统都是窄带型的,通 过窄带系统的信号或噪声必是窄带的,如果这时的信号或噪 声又是随机的,则称它们为窄带随机过程. •窄带噪声的波形:
再取使cosωct=0的所有t
(3.5 - 9)
Rξ(τ)=Rs(τ)cosωcτ+Rsc(τ)sinωcτ (3.5 - 10)
其中应有
Rs(t, t+τ)=Rs(τ) Rsc(t, t+τ)=Rsc(τ)
由以上的数学期望和自相关函数分析可知, 如果窄带过 程ξ(t)是平稳的,则ξc(t)与ξs(t)也必将是平稳的。
由式(3.5 - 1)至(3.5 - 4)看出,ξ(t)的统计特性可由aξ(t), φξ(t)或ξc(t),ξs(t))的统计特性确定。反之,如果已知ξ(t)的统计 特性则可确定aξ(t),φξ(t)以及ξc(t),ξs(t)的统计特性。
3.5.1 窄带过程的同相和正交分量的统计特性
设窄带过程ξ(t)是平稳高斯窄带过程,且均值为零, 方差 为σ2。下面将证明它的同相分量ξc(t)和正交分量ξs(t)也是零均 值的平稳高斯过程,而且与ξ(t)具有相同的方差。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自Hale Waihona Puke 的实验心得。差; 画出X(n)的理论的自相关函数和功率谱; 估计X(n)的自相关函数和功率谱。 4. 随机信号通过线性系统分析 考虑图示系统 其中w为均匀分布的随机序列,画出输出端的概率密度和直方图。 四、实验结果与分析 1. (a)序列x(n) 的波形如下:
(b ) x(n)的均值是 mean(x)=4.7348, var(x)=12.2727;
figure(5);%subplot(235); Pw=fft(d); W=0:2*pi/N:2*pi-2*pi/N; plot(1:999,abs(Pw)); title('估计出的功率谱');
4. (a)由图可知,系统的差分方程是: ;
程序代码: clear all;clc; n=1:500; w=rand(1,500); x=zeros(1,500); for i=3:500 x(i)=w(i)+0.9*w(i-1)-0.1*w(i-2); end [f,xi]=ksdensity(x); figure(1); plot(xi,f); xlabel('x'); ylabel('f(x)'); title('概率密度'); X=-0.5:0.05:2.5; figure(2); hist(x,X); title('概率直方图');
提示:MATLAB自带的函数为periodogram(),阐述periodogram()的 用法; 阐述其它谱估计方法的用法。 (4)均值的估计 提示:MATLAB自带的函数为mean() (5)方差的估计 提示:MATLAB自带的函数为var() (6) AR(1)模型的理论自相关函数和理论功率谱 对于AR(1)模型,自相关函数为 ,其功率谱为。 三、实验内容 1. 相关高斯随机序列的产生 按如下模型产生一组随机序列,其中为均值为1,方差为4的正态分 布白噪声序列。 (1)产生并画出a=0.8和a=0.2的x(n)的波形; (2)估计x(n)的均值和方差; (3)估计x(n)的自相关函数,并画出相关函数的图形。 2. 两个具有不同频率的正弦信号的识别 设信号为,,其中为零均值正态白噪声,方差为。 (1)假定,针对,和, 两种情况,使用周期图periodogram()的 方法估计功率谱。 (2)假定,,针对和两种情况,用周期图periodogram()的方法估计 功率谱 3. 理论值与估计值的对比分析 设有AR(1)模型, , W(n)是零均值正态白噪声,方差为4。 用MATLAB模拟产生X(n)的500个样本,并估计它的均值和方
五、实验思考题 (1)自相关函数R(m)最大值应该在n=0,用MATLAB估计得到的 结果与理论的结果相同吗?为什么? 答:不相同。因为R(m)的值是一个向量,而此向量的下标是从1 开始的,所以在图中画出来的时候R(m)的最大值是出现在n=N处的(序 列是因果的),而事实上图中的0~2N-1对应了实际的-N+1~N-1。 (2)随机序列的功率谱是以为周期的周期函数,功率谱的周期性 在MATLAB估计得到的结果中是如何体现的? 答:在这次仿真实验中,貌似没有体现出周期性? 六、心得体会 本次实验基本上囊括了课程中所涉及到的基本知识。其实在一开始 做实验的时候内心是比较抵触的,怕做不出来,但是硬着头皮扛下来, 再请教下同学,这个实验也就做下来了。除此之外,我发现,有一个问 题,就是这样的实验结果是出来了,但往往我就忽视了对好不容易得出 的结果的深入分析,这是一点不足之处。 再次,建议在研讨课时,将各组的程序,仿真报告汇总,分发至各 组,这样,可以让我们在课下用这些继续研究,尤其是关于MATLAB 的一些代码(由于没有进行数模竞赛,是这学期才上手MATLAB,有 不少盲点,比如就在此次中,我才明白,randn(n,1)和randn(1,n)的区别 仅仅是一个是列向量,而另一个是行向量),上网也无处可寻,手头上 现有的关于MATLAB的资料,卷帙浩繁,没有太多关于随机信号分析 的内容。 总而言之,这次实验让我在随机信号分析和MATLAB的使用上有了 更深刻的体会。 六、实验要求 (1)个人独立完成实验,切勿抄袭; (2)用MATLAB完成所有要求的实验内容; (3)撰写详细的实验报告,实验报告中应该包括以下內容: 实验内容和原理的简单阐述,分析; 得到的实验结果图形及简要分析,比较; 对“实验思考题”的详细分析和回答;
2. (a)相同方差,不同频率时的频谱图如下:
可以看到,信号中两个频率的谱线还是比较明显的,没有被噪声淹 没。 (b) 相同频率,不同方差时的频谱图如下:
从图中可以预测有这样一个趋势:即噪声方差越大,信号谱线越难以 分辨。这是因为噪声方差越大,信噪比越小,信号越容易被淹没。 代码如下:
clear all; clc; f1=0.05; f2=0.08; N=500; sigma=1; u=randn(1,N); n = 1:N; w=sigma*u(n); x1 =2*cos(2*pi*n*f2)+sin(2*pi*n*f1)+w; subplot(211); periodogram(x1); % plot(x1); title('f1=0.05,f2=0.08'); f21=0.05; f22=0.20; x2 =2*cos(2*pi*n*f22)+sin(2*pi*n*f21)+w; subplot(212); periodogram(x2); title('f1=0.05,f2=0.20');
方差是
(c)估计出的自相关函数波形见上图; 代码如下:
clear all;clc; a1=0.8; sigma=2; N=500; u=randn(N,1); x(1)=sigma*u(1)/sqrt(1-a1^2); for i=2:N x(i)=a1*x(i-1)+sigma*u(i)+1; end subplot(221); plot(x); title('x(n),a=0.8') b=mean(x) % b=1.5035 sigma1=var(x) % sigma1=4.0319 d=xcorr(x,'coeff'); subplot(222); plot(d) title('自相关函数'); a2=0.2; sigma=2; N=500; u=randn(N,1); x(1)=sigma*u(1)/sqrt(1-a1^2); for i=2:N x(i)=a1*x(i-1)+sigma*u(i)+1; end subplot(223); plot(x); title('x(n),a=0.2')
实验报告
实验题目:窄带随机过程的模拟
一、实验目的 了解随机过程特征估计的基本概念和方法,学会运用MATLAB软 件产生各种随机过程,对随机过程的特征进行估计,并通过实验了解不 同估计方法所估计出来的结果之间的差异。 二、实验原理 (1)高斯白噪声的产生 提示:利用MATLAB函数randn产生 (2)自相关函数的估计 提示:MATLAB自带的函数为xcorr(),阐述xcorr的用法 (3)功率谱的估计 利用周期图方法估计功率谱, 其它谱估计方法:…….
3. (a)均值为mx=-0.0217;方差是;
(b)理论的功率谱密度和自相关函数:
(c)估计出的功率谱及自相关函数:
程序代码:
clear all;clc; a=-0.8; sigma=2; N=500; u=randn(1,N); x(1)=sigma*u(1)/sqrt(1-a^2); for n=2:N x(n)=a*x(n-1)+sigma*u(n); end figure(1);%subplot(231); plot(x); title('x(n),a=-0.8') b=mean(x) % b=1.5035 sigma1=var(x) % sigma1=4.0319 nn=-499:499; rx=4*(-0.8).^(abs(nn))/(1-0.8*0.8); [Px,w]=periodogram(x); figure(2); %subplot(232); plot(rx); title('理论的自相关函数'); w=0:pi/250:2*pi; for i=1:501 G(i)=4/(1+0.8*exp(-1j*w(i)))^2; end figure(3);%subplot(233); plot(w,abs(G)); title('理论的功率谱'); xlabel('rad/s') d=xcorr(x,'coeff'); figure(4); %subplot(234); plot(d) title('估计出的自相关函数');
相关文档
最新文档