初中利润问题解题技巧复习过程

合集下载

数学人教版九年级上册销售中的利润问题--函数应用复习

数学人教版九年级上册销售中的利润问题--函数应用复习

1800 x( 0x 15 ) • P= 20 x 2100 (x 15 )
• (2)∵利润=樱桃的利润+草莓的利润, ∴①当0<x≤15时,∴25<40-x<40, • ∴W=1800x+1380(40-x)+2400=420x+55200; 当x=15时,W有最大值,W最大=6300+55200=61500; ②当15<x<20, ∴25<40-x<40 • W=-20x+2100+1380(40-x)+2400=-1400x+59700; ∵-1400x+59700<61500; 答:当樱桃面积为15亩时,利润最大为61500元.
x 20 ( 20 x 40 ) y B 2 x 1 ( x 20)(x 20) x2 400 20 x 40 对称轴 w2 ( x 20)(2x 140 ) 2x2 180 2800 40 x 60 对称轴 b 45当x 45 时W2最大值为 1250 2a 答:当售价为 45元时每天的最大利润为 1250 元。 b 0当x 40 时W1最大值为 1200 2a
• 1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函 数关系式,并写出自变量的取值范围; • (2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面 积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最 大值
• 解:(1)观察图表的数量关系,可以得出P关于x的函数关系式为:
• 4.我国中东部地区雾霾天气趋于严重,环境治理已刻不容 缓.我市某电器商场根据民众健康需要,代理销售某种家 用空气净化器,其进价是200元/台.经过市场销售后发现: 在一个月内,当售价是400元/台时,可售出200台,且售 价每降低10元,就可多售出50台.若供货商规定这种空气 净化器售价不能低于300元/台,代理销售商每月要完成不 低于450台的销售任务. • (1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式; 并求出自变量 x的取值范围; • (2)当售价x(元/台)定为多少时,商场每月销售这种空气净化 器所获得的利润w(元)最大?最大利润是多少?

初中数学,遇到分式利润问题不用怕,学会这些技巧,方程轻松列出来

初中数学,遇到分式利润问题不用怕,学会这些技巧,方程轻松列出来

初中数学,遇到分式利润问题不用怕,学会这些技巧,方程轻松列出来利润问题是初中比较重要并且难度较高的知识点之一,要顺利解决这类问题,这几个等式至关重要:利润=进价×利润率;利润率=利润÷进价;进价=利润÷利润率;利润=售价-进价;分式方程部分的利润问题应用题和其他应用题一样,正确找到题中的等量关系是关键,做到这一点,不仅要熟练使用上面的等式,而且要适当地对这类问题多加练习。

下面教给大家一些解题技巧和解题思维,多学着分析几遍,以后再遇到利润问题,相信可以轻松列出方程。

第1题分析:根据题意可知,该商店先以高于进价的价格卖出了50盒,这50盒粽子是盈利的;后以低于进价的价格把余下的粽子全部卖出,这些粽子是赔钱卖的;所以利润应该是前50盒赚的钱去掉后面卖出的粽子赔的钱,即等量关系为:前50盒粽子盈利的钱-余下粽子亏损的钱=350;先求前50盒粽子盈利的钱:前50盒粽子每盒的利润率是20%,进价是x元,则每盒盈利20%x,则前50盒粽子盈利的钱为50×20%x;再求余下粽子亏损的钱:粽子的总盒数等于购进粽子的钱数2400除以每盒的进价x,即2400/x,则余下的粽子盒数=2400/x-50,每盒亏损5元,则余下粽子亏损的钱为(2400/x-50)×5;最后把上面这两个代数式(粗体部分)代入等量关系即可,方程如下:第2题分析:“利润提高了5%”意思是现在的利润率比原来的利润率多了5%,所以等量关系为:现在的利润率-原来的利润率=5%;先求原来的利润率:每个计算题原来的利润为48-x,进价为x,则原来的利润率=48-x/x;再求现在的利润率:现在的利润为48-96%x,现在的进价为96%x,则现在的利润率=48-96%x/96%x;把这两个利润率的式子代入等量关系即可,方程如下:温馨提醒:在菜单处可以查看经过分类整理的课程。

加油!。

初一利润问题解题技巧

初一利润问题解题技巧

初一利润问题解题技巧
利润问题是初中数学中常见的问题类型,主要考察了学生对百分比、比例等知识的掌握程度。

利润问题主要涉及到成本、售价、利润和利润率等概念。

假设成本为 C,售价为 S,利润为 P,利润率为 R。

根据题目,我们可以建立以下方程或表达式:
1. 利润 P = S - C(售价减去成本)
2. 利润率R = P / C × 100%(利润除以成本再乘以100%)
3. 售价 S = C + P(成本加上利润)
现在我们通过一个具体的例子来演示如何解决利润问题。

例题:某商品的成本价为100元,如果按定价的90%出售,仍能获得20%的利润,那么商品的定价是多少元?
根据题目,我们可以建立以下方程:
1. 利润P = 100 × 20% = 20 元(成本价的20%)
2. 售价S = 100 × 90%(因为按定价的90%出售)
3. 定价 D = S / (1 - 90%)(售价除以折扣率)
现在我们要来解这个方程,找出商品的定价 D。

计算结果为:定价 D = 1000 元
所以,商品的定价是:1000 元。

初三数学利润问题题型

初三数学利润问题题型

初三数学利润问题题型一、利润问题的基础概念嘿,小伙伴们!咱们来聊聊初三数学里让人又爱又恨的利润问题。

首先呢,咱们得搞清楚几个关键的概念。

啥是成本?简单说,就是你生产或者进货一件东西花的钱。

售价呢,就是你把这东西卖出去的价格。

利润呢,就是售价减去成本啦。

还有个重要的利润率,它等于利润除以成本再乘以 100%哟。

二、常见的利润问题题型1. 求利润这种题目一般会直接告诉你成本和售价,让你算利润。

比如说,一件衣服成本 80 元,卖了 120 元,那利润就是 120 80 = 40 元,是不是挺简单?2. 求利润率要是题目给了成本和利润,让算利润率,那就用利润除以成本再乘以 100%。

假设成本 100 元,利润 30 元,那利润率就是30÷100×100% = 30%。

3. 价格变动与利润有时候商品价格会变动,比如先涨价再打折啥的。

像一件商品原价 100 元,涨价 20%,然后打 8 折出售,这时候就得先算出涨价后的价格100×(1 + 20%) = 120 元,再算打折后的价格120×0.8 = 96 元,然后再算利润。

4. 成本、售价、利润的关系有些题会只给其中两个量,让求另一个。

比如知道利润率和成本,求售价,那就用成本乘以(1 + 利润率)。

三、解题小技巧1. 认真读题,把关键数字和信息都圈出来,别马虎哟。

2. 设未知数,要是有些量不清楚,大胆设个 x 或者 y,然后根据题目里的关系列方程。

3. 多做几道题练练手,熟悉了就不怕啦。

怎么样,小伙伴们,利润问题是不是也没那么可怕啦?加油哦!答案及解析:一、求利润例 1:一件商品成本 50 元,售价 80 元,利润是多少?解析:利润 = 售价成本 = 80 50 = 30 元二、求利润率例 2:一件商品成本 60 元,利润 20 元,利润率是多少?解析:利润率 = 利润÷成本×100% = 20÷60×100% ≈ 33.3%三、价格变动与利润例 3:一件商品原价 80 元,涨价 25%,然后打 9 折出售,利润是多少?解析:涨价后的价格= 80×(1 + 25%) = 100 元打折后的价格= 100×0.9 = 90 元利润 = 90 80 = 10 元四、成本、售价、利润的关系例 4:商品的利润率为 40%,成本为 120 元,售价是多少?解析:售价 = 成本×(1 + 利润率) = 120×(1 + 40%) = 168 元。

分式方程八年级下册求利润

分式方程八年级下册求利润

分式方程八年级下册求利润摘要:一、分式方程的基本概念1.分式方程的定义2.分式方程的分类二、分式方程的解法1.去分母法2.换元法3.分式方程的应用三、利润问题与分式方程1.利润的计算公式2.利润问题中的分式方程3.利润问题的解题方法四、例题解析1.利润问题的分式方程建立2.利润问题的解法及步骤3.利润问题的答案与解析正文:一、分式方程的基本概念分式方程是数学中的一种方程,它包含有分式。

分式方程的定义是指形如分子和分母都是代数式的方程。

根据分式方程的特点,我们可以将其分类为线性分式方程、二次分式方程等。

二、分式方程的解法1.去分母法:通过乘以分母的倒数,将分式方程转化为整式方程求解。

2.换元法:设新的变量替换原分式方程中的变量,将分式方程转化为整式方程求解。

3.分式方程的应用:在实际问题中,如物理、化学、经济等领域,常常需要通过建立分式方程来求解问题。

三、利润问题与分式方程1.利润的计算公式:利润=售价- 成本。

在利润问题中,我们需要根据已知条件建立利润与相关量的分式方程。

2.利润问题中的分式方程:例如,已知进价为x 元,售价为y 元,数量为z 个,则利润可以表示为k = yz - xz,其中k 为利润,x、y、z 为已知条件。

3.利润问题的解题方法:通过建立分式方程,我们可以利用解方程的方法求解利润。

四、例题解析1.利润问题的分式方程建立:假设某商品的进价为a 元,售价为b 元,销售量为c 个,利润为x 元,则利润的计算公式为x = bc - ac。

2.利润问题的解法及步骤:步骤一:根据题目条件,列出分式方程x = bc - ac。

步骤二:对方程进行变形,求解未知数。

步骤三:根据解得的未知数值,计算出利润。

3.利润问题的答案与解析:根据解得的未知数值,我们可以得到利润的值。

利润问题初中一元二次方程

利润问题初中一元二次方程

利润问题初中一元二次方程咱来唠唠初中一元二次方程里的利润问题哈。

比如说,你去卖小玩意儿,进价是每个x元,你一开始打算每个卖y元。

那每个小玩意儿的利润就是卖价减去进价,也就是(y - x)元。

假如你总共进了m个这种小玩意儿,那总利润就是单个利润乘以数量,也就是m(y - x)元。

不过呢,有时候这个卖价不是固定不变的。

比如说,你发现如果每个小玩意儿的卖价提高a元,那销售量就会减少b个。

这时候,设提高后的卖价为z元,那销售量就变成了m - (z - y)/(a)×b个。

总利润就变成了[z - x](m - (z - y)/(a)×b)元。

这时候呢,就经常会出现一元二次方程啦。

因为这个式子展开后,z的最高次是二次的。

比如说,你进了100个小玩偶,进价每个10元,原本卖15元。

发现每提价1元,就少卖5个。

设提价后的卖价是z元。

那销售量就是100 - (z - 15)/(1)×5个,总利润就是(z - 10)(100 - (z - 15)/(1)×5)元。

把这个式子展开:begin{align}(z - 10)(100 - 5(z - 15)) =(z - 10)(100 - 5z + 75) =(z - 10)(175 - 5z) =175z - 5z^2 - 1750 + 50z =- 5z^2 + 225z - 1750end{align}这就是个一元二次方程啦。

如果告诉你总利润是多少,就可以通过解这个一元二次方程来求出提价后的卖价z啦。

总之呢,利润问题里的一元二次方程就是这么个情况,你只要把进价、卖价、销售量之间的关系搞清楚,列方程就不是难事啦。

初中利润问题应用题

初中利润问题应用题

初中利润问题应用题一、题目背景在初中数学中,利润问题是一个常见的应用题。

它不仅考察了学生对于百分数的理解,还涉及到商业运作中的实际问题。

二、问题描述假设小明在某个商场里开了一家小店,他购进一件商品的成本为100元,然后以120元的价格卖出去。

那么他的利润率是多少?如果他想要获得200元的利润,他需要以多少元的价格卖出这件商品?三、解题思路1. 利润率的计算利润率指的是利润与成本之比,通常用百分数表示。

如果小明以120元卖出了一件成本为100元的商品,那么他所获得的利润就是20元。

因此,他的利润率可以通过以下公式进行计算:利润率 = 利润÷ 成本× 100%将上述数据代入公式中可得:利润率= 20 ÷ 100 × 100% = 20%因此,小明卖出这件商品时所获得的利润率为20%。

2. 利润与售价之间的关系如果小明想要获得200元的利润,那么他需要以多少元的价格卖出这件商品呢?我们可以通过以下公式进行计算:售价 = 成本 + 利润÷ 数量将上述数据代入公式中可得:售价= 100 + 200 ÷ 1 = 300因此,小明需要以300元的价格卖出这件商品才能获得200元的利润。

四、解题步骤根据上述思路,我们可以将解题步骤总结如下:1. 计算利润率:利润率 = 利润÷ 成本× 100%2. 计算售价:售价 = 成本 + 利润÷ 数量五、注意事项在解决利润问题时,需要注意以下几点:1. 注意单位转换:成本、利润和售价的单位必须一致。

2. 注意数量的影响:如果小明购买了多件商品,那么每件商品的成本和利润就会发生变化。

3. 注意实际情况:在商业运作中,还有许多其他因素会影响到利润率和售价。

因此,在实际操作中需要综合考虑各种因素。

六、拓展应用除了上述例题外,我们还可以通过以下拓展应用来加深对于利润问题的理解:1. 如果小明想要获得50%的利润率,他需要以多少元的价格卖出这件商品?2. 如果小明购买了10件成本为100元的商品,然后以120元的价格卖出去,他获得了多少元的利润?3. 如果小明想要获得1000元的利润,他需要以多少元的价格卖出这件商品?通过解决上述问题,我们可以更加深入地理解利润问题,并且掌握更加灵活的解题方法。

九年级数学上册复习专题06一元二次方程利润问题(1)

九年级数学上册复习专题06一元二次方程利润问题(1)

专题06一元二次方程利润问题这类问题在考试中是必考内容,需要掌握的知识点也比较多,是一类非常重要的考题,需要掌握以下知识点:①总利润=单件利润×数量(销售量);②单件利润=售价-进价;③总利润与x是二次函数关系;④数量与x是一次函数关系;【1②公式中“单利”为未降价前的单件利润,即单利=售价-进价;③公式中“基础数量”为降价前的销售量,题目中给出;④公式中“件数”为题目中说明的,降价“1元”,增加的数量;(注意必须是降价1元,不是1元的,转化为1元)⑤列出方程;(注意降价的范围)⑥解出方程;【2①设应涨价x元;②公式中“单利”为未涨价前的单件利润,即单利=售价-进价;③公式中“基础数量”为涨价前的销售量,题目中给出;④公式中“件数”为题目中说明的,涨价“1元”,减少的数量;(注意必须是涨价1元,不是1元的,转化为1元)⑤列出方程;(注意涨价的范围)⑥解出方程;【3】定价问题(问题为定价多少元或售价为多少元)(注意:无论是涨价还是降价,公式中的符号和位置都不变)①设应定价x元;②公式中“进利”为题目中给出的进价;③公式中“基础数量”为价格改变前的销售量,题目中给出;④公式中“件数”为题目中说明的,涨价(或者降价)“1元”,增加(或者减少)的数量;(注意必须是涨价或降价1元,不是1元的,转化为1元)⑤公式中“售价”为题目中给出价格为改变前的销售价格;⑥列出方程;(注意x的范围)⑦解出方程;【4】数量为一次函数类型我们已经知道,数量与x(涨价,降价或者定价)是一次函数关系,因此我们可以用一次函数的待定系数法求出数量的表达式,再将一次函数表达式代入方程中即可;①设数量y=kx+b(k≠0);②在给出的函数图像上找两个已知坐标的点代入;③求出y的解析式;④总利润=单利×数量中,“数量”用求出的“kx+b”代替,列出方程;⑤注意x的取值范围;1.水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天售出100千克.通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出20千克,为了保证每天至少售出240千克,张阿姨决定降价销售.(1)若售价降低0.8元,则每天的销售量为 千克、销售利润为 元;(2)若将这种水果每千克降价x 元,则每天的销售量是 千克(用含x 的代数式表示);(3)销售这种水果要想每天盈利300元,张阿姨应将每千克的销售价降至多少元?【答案】(1)销售量:260,利润:312((2(100+200x (千克);(3)张阿姨应将每千克的销售价降至5元.【解析】【分析】(1)销售量=原来销售量+下降销售量(销售量×每千克利润=总利润(据此列式即可((2)销售量=原来销售量+下降销售量(据此列式即可((2)根据销售量×每千克利润=总利润列出方程求解即可(【详解】(1)销售量(100+20×0.80.1=100+160=260(利润((100+160((6(4(0.8(=312(则每天的销售量为260千克(销售利润为312元(故答案为260(312((2)将这种水果每千克降低x 元(则每天的销售量是100+0.1x ×20=100+200x (千克)( 故答案为(100+200x (((3)设这种水果每千克降价x 元(根据题意得((6(4(x ((100+200x (=300(2x 2(3x =1=0(解得(x =0.5或x =1( 当x =0.5时(销售量是100+200×0.5=200<240(当x =1时(销售量是100+200=300>240(∵每天至少售出240千克(∴x =1(6(1=5(答(张阿姨应将每千克的销售价降至5元(【点睛】本题考查了一元二次方程的应用(第一问关键求出每千克的利润(求出总销售量(从而利润.第二问(根据售价和销售量的关系(以利润做为等量关系列方程求解(2.合肥百货大楼服装柜在销售发现:某童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价2元,那么平均每天就可多售出4件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【答案】每件童装应降价20元.【解析】【分析】设每件童装应降价x 元,则平均每天可售出4(20)2x 件,根据总利润=每件的利润⨯销售数量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论. 【详解】解:设每件童装应降价x 元,则平均每天可售出4(20)2x 件, 依题意,得:4(40)(20)12002x x , 整理,得:2302000x x -+=,解得:110x =,220x =.要求尽快减少库存,20x ∴=.答:每件童装应降价20元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.3.某商场销售一批衬衫,平均每天可以售出20件,每件盈利40元.为回馈顾客,商场决定采取适当的降价措施.经调查发现,每件衬衫降价1元,商场平均每天可多售出2件.(1)若每件衬衫降价5元,商场可售出多少件?(2)若商场每天的盈利要达到1200元,每件衬衫应降价多少元?【答案】(1)30件;(2)每件衬衫应降价10元或20元【解析】【分析】(1)根据“每件衬衫降价1元,商场平均每天可多售出2件”直接计算即可得出答案;(2)设每件衬衫应降价x 元,商场每天要获利润1200元,可列方程求解.【详解】解:(1)∵每件衬衫降价1元,商场平均每天可多售出2件,∴每件衬衫降价5元,可售出20+5×2=30(件);(2)设每件衬衫应降价x 元,据题意得:(40﹣x )(20+2x )=1200,解得:x =10或x =20.答:每件衬衫应降价10元或20元.本题考查了一元二次方程的应用,准确抓住题目中的相等关系,列出方程是解题的关键.4.某汽车销售公司去年12月份销售新上市的一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?【答案】每辆车需降价2万元【解析】【分析】设每辆车需降价x 万元,根据每辆汽车每降5000元,公司平均每天可多售出2辆可用x 表示出日销售量,根据每天要获利48万元,利用利润=日销售量×单车利润列方程可求出x 的值,根据尽量减少库存即可得答案.【详解】设每辆车需降价x 万元,则日销售量为()82840.5x x +⨯=+辆, 依题意,得:(5)(84)48x x -+=,解得:11x =,22x =,∵要尽快减少库存,∴2x =.答:每辆车需降价2万元.【点睛】此题主要考查了一元二次方程的应用,找到关键描述语,得出等量关系是解题关键.5.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,该商品每降价1元,商场平均每天可多售出2件.(1) 设每件商品降价x 元,则商场日销售量增加 件,每件商品盈利_________元(用含x 的代数式表示);(2) 每件商品降价多少元时,商场日盈利可达到2000元?【答案】(1)2x ,50-x (0<x≤50,x 为正整数);(2)25元.【解析】【分析】(1)根据已知条件可得:当每件商品降价x 元后,商场平均每天可多售出2x 件商品,每件商品的利润为:50-x (0<x≤50x 为正整数).(2)设每件商品降价x 元,则由已知条件可得商场的日盈利为:(50)(302)x x -+再由日盈利为:2000元,可得到一个关于x 的一元二次方程,并解之即得.(1)解:(该商品每降价1元,则商场平均每天可多售出2件(当每件商品降价x 元后,商场平均每天可多售出2x 件商品,每件商品的利润为:50-x (0<x≤50 x 为正整数). 故答案为:2x ,50-x (0<x≤50 x 为正整数).(2)解:设每件商品降价x 元,则由已知条件可得商场的日盈利为:(50)(302)x x -+化简得:22701500x x -++(商场的日盈利为2000元(227015002000x x -++=化简得:2352500x x -+=分解因式得:(10)(25)0x x --=解之得:1210,25x x ==(当每件商品的价格降低10元或25元时,商场的日盈利可达利2000元.又∵商场需要尽快减少库存(当每件商品的价格降低25元时,商场的日盈利可达利2000元.故答案为:25元.【点睛】本题考查了根据实际问题,设定未知数,列一元二次方程;一元二次方程的解法中的因式分解法(首先应把该方程化为标准形式:20ax bx c ++=,其中a ,b ,c 为常数且a≠0,再将等式左边进行因式分解.6.商场某种商品平均每天可销售30件,每件赢利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多销售出2件.(1)若某天,该商品每天降价4元,当天可获利多少元?(2)每件商品降多少元,商场日利润可达2100元?【答案】(1)1748元;(2)20元.【解析】【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“盈利=单件利润×销售数量”即可列出关于x 的一元二次方程,解之即可得出x 的值, 再根据尽快减少库存即可确定x 的值.【详解】解:(1)当天盈利:(50-4)×(30+2×4)=1748(元).答:若某天该商品每件降价4元,当天可获利1748元.(2)设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.根据题意,得:(50-x)×(30+2x)=2100,整理,得:x2-35x+300=0,解得:x1=15,x2=20,∵商城要尽快减少库存,∴x=20.答:每件商品降价20元时,商场日盈利可达到2100元.【点睛】本题考查了一元二次方程的应用,根据数量关系列出一元二次方程(或算式)是解题的关键.1.某商店将进价为30 元的商品按售价50 元出售时,能卖500 件.已知该商品每涨价1 元,销售量就会减少10 件,为获得12000 元的利润,且尽量减少库存,售价应为多少元?【答案】售价为60元【解析】【分析】设售价为x元,由已知该商品每涨价1 元,销售量就会减少10 件,为获得12000 元的利润,列出方程,由且尽量减少库存得出方程的解,可得答案.【详解】设售价为x元由题意得:(x-30)[500-10(x-50)]=12000解得:x1=60,x2=70∵尽量减少库存∴售价应定为60元答:售价为60元【点睛】本题主要考查一元二次方程的实际应用,由已知条件列出方程式解题的关键.2.某商店销售一款口罩,每袋的进价为12元,计划售价大于12元但不超过22元,通过试场调查发现,这种口罩每袋售价提高1元,日均销售量降低5袋,当售价为18元时,日均销售量为50袋.(1)在售价为18元的基础上,将这种口罩的售价每袋提高x元,则日均销售量是袋;(用含x的代数式表示)(2)要想销售这种口罩每天赢利275元,该商场每袋口罩的售价要定为多少元?【答案】(1)(505)x -;(2)17【解析】【分析】(1)销售量=原来销售量-下降销售量,据此列式即可;(2)根据销售量×每袋利润=总利润列出方程求解即可.【详解】解:(1)505505x x -=-(袋);故答案为:(505)x -;(2)根据题意得:(1812)(505)275x x -+-=,即:2450x x --=,解得:11x =-,25x =,当1x =-时,售价是18(1)17+-=元;当5x =时,售价是18523+=元.∵计划售价大于12元但不超过22元,∴1x =-,售价是17元.答:该商场每袋口罩的售价要定为17元.【点睛】本题考查一元二次方程的应用,关键是根据售价和销售量的关系,以利润做为等量关系列方程求解.3.某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价x 元(x 为非负整数),每周的销量为y 件. (1)求y 与x 的函数关系式及自变量x 的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?【答案】(1)10010=-y x ,05x ≤≤;(2)每件的售价是17元或者18元.【解析】【分析】(1)根据“每件的售价每涨1元,那么每周少卖10件”,即可求出y 与x 的函数关系式,然后根据x 的实际意义和售价每件不能高于20元即可求出x 的取值范围;(2)根据总利润=单件利润×件数,列方程,并解方程即可.【详解】(1)解:y 与x 的函数关系式为10010=-y x∵售价每件不能高于20元∴01520x x ≥⎧⎨+≤⎩∴自变量的取值范围是05x ≤≤;(2)解:设每件涨价x 元(x 为非负整数),则每周的销量为()10010x -件,根据题意列方程()()100101510560-+-=x x ,解得:122,3x x ==,所以,每件的售价是17元或者18元.答:如果经营该商品每周的利润是560元,求每件商品的售价是17元或者18元.【点睛】此题考查的是一次函数的应用和一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.1.春节前夕,便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能售出240件.销售一段时间后发现:如果每件涨价0.5元,那么每天就少售10件;如果每件降价0.5元,那么每天能多售出20件.为了使该商品每天销售盈利为1980元,每件定价多少元?【答案】为了使得该商品每天盈利1980元,每件定价应为21或23元【解析】【分析】首先根据题意列出方程(利用根的判别式判断方程实数根的情况(然后再求解即可(【详解】①设每件应降价x 元(根据题意得((20(x (12((240+40x ((1980整理得(x 2-2x +1.5=0(((=4(6=(2(0(∴原方程无实数根(②设每件应该涨价y 元(根据题意得((20+y (12((240(20y ((1980解得(y 1(3(y 2(1(当y =3时(20+y =20+3(23(元((当y =1时(20+y =20+1(21(元)(答(为了使得该商品每天盈利1980元(每件定价应为21或23元(【点睛】本题考查了一元二次方程的应用(解题的关键是能够分别表示出销售量和单件的销售利润(从而列出方程求解(解答过程中注意舍去不符合题意的根(2.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?【答案】每件商品售价60元或50元时,该商店销售利润达到1200元.【解析】【分析】根据题意得出,(售价-成本)⨯(原来的销量+2⨯降低的价格)=1200,据此列方程求解即可.【详解】解:设每件商品应降价x 元时,该商店销售利润为1200元.根据题意,得()()70302021200x x --+=整理得:2302000x x -+=,解这个方程得:110x =,220x =.所以,7060x -=或50答:每件商品售价60元或50元时,该商店销售利润达到1200元.【点睛】本题考查的知识点是生活中常见的商品打折销售问题,弄清题目中的关键概念,找出题目中隐含的等量关系式是解决问题的关键.3.平安超市准备进一批书包,每个进价为40元.经市场调查发现,售价为50元时可售出400个;售价每增加1元,销售量将减少10个.超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少【答案】60元【解析】【分析】设定价为x 元,则利用单个利润×能卖出的书包个数即为利润6000元,列写方程并求解即可.【详解】解:设定价为x 元,根据题意得(x -40)[400-10(x -50)]=60002x -130x+4200=0解得:1x = 60,2x = 70根据题意,进货量要少,所以2x = 60不合题意,舍去.答:售价应定为70元.【点睛】本题考查一元二次方程中利润问题的应用,注意最后的结果有两解,但根据题意需要舍去一个答案.4.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?【答案】(1)450千克;(2)当月销售利润为元8750时,每千克水果售价为65元或75元;(3)当该优质水果每千克售价为70元时,获得的月利润最大【解析】【分析】(1)根据销售量的规律:500减去减少的数量即可求出答案;(2)设每千克水果售价为x 元,根据题意列方程解答即可;(3)设月销售利润为y 元,每千克水果售价为x 元,根据题意列函数关系式,再根据顶点式函数关系式的性质解答即可.【详解】解(()1当售价为55元/千克时,每月销售量为()50010555050050450-⨯-=-=千克.()2设每千克水果售价为x 元,由题意,得()()4050010508750,x x ⎡⎤=⎦-⎣-- 即2101400400008750,x x -+-=整理,得21404875,x x -=-配方,得()27049004875,x -=-解得1265,75.x x == ∴当月销售利润为元8750时,每千克水果售价为65元或75元()3设月销售利润为y 元,每千克水果售价为x 元,由题意,得()()405001050,y x x ⎡⎤=---⎣⎦ 即210140040(00040)100,y x x x =-+-≤≤配方,得()210709000,y x =--+ 100-<,∴当70x =时,y 有最大值∴当该优质水果每千克售价为70元时,获得的月利润最大(【点睛】此题考查一元二次方程的实际应用,顶点式二次函数的性质,正确理解题意,根据题意对应的列方程或是函数关系式进行解答,并正确计算(5.某商场计划购进一批书包,市场调查发现:当某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,每月销售量就减少10个.(1)当售价定为42元时,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月获得10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少元?【答案】(1)580;(2)70;(3)50【解析】【分析】(1)由“这种书包的售价每上涨1元,其销售量就减少10个”进行解答;(2)根据“售价+月销量减少的个数÷10”进行解答;(3)设销售价格应定为x 元,根据“这种书包的售价每上涨1元,其销售量就减少10个”列出方程并解答.【详解】(1)当售价为42元时,每月可以售出的个数为600-10×(42-40)=580(个),答:每月可售出580个;(2)当书包的月销售量为300个时,每个书包的价格为:40+(600-300)÷10=70(元);答:每个书包的定价为70元;(3)设销售价格应定为x 元,则(x -30)[600-10(x -40)]=10000,解得x 1=50,x 2=80,当x=50时,销售量为500个;当x=80时,销售量为200个.答:为体现“薄利多销”的销售原则,销售价格应定为50元.【点睛】本题考查了一元二次方程的应用,解题的关键是分别表示出销量和单价,用销量乘以单价表示出利润即可.6.某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售200件,售价每提高1元,销售量将减少10件.那么,该服装每件售价是多少元时,商店销售这批服装获利能达到2240元?【答案】该服装每件售价是64元或66元时,商店销售这批服装获利能达到2240元.【解析】【分析】设每件服装售价提高x元,则每天可售出(200﹣10x)件,根据总利润=每件服装的利润×销售数量,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】设每件服装售价提高x元,则每天可售出(200﹣10x)件,依题意,得:(60+x﹣50)(200﹣10x)=2240,整理,得:x2﹣10x+24=0,解得:x1=4,x2=6,∴60+x=64或66.答:该服装每件售价是64元或66元时,商店销售这批服装获利能达到2240元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.疫情结束后,某广场推出促销活动,已知商品每件的进货价为30元,经市场调研发现,当该商品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额﹣进货成本).(1)若该商品的的件单价为43元时,则当天的售商品是件,当天销售利润是元;(2)当该商品的销售单价为多少元时,该商品的当天销售利润是3450元.【答案】(1)250,3250;(2)当该商品的销售单价为45元或53元时,该商品的当天销售利润是3450元.【解析】【分析】(1)根据当天销售量=280﹣10×增加的销售单价,即可求出结论;(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,根据当天的销售利润=每件的利润×当天销售量,即可得出关于x的一元二次方程,然后求解方程即可得出结论.【详解】解:(1)280﹣(43﹣40)×10=250(件),当天销售利润是250×(43﹣30)=3250(元),故答案为:250,3250;(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,依题意,得:(x﹣30)[280﹣(x﹣40)×10]=3450,整理,得:x 2﹣98x +2385=0,解得:x 1=53,x 2=45.答:当该商品的销售单价为45元或53元时,该商品的当天销售利润是3450元.【点睛】本题主要考查一元二次方程的应用,解此题的关键在于根据题意设出未知数,列出方程进行求解.1.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?【答案】(1)2180y x =+﹣;(2)60元/千克或80元/千克;(3)70元/千克;800元【解析】【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】解:(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(55,70)、(60,60)代入得: 55706060k b k b +=⎧⎨+=⎩, 解得:2180k b =-⎧⎨=⎩, ∴y 与x 之间的函数表达式为2180y x =-+;(2)由题意得:()()502180600x x --+=,整理得214048000x x -+=:,解得126080x x ==,,答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)设当天的销售利润为w 元,则:()()502180w x x =--+22(70)800x =-+﹣,∵﹣2<0,∴当70x =时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.2.某网店销售某款童装,每件售价60元,每星期可卖300件,为尽快减少库存,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件售价定为多少元时,该商店每天的销售利润为6480元?【答案】(1)302100=-+y x ;(2)52元.【解析】【分析】(1)根据销售量y 件=原销售量300件+降价(60-x )元后增加的销售量解答即可;(2)根据利润=每件利润×销售量即得关于x 的方程,解方程即可求出x ,检验后即得结果.【详解】解:(1)由题意得:()3003060302100y x x =+-=-+;(2)由题意,得()()403021006480x x --+=解得:1252,58x x ==,∵要尽快减少库存,∴每件售价应为52元.答:当每件售价定为52元时,该商店每天的销售利润为6480元.【点睛】本题考查了一元二次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.3.某商店销售一款口罩,每袋的进价为12元.经市场调查发现,每袋售价每增加1元,日均销售量减少5袋.当售价为每袋18元时,日均销售量为100袋.设口罩每袋的售价为x元,日均销售量为y袋.(1)用含x的代数式表示y;(2)物价部门规定,该款口罩的每袋售价不得高于22元.当每袋售价定为多少元时,商店销售该款口罩所得的日均毛利润为720元?【答案】(1)y=−5x+190;(2)每袋售价定为20元时,商店销售该款口罩所得的日均毛利润为720元.【解析】【分析】(1)设口罩每袋的售价为x元,日均销售量为y袋,由题意可得出y与x的关系式;(2)根据“总利润=每袋利润×日均销售量”列方程求解可得出答案.【详解】解:(1)设口罩每袋的售价为x元,日均销售量为y袋,由题意得y=100−5(x−18)=−5x+190,即y=−5x+190;(2)设每袋售价定为x元时,商店销售该款口罩所得的日均毛利润为720元,根据题意可得:(x−12)(−5x+190)=720,解得:x1=20,x2=30,∵该款口罩的每袋售价不得高于22元,∴x=30舍去,∴x=20,答:每袋售价定为20元时,商店销售该款口罩所得的日均毛利润为720元.【点睛】本题主要考查一次函数的实际应用,一元二次方程的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出方程.4.某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?【答案】(1)y=-2x+200;(2)100件或20件;(3)销售单价定为65元时,该超市每天的利润最大,最大利润1750元【解析】【分析】(1)将点(40,120)、(60,80)代入一次函数表达式,即可求解;(2)由题意得(x -40)(-2x+200)=1000,解不等式即可得到结论;(3)由题意得w=(x -40)(-2x+200)=-2(x -70)2+1800,即可求解.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(40,120)、(60,80)代入一次函数表达式得:401206080k b k b +=⎧⎨+=⎩ 解得2200k b =-⎧⎨=⎩, 所以关系式为y=-2x+200;(2)由题意得:(x -40)(-2x+200)=1000解得x 1=50,x 2=90;所以当x=50时,销量为:100件;当x=90时,销量为20件;(3)由题意可得利润W =(x -40)(-2x+200)=-2(x -70)2+1800,∵-2<0,故当x <70时,w 随x 的增大而增大,而x≤65,∴当x=65时,w 有最大值,此时,w=1750,故销售单价定为65元时,该超市每天的利润最大,最大利润1750元.【点睛】考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.5.某科技公司为提高经济效益,近期研发一种新型设备,每台设备成本价为2万元.经过市场调研发现,该设备的月销售量y (台)和销售单价x (万元)对应的点(x ,y )在函数y =kx + b 的图象上,如图:(1)求y 与x 的函数关系式;(2)根据相关规定,此设备的销售单价不高于5万元,若该公司要获得80万元的月利润,则该设备的销售单价是多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利润问题是公务员考试行测科目数学运算部分的常考题型之一。

利润问题也是人们在经济生活中遇到的问题,它主要考查进价、售价、利润之间的关系。

中公教育专家提醒各位考生,在复习的过程中,应重点掌握利润问题涉及的几种题型及解题方法。

利润问题概念及相关公式
一、简单的利润问题
利润问题本身是从商业活动中抽象出来的,几乎所有的题目都与进价、售价、利润相关,尤其是那些最简单的利润问题。

例题:
一商品的进价比上月低了5%,但超市仍按上月售价销售,其利润率提高了6个百分点,则超市上月销售该商品的利润率为:
A.12%
B.13%
C.14%
D.15%
中公中公解析:此题答案为C。

为避免出现分数,这里遇
到百分数,则设特值时可设为100,因此设上月的进价为100,则这个月的进价为100×(1-5%)=95。

设上个月的利润率为x,则这个月的利润率为x+6%。

根据售价相同可知:100(1+x)=95(1+x+6%),解得x=14%。

二、打折问题
商家定完价格以后,往往不是按照最初的定价进行出售,一般都会通过打折这一方式,降低实际的售价,从而吸引更多的顾客来购买商品。

例题:
某商店花10000元进了一批商品,按期望获得相当于进价25%的利润来定价,结果只销售了商品总量的30%。

为尽快完成资金周转,商店决定打折销售,这样卖完全部商品后,亏本1000元。

问商店是按定价打几折销售的?
A.四八折
B.六折
C.七五折
D.九折
中公解析:此题答案为B。

方法一,商品的总定价为(1+25%)×10000=12500元,销售30%后,得到12500×30%=3750元。

由于整体亏本1000元,说明剩下70%的销售额为10000-1000-3750=5250元,然而剩下70%商品的原定价为12500-3750=8750元,5250÷8750=0.6,即打了六折,
选B。

三、价格与销量反向变化问题
价格上涨,销量就会降低;价格下跌,销量就会增加。

在公务员考试中,就有研究这类规律的问题,一般是求总利润最高时的售价或总利润的最大值。

例题:
将进货单价为90元的某商品按100元一个出售时,能卖出500个,已知这种商品如果每个涨价1元,其销售量就会减少10个,为了获得最大利润,售价应定为:
A.110元
B.120元
C.130元
D.150元
四、多种方式促销问题
商场有时候会给出多种促销的方式,我们需要通过计算对比,确定哪一种促销方式能给我们带来最大的优惠。

例题:
某商场举行周年让利活动,单件商品满300减180元,满200减100元,满100减40元;若不参加活动则打5.5折。

小王买了价值360元,220元,150元的商品各一件,最少需要多少钱?
A.360元
B.382.5元
C.401.5元
D.410元
中公解析:此题答案为B。

将每件商品是否参加活动的情况列举到下表中:
因此最少需要180+120+82.5=382.5元。

相关文档
最新文档