数学竞赛:图论讲义
数学奥林匹克竞赛解题方法(第9讲 图论方法)

1 第9讲 数学解题方法(图论方法)
课时:3课时
教学课型:理论课
教学目的: 让学生对数学解题方法之一图论方法的知识有个全面的认识,并由此产生兴趣。
教学重点与教学难点:
● 运用图论方法进行有效地解决数学问题。
教学内容:
● 心理学家纽亏尔和西蒙提出:熟悉的知识和技能是问题解决者“可能信步漫游的网络”
● 把现实世界中的某些事情用点和联结点的边(线段或曲线)所组成的图形来描述,并应用这样的图形特征来解答问题.
例1 设R b b b R a a a n n ∈∈+,,,,,,,2121 ,且),,3,2,1(0n i b a i i =>+则有不等式
∑∑∑∑∑=====+≤+n i n i i i
n i n i i i n i i i i i b a b a b a b a 11111,其中等号当1=n 或1>n 有n
n b a b a b a === 2211时成立.(《数学通报》问题974题)
例2 (算术-几何平均值不等式)设+∈R a a a a n ,,,321,对于+∈N n ,则n n n a a a n
a a a 2121≥+++,其中等号当且仅当n a a a === 21时成立.。
数学竞赛中的图论问题

2-6数学竞赛中的图论问题(P .221)一、基本思想引例欧拉7桥问题把所考察的对象作为顶点(v ),把对象之间是否具有我们所关心的某种关系作为了连线的的条件(e ),这样,就可以把一个具体问题抽象为图的研究.在解数学竞赛题中的好处:(1)把抽象的问题转化为直观的问题;(2)把复杂的逻辑关系转化为简明的数量关系.二、基本内容有图、顶点、边、简单图、完全图、连通图、树、二分图、竞赛图等14个定义,12条定理:定义1 设集合{}12(),,,p V G v v v =≠∅ ,{}12(),,,q E G e e e = 是()V G 中某些元素对的无序集合,则称()()(),G V G E G 为图,又称()V G 为图G 的顶点集合,其元素叫做顶点;称()E G 图G 的边集合,其元素叫做边.若(),u v V G ∈,边e 是无序顶点对(),u v ,则记e uv vu ==,且称u 与v 是边e 的端点,e 与顶点,u v 关联,也说顶点u 与v 邻接(或相邻).有公共端点的边12,e e 称为邻边,也说12,e e 邻接.例如顶点:()V G ={小王,小李,小张,小赵,小陈,小刘}, 边:1e ={小王,小李},2e ={小李,小赵},3e ={小陈,小刘} , 12,e e 相邻.定义2 图G 中所含顶点的数目称为图的阶数,记为V (也用G 来表示);又用E 表示图G 的边数(也用G 来表示).通常用(),G p q 表示p 个顶点,q 条边的图G ;若,p q 都是有限数的图称为有限图,否则称为无限图.如果对于图(),G V E 与()''',G V E ,有'',V V E E ⊆⊆,则称'G 是G 的子图.定义 3 两顶点间至多连一条边且每边的两个端点相异的图称为简单图;图中任何两个顶点都邻接的简单图称为完全图,p 阶完全图记为.p K定理1 p K 的边数为()12p p E -=. 定义4 图G 中与顶点u 关联的边数称为顶点u 的度,记为()d u .如果u 的度数是奇数,则称u 为奇顶点;如果u 的度数是偶数,则称u 为偶顶点.定理2 任何一个图的总度数等于边数的2倍,()2u Vd u E ∈=∑.推论 任何图中奇顶点的个数是偶数.定义5 图G 中点边交错的非空有限序列011231k k k u e u e u u e u - 叫做以0,k u u 为端点的途径.若途径中所有的i e 都不相同,则叫做0k u u -链;若链中所有的i u 都不相同则叫做0k u u -通路,k 称为通路的长;若0,k u u 重合,则叫做回路或圈.k 为奇(偶)数的回路称为奇(偶)回路.定义6 经过图G 中每条边的链称为欧拉链,两端重合的欧拉链称为欧拉环游图(欧拉回路),有欧拉环游的图称为欧拉图(简称E 图)直观的说,欧拉图就是从一个顶点出发而每边通过一次又能回到出发顶点的图(一笔画).定理3 连通图G 为欧拉图的充要条件是G 中没有奇顶点. 推论 如果连通图G 有2k 个奇顶点,那么图G 可以用k 笔画成.定义7 包含图G 每一个顶点的通路称为哈密尔顿通路,有哈密尔顿通路的图称为哈密尔顿图.定理4 设G 是一个p 阶简单图()3p ≥,若G 中任意两个顶点,u v 的度数满足()()d u d vp +≥,则G 是哈密尔顿图. 定义8 连通而无回路的图称为树,树上度数为1的顶点称为叶(悬挂点).定理5 如果树T 的顶点数不小于2,那么树T 上至少有两个叶.定理6 设图G有p个顶点,q条边,则下列说法彼此等价:(1)G是树;(2)G的任意两个顶点间有且仅有一条通路;(3)G连通,且1=-;q p(4)G无回路,且1=-;q p(5)G无回路,但连接任何两个非邻接顶点,u v所得新图,有且仅有一个回路;(6)G连通,但舍弃任何一条边后便不连通.定义9 图()G V E的顶点集V若能分成两个非空子集12,V V,,使得任何边e的一个端点属于V,另一个端点属于2V,则G为1二分图.定理7 图G为二分图的充要条件是G不含奇回路.定义10 设图()G V E为简单图,M是E的一个非空子集,,若M中任何两边都不相邻,则称M为图G的一个匹配(又称对集).若M边之端点包括G中一切顶点,则称M为G的一个完备匹配.M中每一边的两个端点称为相配.定义11 在图的边上用箭头标注出方向就得到一个有向图,称为定向.完全图的一个定向称为竞赛图.定理8 每个竞赛图都有单向哈密尔顿通路.定义12 若一个图G可以画在平面上,使得任何两条边都不在非顶点处相交,则称图G为平面图.图的边所包围的一个区域,其内部既不包含图的顶点,也不包含图的边,这样的区域为图G 的一个面.为了方便,把平面图G 的外部无限区域也作为一个面,称为外部面,其他面则称为图G 的内部面.定理9 设G 是一个简单连通平面图,()(),V G p E G q==,面数为f (包括外部面),则2p q f -+=. 定理10 一个连通的平面简单图G ,若有v 个顶点()3,v e ≥条边,则36e v ≤-.定义13 用红蓝两种颜色对完全图p K 的边任意染色,使每条边都染上某一种颜色,若总会出现红色边m K 或蓝色边n K 时,则记p 的最小值为(),r m n ,称(),r m n 为关于,m n 的拉姆赛数.定理11 ()()()()()3,36,3,49,3,514,3,618,3,723,r r r r r ===== ()3,936,r =()4,418.r =定义14 用n 种颜色对完全图p K 的边任意染色,使每条边都染上某一种颜色,若总会出现同色三角时,则记p 的最小值为()3,3,,3n r个,简记为n r ,称n r 为拉塞姆数. 定理12 设12,,,n S S S 是集合{}1,2,,n r 的任意分划,则存在一个,1n i i r ≤≤,使i S 中有方程x y z +=的根.三、主要方法不是图论知识的直接套用,而是图论基本思想的常识应用.构造法、反证法数学归纳法抽屉原理染色方法极端原理四、例题选讲例1-1 有5个课外活动小组,每2个小组里有一个相同的同学,每个同学恰好在两个小组里出现,问这5个小组里共有多少个同学?解 把小组对应为点,“每2个小组里有一个相同的同学”就连一条线,每两点都有连线;又由于“每个同学恰好在两个小组里出现”,故每两点都连且只连一条线,得5阶完全图,图中变的条数就是同学个数,得10个同学.例1-2 有n 个药箱,每两个药箱里有一种相同的药,每种药恰好在两个药箱里出现,问共有多少种药?解 把药箱对应为点,“两个药箱里有1种相同的药”就连一条线,每两点都有连线;又由于“每种药恰好在两个药箱里出现”,故每两点都连且只连一条线,得(n 阶完全图)2n N C .例2 证明:在任何一群人中,与奇数个人互相握手(互相认识)的人有偶数个.证明 记这群人为n 个点,“互相握手”就在对应的两点连一条线,共有e 条,每个人认识的人数为点的“度数”,记为12,,,n d d d ,则122n d d d e +++= ,2i i d d e +=∑∑奇偶,2i i de d =-∑∑奇偶为偶数 id ∑奇是偶数个奇数之和.例3-1 (1947,匈牙,例2-4-1)证明:在任意6个人中,总可以找到3个人互相认识,或互相不认识,并且这种情况至少出现2个.例3-2 (1976,波兰)平面上有6个点,任何3点都是一个不等边三角形的顶点,则这些三角形有一个的最短边又是另一个三角形的最长边.提要:把每个三角形的最短边染成红色,存在红色三角形,红色三角形的最长边为所求.例4 在边二染色的K 5中没有单色三角形的充要条件是它可分解为一红一蓝两个圈,每个圈恰由5条边组成.证明 充分性是显然的.考虑必要性,在K 5中每点恰引出4条线段,如果从其中某点A 1能引出三条同色线段A 1A 1,A 1A 3,A 1A 4,记为同红,则考虑△A 2A 3A 4,若当中有红边i j A A (24i j ≤≤≤),则存在红色三角形1i j A A A 是同蓝色三角形,均无与单色三角形矛盾.所以,从每点引出的四条线段中恰有两条红色两条蓝色,整个图中恰有5条红边、5条蓝边. 现只看红边,它们组成一个每点度数都是2的偶图,可以构成一个或几个圈,但是每个圈至少有3条边,故5条红边只能构成一个圈,同理5条蓝边也构成一个圈. 例 5 求最小正整数n ,使在任何n 个无理数中,总有3个数,其中每两数之和都仍为无理数.解 取4个无理数,显然不满足要求,故5n ≥. 设,,,,a b c d e 是5个无理数,视它们为5个点,若两数之和为有理数,则在相应两点间连一条红边,否则连一条蓝边.这就得到一个二染色5k .只须证图中有蓝色三角形,分两步:(1)无红色三角形.若不然,顶点所对应的3个数中,两两之和均为有理数,不妨设,,a b b c c a +++都是有理数,有1[()()()]2a ab bc c a =+-+++ 但无理数≠有理数,故5k 中无红色三角形.(2)有同色三角形,若不然,由上例知,5k 中有一个红圈,顶点所对应的5个数中,两两之和均为有理数,设,,,,a b b c c d d e e a +++++为有理数,则1[()()()()()]2a ab bc cd de e a =+-+++-+++ 但无理数≠有理数,故5k 中无5条边组成的红圈,从而有同色三角形.这时,同色三角形必为蓝色三角形,其顶点所对应的3个无理数,两两之和仍为无理数.综上所述,最小的正整数5n =.例6-1 某足球邀请赛有,,,A B C D 4个城市参加,每市派出红黄两支球队,根据比赛规则,每两之间球队至多赛一场,并且同一城市的两支球队之间不进行比赛.比赛若干天后进行统计,发现除A 市红队外,其他各队比赛过的场次各不相同.问A 市黄队赛过多少场.(找黄队,求c 场次)解 因为“同一城市的两支球队之间不进行比赛”,所以每一个球队最多赛6场;有因为“除A 市红队外,其他各队比赛过的场次各不相同”,所以,其他各队赛过的场次分别为0,1,2,3,4,5,6共7种情况.用12345678,,,,,,,A A A A A A A A 表示8支球队,两队之间进行了比赛就连1条边,其中1234567,,,,,,A A A A A A A 分别赛了6,5,4,3,2,2,1,0场.由于1A 赛了6场,应有6条引线,记为121314151617,,,,,A A A A A A A A A A A A ,由于1A 与8A 没有引线,故1A ,8A 属于同一城市.同理, 27,A A 属于同一城市, 36,A A 属于同一城市,45,A A 属于同一城市.45,A A 属于同一城市且都赛过3场,由于“除A 市红队外,其他各队比赛过的场次各不相同”,所以45,A A 就是A 市的两支球队,得A 市黄队赛过3场.例6-2 李明夫妇最近参加了一次集会,同时出席的还有三对夫妻.一见面,大家互相握手,当然夫妻之间不握手,也没有人与同一个人握两次从手.握手完毕后,李明统计了包括妻子在内的7个人握手的次数,发现恰好数字发互不相同.请问.李明的妻子握了几次手?例6-3 (P.225例2-115)作业:1 习题2-6第12.习题2-6第11题(P.235)。
图论基础信息学奥赛

1.3 道路与回路
显然,由于七桥问题对应的图中有4个奇顶 点,因而不能一笔画成,即一个旅行者要 既无重复也无遗漏地走过图中七座桥是不 可能的。
需要几笔呢????
1.4 树
树:没有圈的连通图称作树,通常用T表示。 T中d(V)=1的顶点叫做叶;
森林:每个连通分支皆为树的图叫做森林。 平凡树:孤立的顶点叫做平凡树。 树的图论特征:如果树T的顶点数为N,那
1.2 图的定义
• 环:如果一条边,它的起点和终点相同,这样的 边称为环。
• 平行边:若连接两个顶点的边有多条,则这些边 称之为平行边。
• 孤立点:不与任何边关联的顶点称为孤立点。
1.2 图的定义
• 简单图:如果一个图没有环,并且每两个顶点之 间最多只有一条边,这样的图称之为简单图。在 简单图中,连接Vi与Vj的边可以记成(Vi,Vj)
1.3 道路与回路
• 下图中e1,e2,e3,e4,e5,e6组成一条道路
1.3 道路与回路
• 轨道:在道路的定义中,并不要求V0至Vg, 互不相同。如果V0至Vg互不相同,这样的道 路称为轨道,记成P(V0,Vg) 。
• 回路:V0=Vg的路称为回路。 • 圈:V0=Vg的轨道叫做圈。 • K阶圈:长为K的圈叫做K阶圈。 • 显然,如果有一条从V到V'的道路上去掉若
1.1 引言
例2属于图的连通性问题。找出图中的割顶 集,就是问题的解。军事指挥中很多此类 问题。
1.1 引言
例3 飞行大队有若干个来自各地的驾驶员, 专门驾驶一种型号的飞机,这种飞机每架 有两个驾驶员。由于种种原因,例如相互 配合的间题,有些驾驶员不能在同一架飞 机上飞行,问如何搭配驾驶员,才能使出 航的飞机最多。
2.1 求最短路
图论讲义

v5
同构图举例
4 2 1 a c 3 1 2 3
G
4 a 5 d
H
6
H’
b
G’
d b
f c e
G ≅ G’ 1→a,2→b,3→c, 4→d
H ≅ H’ 1→a,2→b,3→c, 4→d,5→e,6→f
非同构图举例 存在结点数及每个结点对应度都相等的两 个图仍然不同构的情况.一个例子如 下:(注意:两个4度点或邻接或不相邻接)
1.3 端点,关联边,相邻,次 端点,关联边,相邻, • 有向图中,由节点指向外的弧的数目称为正次数,记 有向图中,由节点指向外的弧的数目称为正次数, 指向该节点的弧的数目称为负次数, 为 d+,指向该节点的弧的数目称为负次数,记为 d– • 次数为 0 的点称为孤立点 的点称为孤立点 孤立点(isolated vertex) ,次数为 1 的 悬挂点(pendant vertex) 点称为悬挂点 点称为悬挂点 定理 1:图中奇点的个数总是偶数个 : 1.4 链,圈,路径,回路,欧拉回路 路径,回路, • 相邻节点的序列 {v1′′ ,v2′′ ,…, vn′′} 构成一条链(link),又称 构成一条链 , 行走(walk);首尾相连的链称为圈(loop),或闭行走 为行走 ;首尾相连的链称为圈 , 在无向图中,节点不重复出现的链称为路径(path);在 • 在无向图中,节点不重复出现的链称为路径 路径 ; 有向图中,节点不重复出现且链中所有弧的方向一致, 有向图中,节点不重复出现且链中所有弧的方向一致, 则称为有向路径 向路径(directed path) 则称为有向路径 • 首尾相连的路径称为回路(circuit); 首尾相连的路径称为回路 回路 ;
11
一摆渡人欲将一只狼,一头羊, 例 一摆渡人欲将一只狼,一头羊,一篮菜从河 西渡过河到河东.由于船小,一次只能带一物过河, 西渡过河到河东.由于船小,一次只能带一物过河, 并且狼与羊,羊与菜不能独处.给出渡河方法. 并且狼与羊,羊与菜不能独处.给出渡河方法. 用四维0 向量表示( 解:用四维0-1向量表示(人,狼,羊,菜)在河 西岸的状态(在河西岸则分量取1,否则取0), 1,否则取0),共有 西岸的状态(在河西岸则分量取1,否则取0),共有 24 =16 种状态.在河东岸的状态类似表示. 种状态.在河东岸的状态类似表示. 由题设,状态(0,1,1,0),(0,0,1,1),(0,1,1,1)是不 由题设,状态 , , 是不 允许的,从而对应状态(1,0,0,1), (1,1,0,0), (1,0,0,0) 允许的,从而对应状态 也是不允许的. 也是不允许的. 以可允许的 允许的10个状态向量作为顶点 向量作为顶点,将可能互 以可允许的 个状态向量作为顶点 将可能互 相转移的状态用线段连接起来构成一个图. 相转移的状态用线段连接起来构成一个图 根据此图便可找到渡河方法 渡河方法. 根据此图便可找到渡河方法.
图论GraphTheory教学讲义

边(edge)
有向边(directed edge)
端点有始点和终点之分的边。 用有序二元组<始点,终点>表示
结点v的入度: 以v为终点的有向边的数目, 记为deg-(v)或d-(v)
有向图中结点v的度d(v):d(v)=d+(v)+d-(v)
a
deg+(c) = 2
deg-(c) = 3
b
c
deg(c) = deg+(c) + deg-(c) = 5
23
定理 1
设图G是具有n个顶点、m条边的有向图,
第五章 图 论 (Graph Theory)
1
图论的起源
Konigsberg(柯尼斯堡)七桥问题
能否从河岸或小岛出发,恰好通过每一座桥一次 再回到出发地?
2
欧拉引进了图论
瑞士数学家Euler(欧拉)于1736年从理论上圆满 解决这个问题。
A
抽象
D
B
D
A B
C
C
3
图论发展过程
1736年 - 欧拉解决柯尼斯堡七桥问题-图论产生 1936 年-图论第一部专著出现《有界图和无界图的
理论》 经过近六十多年的发展,逐渐成为一门相对独立的学
科。
4
图论的应用
网络技术的理论基础和重要的研究工具 生物和化学:区别分子式相同但结构不同的两
种化合物。 计算机和通信:用于通信网络和计算机网络的
设计,交通网络的合理分布
高中竞赛数学讲义第68讲图论问题(二)

第68讲图论问题(二)本讲主要内容:本讲将继续研究用图来解决问题的方法.偶图取图G=(V,E),如果V=X∪Y,X∩Y=,其中X={x1,x2,…,x n},Y={y1,y2,…,y m},且x i及x j(1≤i<j≤n),y s 及y t (1≤s<t≤m)均互不相邻,则称G为偶图.色数:将图G的顶点涂上颜色,如果至少要k种颜色才能使任意两个相邻的顶点颜色不同,则称G的色数为k.显然,偶图的色数≤2.即偶图色数不超过2.A类例题例1 在空间中给定2n个不同的点A1,A2,…,A2n,n>1,其中任意三点不共线.设M是n2+1条以给定的点为端点的线段的集合.⑴证明:存在一个三角形,其顶点为给定的点,其边都属于M.⑵证明:若集合M的元素不超过n2个,则这样的三角形可能不存在.(1973年奥地利数学竞赛)分析可以从简单的情况开始试验,发现规律再证明.从K4(4阶完全图,见67讲)共有多少条线及多少个三角形、擦去1条线去掉几个三角形入手得出结论,对于K5、K6也能用此法得到结论,但对于p>6,K p难用此法,如何过渡到一般情况?可以用数学归纳法.证明:n=2时,在4个点间连了5条线,由于4阶完全图在4个点间共可连出6条线,这6v3v4v32k条线连出了4个以此4点中的某3点为顶点的三角形.而每条线的两个端点及(除这条线的两个端点外的)另两个顶点可以连出共2个三角形,故去掉任何一条边都使连出三角形数减少2,于是在4个点间连5条线必连出了以此4点中的3点为顶点的三角形.设n=k时,2k个点间连有k2+1条线时,必有三角形出现.则当n=k+1时,2(k+1)个点间连了(k+1)2+1条线.此时,任取两个相邻的顶点v1,v2,如果在其余的顶点中有某个顶点及v1,v2都连了线,例如v3及v1,v2都连了线(图4(1)),则出现了三角形.如果其余所有的点及此二点都至多连出1条线(图4(2)),则去掉点v1,v2及及这两点相邻的边,此时,余下2k个点,至多去掉了2k +1条边,余下至少(k+1)2+1-(2k+1)=k2+1条边,由归纳假设知,其中必有三角形.综上可知,命题成立.说明若2n个点间连了n2条边,可以把这2n个点分成两组,每组n个点,规定同组的点间都不连线,不同组的任何两点都连1条线,这样得到了一个完全偶图K n,n,此时共计连了n2条线,但任取三点,必有两点在同一组,它们之间没有连线,于是不出现三角形.例2 一个舞会有n(n≥2)个男生及n个女生参加,每个男生都及一些女生(不是全部)跳过舞,而每个女生都至少及1名男生跳过舞,证明,存在男生b1,b2及女生g1,g2,其中b1及g1跳过舞,b2及g2跳过舞.但b1及g2没有跳过舞,b2及g1没有跳过舞.分析 就是要给出一种选择方法,按此方法操作,即可选出满足要求的两个男生及两个女生.可以用极端原理来证明这样的存在性命题.证明 取所有男生中及女生跳舞人数最多的一个,设是b 1.b 1至少及1名女生没有跳过舞,取没有及b 1跳过舞的一名女生为g 2,g 2至少及1名男生跳过舞,设为b 2,显然b 1不是b 2,现在考虑所有没有及b 2跳过舞的女生,她们不能都没有及b 1跳过舞,(否则没有及b 1跳舞的女生人数就比没有及b 2跳舞的人数多,b 1就不是及女生跳舞人数最多者).即至少有1个女生没有跟b 2跳过舞但跟b 1跳过舞.这个女生即为g 1. 说明 这里就得到了一个偶图{b 1,b 2}∪{g 1,g 2}.(图中,括号内的数字表示证明中出现的先后顺序).极端原理常用于证明存在性命题.情景再现1.求证:顶点多于1的树是偶图.2.证明 偶图的色数≤2,反之,色数≤2的图是偶图. B 类例题例3 某镇有居民1000人,每人每天把昨天听到的消息告诉自己认识的人,已知任何消息只要镇上有人知道,都会经过这样的方式逐渐地为全镇的人所知道.证明可以选出90名代表,使得同时向他们报告一个消息,经过10天,这一消息就为全镇的人知道.(4)(3)(2)(1)21b分析就是要给出一个把1000个点的连通图分成90个子图的方法,使每个点都在其中一个子图中,且每个子图的最长的链的长度不超过10.这样,只要把每个子图的最长链的一个端点选为“代表”,就能完成这个任务.证明用1000个点代表1000个居民,两名居民相识,则在两点之间连一线,如此可得一图,依条件,这个图是连通图.若图中有圈,则我们去掉圈中的一边使圈被破坏而不影响图的连通性,经过有限次这种手续,可得树T1000.在T1000中取一条主干v1v2…v n,取v11作为1个代表,把边v11v12去掉,则此图分成了2个连通分支,在含有v1的一棵树中,每点到v11的路的长度都不超过10,否则v1v2…v n在T1000中不是主干,故v11知道的消息在10天内可以传遍它所在分支的点集所代表的居民;余下另一分支再取其主干,又按此法得出第二个代表v22,依此类推,则T1000分割成若干棵树:同样,在含v22,v33,…的树中,v22,v33,…知道的消息在10天内都能传遍树的点集所代表的居民;由于1000=11×89+21,且每一个小分支树可能还有分支,从而其顶点数可能超过11,所以这样分法,至多分出89棵树并余下一个至多有21个点的树,该树的链长≤20,取此链的中心v,则该链上每个点到v的距离都≤10.现在取v11,v22,v33,…为代表,最后一棵树取其中心v为第90名代表,只要将消息告诉这些代表,则在10天之后,每个分支树的点集所表示的居民全都知道这个消息,问题已获解决.说明 注意每次在最长链上截去一段后,余下的链的主干不一定就是原来主干的截剩部分,所以每次都要重新确定主干.例4 一个国家的国王打算建n 个城市且修(n -1)条道路,使每条道路连接两个城市而不经过其他城市.而每两个城市都可以互相到达,其间的最短距离恰是1,2,…,C 2n =12n (n -1)这些数,问在下列情况下,国王的打算能否实现:(1)n =6;(2)n =1998.分析 就是要画一个树,使任两个顶点的距离都不能相同.对于顶点数少的情况估计是可能存在的,而要得到n =6图可以用构造法.对于n =1998,估计不会存在,所以可以用反证法证明.为了得到n =6的情形,长度为1及2的线段是要取的,否则得不到1,2,这两条线段连结可以得到长度3,为得到距离为15、14、…的线段,可以取某两个城市间距离为8(15的一半),此时8+7=15,8+6=14,8+5=13可以通过增加一条长度为5的线段如图得到,再增加一条长为4的线即可得到全部的15个数.解 (1) n =6时,国王的打算可以实现,城市和道路的分布可依据图所示.⑵ n =1998时,国王的打算不能实现,因为符合要求的道路网存在的必要条件是:n 或(n -2)是完全平方数,证明如下: v 5v 648521v 1v 2v 4v v 58521v 1v 2v 4v用点表示城市,用线表示连接城市的道路,得到一个图G .由题设,知G 是n 阶连通图,又其线的数目恰为(n -1),故G 是n 阶树,因而G 的任两点之间只存在唯一的通道.把G 的顶点二染色:任取一个点A ,对于图中任一点,若它沿唯一的通道到A 的距离是一个偶数,则把此点染红(A 也应染红,因A 到A 的距离为0,0是偶数),否则染蓝.设红点的数目为x ,则蓝点的数目为y =n -x .考虑距离为奇数的点对,易知:两点之间的距离为奇数,当且仅当这两个点一红一蓝.由一个红点和一个蓝点组成的点对有xy 个.又在1,2,…,12n (n -1)中,当12n (n -1)为偶数时,其中的奇数有14n (n -1)个;当12n (n -1)为奇数时,奇数有14[n (n -1)+2]个.于是,如果国王的打算可以实现,则必须满足xy =14n (n -1) ① 或 xy =14[n (n -1)+2] ②. 此时,对于①,有4x (n -x )=n (n -1),即 4x 2-4nx +n 2-n =0, 解得 x =n ±n2,相应的y =n ∓n2.同样,对于②: 有x =n ±n -22,y =n ∓n -22. 故只有n 或(n -2)是完全平方数时,国王的愿望才可能实现.但1998和1998-2=1996都不是完全平方数,故当n =1998时,国王的打算不可能实现.说明 我们只证明了这个条件是必要条件,没有证明这个条件是充分的.对于n=6,有6-2=4是完全平方数,有可能存在满足要求的图,再通过构造出满足要求的图,才能确定解存在.例5证明:任意的9个人中,必有3个人互相认识或4个人互相不认识.分析即证明,在任意的K9中,把边涂成红或蓝两种颜色,则必存在红色K3或蓝色的K4.或在一个有9个顶点的图G中,必存在K3,或在其补图中,存在K4.证明⑴ 如果存在一个顶点,从这点出发的8条线中,有至少4条为红色,设从v1引出的4条线为红色,引到v2,v3,v4,v5.若此4点中的某2点间连了红色线,则存在红色K3,若此4点间均连蓝线,则存在蓝色K4.⑵ 如果从任一点出发的8条线中,红色线都少于4条.于是从每点出发的蓝色线都至少5条.但由于任何图中的奇顶点个数为偶数,故不可能这9个顶点都引出5条蓝线.于是至少有一个顶点引出的蓝线≥6条,例如从v1到v2,v3,…,v7都引蓝线,则在v2,v3,…,v7这6个点的图中,必存在红色三角形或蓝色三角形,于是G中必有红色K3,或蓝色K4.链接拉姆赛(Ramsey)问题本题实际上说的是:在有n个顶点的图G中,有一个K3,或在其补图-G中(在K9中去掉G的所有边后余下的图即G的补图)有一个K4,二者必有一成立.n=9是保证这一个结论成立的n的最小值.一般的,在一个有t个顶点的图中存在K m,或在其补图中存在K n ,t 的最小值是多少?这就是拉姆赛问题.记满足上述要求的t 的最小值为r (m ,n ).则有 r (m ,n )=r (n ,m ),r (1,n )=r (m ,1)=1,r (2,n )=n ,r (m ,2)=m .并可证:定理一 在m ≥2,n ≥2时,r (m ,n )≤r (m ,n -1)+r (m -1,n ).现在已经求出的r (m ,n )有:r (3,3)=6,r (3,4)=9,r (3,5)=14,r (3,6)=18,r (3,7)=23;r (4,4)=18.定理二 设完全图K N 的边涂了n 种颜色,则在N 充分大时,K N 中必有一个同色三角形.设r n 是使K N 中有同色三角形存在在N 的最小值,则⑴ r 1=3,r 2=6,r 3=17;⑵ r n ≤n (r n -1-1)+2;⑶ r n ≤1+1+n +n (n -1)+…+n !2!+n !1!+n !. 上述两个定理都是拉姆赛定理的特例,更一般的结论请参阅单墫教授的有关图论的著作.例如《趣味的图论问题》等 情景再现3.平面α上有n 条直线,把α分成若干区域,证明:可以用两种颜色就可使相邻的区域都涂上不同的颜色.4.在8×8的棋盘上填入1~64的所有整数,每格填一个数,每个数填一次.证明:总能找到两个相邻的格子(有公共边的两个方格就是相邻的方格),这两个方格中填的数相差不小于5.5.证明:任意14人中,必有3人互相认识或有5人互相不认识.C类例题例6 1990个人分成n组,满足(a) 每个组中没有人认识同组的所有的人;(b) 每个组中,任意三人中至少有两人互不认识;(c) 每个组中两个互不认识的人,必可在同组中恰好找到一个他们都认识的人.证明:在每一组中,各人在该组中认识的人数都相同.并求分组个数n的最大值.(1990亚洲及太平洋地区数学竞赛)分析条件都是针对某一组的,所以证明应在某个组内进行,由于两点或连线,或未连线,故可以分两点未连线及两点已连线的情况证明.要求组数最多,应使每组的人数最少.故求应每组人数的最小值.解取其中一组M,设|M|=m,用m个点表示组M中的人,若两人认识,则在相应点间连一条线.于是题设条件可写为:(a) M中任何一点,及M中其余的点没有都连线,即设x∈M,用d(x)表示x在M中的次数.则d(x)≤m-1.(b) M中没有连出三角形;(c) 设x,y∈M.若x,y未连线,则存在唯一z∈M,及x,y均连线.原题即求证:M 中每个点向M 中点连的线数均相等.由于M 中没有点及其余所有的点都连了线,故存在x ,y ∈M ,且x ,y 未连线.由(c )存在惟一z ∈M ,且z 及x ,y 都连了线.⑴ 记M 中除z 外及x 连线的点集为A ,及y 连线的点集为B ,由(c ),A ∩B =,且由(b ),A 、B 中任何两点均不相邻.对于p ∈A ,由于p 及y 不相邻,则有唯一点及p 及y 都相邻,此点必在B 中,设为q ,同样,B 中任何一点q ,也必及A 中唯一点p 相邻.且若p 1、p 2∈A ,则在B 中及它们相邻的点q 1、q 2互不相同,否则及(c )矛盾(p 1、p 2若及B 中的q 都连线,则它们及两个不同的点x 及q 都连了线).这说明A 及B 的元素有一一对应关系,|A |=|B |.则d (x )=d (y ).⑵ 若x ,y 连线,则由(a ),存在u ∈M ,u 及x 未连线,则d (x )=d (u ).若u 及y 也未连线,则由上证,d (u )=d (x )=d (y ).若u 及y 连线,则存在v ∈M ,v 及y 未连线,d (v )=d (y ),当v 及x 未连线时,d (x )=d (v )=d (y );当v 及x 连线时,由(c ),v 及u 必不连线,于是d (v )=d (u ),从而d (x )=d (y ).故每组中的人认识本组的人数相同.⑶ 为了求分组个数的最大值,应找出满足条件的组中人数的最小值,由(a ),有x ,y ∈M ,x 及y 不相邻.于是由(c ),存在z ∈M ,及x 、y 都相邻.由(a ),必还有u ,u 及z 不相邻(否则z 及A B x y z p q同组的点都相邻);于是由(c),u必及x、y之一相邻,设u及x 相邻,于是u及y不相邻.故又存在v及u、y相邻.这样就有了5个点.从而每组至少5个点.而图中5个点满足全部要求.于是至多可分出1990÷5=398组.例7 给定平面上的点集P={P1,P2,…,P1994}, P中任三点均不共线,将P中的所有的点任意分成83组,使得每组至少有3个点,且每点恰好属于一组,然后将在同一组的任两点用一条线段相连,不在同一组的两点不连线段,这样得到一个图案G,不同的分组方式得到不同的图案,将图案G中所含的以P中的点为顶点的三角形个数记为m(G).(1)求m(G)的最小值m0;(2)设G*是使m(G*)=m0的一个图案,若G*中的线段(指以P 的点为端点的线段)用4种颜色染色,每条线段恰好染一种颜色.证明存在一个染色方案,使G*染色后不含以P的点为顶点的三边颜色相同的三角形.(1994年全国高中数学联赛)分析估计当各组点数尽可能接近时三角形个数最少.因此只要证明当两组点数差≥2时,不能达到最小值.可以用逐步调整法来证明.第⑵小问可以用构造法来解.注意K5的边2染色时,可以找到不存在同色三角形的染色法,于是可以据此构造出满足要求的图来.解:设G中分成的83个子集的元素个数分别为n i(1≤i≤83),i =1∑83n i =1994.且3≤n 1≤n 2≤…≤n 83. 则m (G )= i =1∑83C n i3.即求此式的最小值. 设n k +1>n k +1.即n k +1-1≥n k +1.则C n k +13 +C n k +1-13 -(C n k 3+C n k +13 )=C n k 2-C n k +1-12 <0.这就是说,当n k +1及n k 的差大于1时,可用n k +1-1及n k +1代替n k +1及n k ,而其余的数不变.此时,m (G )的值变小.于是可知,只有当各n i 的值相差不超过1时,m (G )才能取得最大值.1994=83×24+2.故当81个组中有24个点,2个组中有25个点时,m (G )达到最小值.m 0=81C 3 24+2C 3 25=81×2024+2×2300=168544.⑵ 取5个点为一小组,按图1染成a 、b 二色.这样的五个小组,如图2,每个小圆表示一个五点小组.同组间染色如图1,不同组的点间的连线按图2染成c 、d 两色.这25个点为一组,共得83组.染色法相同.其中81组去掉1个点及及此点相连的所有线.即得一种满足要求的染色.例8有n 人聚会,已知每人至少认识其中的⎣⎢⎢⎡⎦⎥⎥⎤n 2个人.而对任意图1图2c d c d c d a b a b d b c a d b a b c a的⎣⎢⎢⎡⎦⎥⎥⎤n 2个人,或者其中有两人认识,或者余下的n -⎣⎢⎢⎡⎦⎥⎥⎤n 2人中有两人相识.证明:当n ≥6时,这n 个人中必有3人两两认识.(1996年全国联赛)分析 本题及例6类似,要通过分析连线的情况找出三角形来.由于题中给出了⎣⎢⎢⎡⎦⎥⎥⎤n 2,故应分n 为偶数或奇数的情况分别讨论.证明 作一个图,用n 个点表示这n 个人,凡二人认识,则在表示此二人的点间连一条线.问题即,在题设条件下,存在以这n点中的某三点为顶点的三角形.设点a 连线条数最多,在及a 连线的所有点中点b 连线最多,及a 连线的点除b 外的集合为A ,及b 连线的点除a 外的集合为B .1° 设n =2k ,则每点至少连k 条线,集合A 、B 中都至少有k -1个点.⑴若存在一点c ,及a 、b 都连线,则a 、b 、c 满足要求;⑵若没有任何两点及a 、b 二点都连线(图1),则由A ∩B =,|A ∪B |≤2k -2,|A |≥k -1,|B |≥k -1, 故得 |A |=|B |=k -1,且图中每点都连k 条线.若A 中任何两点间均未连线,B 中任两点也未连线,则A ∪{b }中不存在两点连线,B ∪{a }中也不存在两点连线.及已知矛盾.故在A (或B )中必存在两点,这两点间连了一条线,则此二点及a (b )连出三角形,2° 设n =2k +1.则每点至少连k 条线,A 、B ΦA B 2k 个点图1b a k-1k-1A B Φkk-1中都至少有k -1个点.⑴若存在一点c ,及a 、b 都连线,则a 、b 、c 满足要求; ⑵若没有任何两点及此二点都连线,且|A |≥k ,则由|B |≥k -1(图2),A ∩B =,|A ∪B |≤2k -1,可得|A ∪B |=2k -1,|A |=k ,|B |=k -1,若A 中任何两点间均未连线,B 中任两点也未连线,则A ∪{b }中不存在两点连线,B ∪{a }中也不存在两点连线.及已知矛盾.故A (或B )中存在两点,这两点间连了一条线,则此二点及a 连出三角形,⑶若没有任何两点及此二点都连线,且|A |=k -1,即每点都只连k 条线.这时,必有一点及a 、b 均未连线,设为c (图3).c 及A 中k 1个点连线,及B 中k 2个点连线,k 1+k 2=k ,且1≤k 1,k 2≤k -1.否则若k 2=0,则A ∪{b }中各点均未连线,B ∪{a ,c }中各点也未连线.矛盾.故k 1,k 2≥1.且由于n ≥6,则k 1+k 2≥3,故k 1,k 2中至少有一个不小于2,不妨设k 1≥2,现任取B 中及c 连线的一点b 1,由于b 1及B 中其余各点均未连线,若b 1及A 中的所有及c 连线的点均未连线,则b 1连线数≤2+k -1-k 1≤k -1,矛盾,故b 1至少及此k 1个点中的一点连线.故证.情景再现6.在正整数n 及δ满足什么条件时,可以作出一个n 阶δ正则图.即是:已知n 个点,其中某些点间连了一条线,且每个点都恰Φk 2k 1c B A k-1ba k-1图32k +1个点好及δ个点连了线.问δ可以取什么样的数值?7.某次体育比赛,每两名选手赛一场,每场一定决出胜负,通过比赛确定优秀选手,选手A被确定为优秀选手的条件为:对任何其他选手B,或A胜B,或存在选手C,有A胜C而C胜B.如果按这个条件确定的优秀选手只有1名.求证:这名选手胜所有其余的选手.(1988年中国数学冬令营)8.给定空间中的9个点,任意4点不共面,每两点间连一线段.求最小的n值,使当对其中任意n条线段用红、蓝两色之一任意染色时,都一定出现一个三边同色的三角形.(1992中国数学奥林匹克)习题131.⑴如果在偶图G=(X,Y,E)中,|X|>|Y|,且X中每个顶点的次数都不小于δ,求证:Y中至少有一个顶点的次数>δ.⑵若图G为偶图,且G有圈,则G的圈的长为偶数.反之,若图G有圈,且所有的圈长为偶数,则G为偶图.2.设C是100阶3正则图,现用红、白两色给这100个点着色,其中红点40个,白点60个,如果一条线的两个端点都是红色,则将这条线也染成红色;如果一条线的两个端点都是白色,则将这条线也染成白色,现已知红色线有38条,问白色线有多少条?3.若干人相聚,其中有些人彼此认识,若⑴如果某两个人认识的人数相等,则他们没有共同的熟人;⑵有一个人至少有100个熟人.证明:可以找到一个参加聚会的人,他恰好有100个熟人.4.有2n个学生,每天出去散步,每两人一组,如果每一对学生只在一起散步一次,这样的散步至多可以持续多少天?5.20名选手参加14场单打比赛,每名选手都至少参加过1场.证明:必有某6场比赛的参赛者是12名不同的选手.(1989年美国数学竞赛)6.在n n棋盘的方格中分别填写1,2,…,n2(n≥2),每格一个数.证明:必有两个相邻方格(有公共边的方格),方格中的两个数的差至少为n.(1988年捷克数学竞赛)7.把K n中的每条线段染上红色或蓝色.把某一点出发引出两条同色线段组成的角叫做同色角.证明:同色角的总数不小于14n(n -1)(n-3).8.用黑白两种颜色去涂正九边形的顶点,每个顶点只涂黑、白两色之一,证明:在以这九点为顶点的所有三角形中,必有两个顶点同色的全等三角形.9.⑴将完全图K5中的10条线段进行染色,使得有公共端点的线颜色不相同.至少要用几种颜色?⑵将完全图K2n中的所有线段染上颜色,使得有公共端点的线颜色不相同.至少要用几种颜色?⑶证明:将完全图K2n-1中的所有线段染上颜色,使得有公共端点的线颜色不相同.至少要用2n-1种颜色.10.某团体中任意两个认识的人都没有共同的熟人,而任意两个不认识的人都恰有两个彼此共同的熟人.证明:该团体中每个人认识的人数都相同.(1975南斯拉夫数学竞赛)11.某次体育比赛,每两名选手各赛一场,无平局.通过比赛确定优秀选手.设A为选手,如果对其他任意选手B,要么A胜B,要么存在选手C,使得A胜C,C胜B,则A即是优秀选手.证明:如果按上述规则选出的优秀选手只有1名,则这名选手胜其他所有的选手.(1987年中国数学奥林匹克)12.排球比赛中,每两队都各比赛一场.对两个球队A及B,如果A胜B,或者存在某个球队C,使得A胜C,C胜B,则称A 优于球队B.比赛结束后,优于其他所有球队的球队即被授予冠军称号.比赛结束后能否恰有两个冠军队?(1988年前苏联数学竞赛)本节“情景再现”解答:1.证明任取树T的一个悬挂点v1,把v1涂红,所有及v1距离为奇数的顶点都涂蓝,所有及v1距离为偶数的顶点都涂红,所有涂红的顶点组成集合X,所有涂蓝的顶点组成集合Y,则得到一个二色图,即为偶图.2.证明设G=(X,Y,E)是偶图,把X中的点全部涂成红色,把Y中的点全部涂成蓝色,则所得的图中,相邻的顶点涂色都不同,即只用2色即可涂完G的所有顶点,使相邻的顶点涂色不同.又如果G没有边,则只用1种颜色即可把G的所有顶点涂好,且没有任何相邻的顶点同色(因没有顶点相邻),故偶图的色数≤2.反之若图G的色数≤2,若色数=1,表示G中任何两顶点都不相邻,即G没有边,此时,设G为n阶的,可把G中k(1≤k≤n -1)个点涂成一种红色,另外n-k个点涂成蓝色,即得一个二色图,涂红的点集为X,涂蓝的点集为Y,即为偶图.若色数=2,即用两种颜色可以把所有顶点涂色,且同色点都不相邻,则取涂一种颜色的点的集合为X,涂另一种颜色的点的集合为Y,则得到一个偶图.即色数≤2的图是偶图.3.证明n=1时,1条直线把平面分成2部分,可用两种颜色涂.设n=k时,k条直线把平面分成的区域有满足题意的涂色法,当n=k+1时,先画出其中k条直线,而暂把第k+1条直线擦去.这时k条直线把平面分成的区域可以涂色.涂好色后,把第k+1条直线画出,凡在这条直线某一侧的部分,涂色不动,而在直线另一侧的部分,把涂的色全部改为另一色,则所得涂色满足题意.即n=k+1时,命题成立.综上可知,命题成立.4.证明取每个方格的中心,凡是相邻的两个方格,就把相应的中心连一条线.这样得到了一个图G(图中红线组成的图即为图G).图G的的直径=14,,故图G中任意两点的距离≤14.若相邻两个方格中填的数相差<5,则差≤4,于是图G 中所填两个数的差≤14×4=56.但图中填了1及64,此二数必有一条链相连,此链的长≤14.即其差≤56,及64-1=63矛盾.5.证明:以点表示人,红色线表示认识,蓝色线表示不认识. ⑴ 若存在一个点,从这点引出了至少5条红线,例如从v 1向v 2,v 3,…,v 6引出了5条红线,若v 2,v 3,…,v 6间有某两点间连了红线,则这两点及v 1组成红色三角形,否则此五点间全部连蓝色线,为一蓝色五边形.⑵ 若从任一点引出的红线都少于5条,则每点引出的蓝色线都至少9条.由例如从v 1到v 2,v 3,…,v 10均连蓝色线,则由例5可知v 2,v 3,…,v 10中或存在红色三角形或存在蓝色四边形,于是原图中或有红色三角形,或此蓝色四边形及v 1合成一蓝色五边形.故证.6.证明:由于共计连了12n δ条线.故δ应是不超过n -1且使12n δ为整数的那些正整数值. 1,且使12反之若正整数δ不超过n -n δ为整数,可构造一种连法:取一圆分成n 等分.任取一数i ,满足1≤i ≤⎣⎢⎢⎡⎦⎥⎥⎤n 2,把圆上这n 个点中,距离为i 的16阶5正则图点都连起来,这时当i≠n2时,每个点都连了2条线,当n为偶数,且i=n2时,每个点都连了1条线.如果n为奇数,则δ必须为偶数:δ=2k,如果n为偶数,则δ可为奇数,也可为偶数.若δ=2k<n,依次取i=1,2,…,k,按上法连线,则得到每个点都连了2k条线;若δ=2k+1<n,则按上法连了2k条线,后再取i=n2连线,此时每个点又连了1条线,即每个点都连了2k+1条线.于是可知,可以连出满足要求的图.如图示即是一个16阶5正则图,分别取i=2,4,8画出.7.证明:取A为胜场最多者,若A胜所有选手,此时A为优秀选手.若A未全胜,则A必负于某个选手B,此时若找不到C,使A 胜C而C胜B,即所有负于A的选手都负于B,则B比A胜场更多,矛盾.故必存在这样的C胜B.故此时A为优秀选手.若只有1名优秀选手,即优秀选手只有A,于是其余选手均不是优秀选手.若A负于B,由于B不是优秀选手,则存在D,D胜A及B,若D不存在.即其余所有选手或负于A,或负于B,则B 也为优秀选手.故D必存在.现D胜A、B,由于D不是优秀选手,同理,故必能找到E,胜A、B、D,…,这样一直下去,最后必有一人胜所有其余的人,为优秀选手,及只有1名优秀选手矛盾.故A全错误!未定义书签。
图论讲义12 (1)
第八章独立集和团§8.1 独立集°独立集:设S是V的一个子集,若S中任意两个顶点在G中均不相邻,则称S为G的一个独立集。
°最大独立集:G的一个独立集S称为G的最大独立集,是说:G不包含适合S′>S的独立集S′。
°例子:(见图8.1)°覆盖:G的一个覆盖是指V的子集K,使得G的每条边都至少有一个端点属于K。
°例子:在图8.1中,两个独立集都是覆盖的补集。
定理8.1:设S⊆V,则S是G的独立集当且仅当V\S是G的覆盖。
证:按定义,S是G的独立集当且仅当G中每条边的两个端点都不同时属于S,即当且仅当G的每条边至少有一个端点属于V\S,亦即当且仅当V\S是G的覆盖。
∎°独立数:G的最大独立集的顶点数称为G的独立数,记为α(G)。
°覆盖数:G的最小覆盖的顶点数称为G的覆盖数,记为β(G)。
推论8.1:α+β=υ。
证:设S是G的一个最大独立集,K是G的一个最小覆盖。
由定理8.1,V\K是独立集,而V\S是覆盖。
因此υ−β=V\K≤α (8.1)υ−α=V\S≥β (8.2)结合8.1式和(8.2)式,即得α+β=υ。
∎°边覆盖:G的一个边覆盖是指E的一个子集L,使得G的每个顶点都是L中某条边的端点。
°边独立集:即对集。
*注意:边覆盖并不总是存在的,G有边覆盖,当且仅当δ>0。
°边独立数和边覆盖数:最大对集的边数称为边独立数,记作α′G;最小边覆盖的边数称为边覆盖数,记作β′(G)。
*注意:对集的补集不一定是边覆盖,边覆盖的补集也不一定是对集。
定理8.2 (Gallai):若δ>0,则α′+β′=υ。
证:设M是G的一个最大对集,U是M非饱和顶点集。
由于δ>0且M是最大对集,所以存在|U|条边的一个集E′,它的每条边都和U 的每个顶点相关联。
显然,M∪E′是G的边覆盖,因而β′≤M∪E′=α′+υ−2α′=υ−α′即α′+β′≤υ (8.3)再设L是G的一个最小边覆盖,置H=G[L],并且设M是H的一个最大对集。
图论
图论问题一. 基本概念1.图的定义:由若干个不同的顶点与连接其中某些顶点的边所组成的图形叫做图。
用G 表示图,用V 表示所有顶点的集合,E 表示所有边的集合,并且记作G=(V ,E ). 2.同构图:如果两个图G 与G '‘的顶点之间可以建立起一一对应,并且当且仅当G 的顶点v i 与v j 之间有k 条边相连时,G ’的相应顶点j i v v ''与之间也有k 条边相连,就认为G 与G '是相同的,称G 与G '是同构的图. 2.子图:如果对图G E E ,V V )E ,V (G )E ,V (G '⊆'⊆'''='=,则称有与是G 的子图.3.其它有关概念:(1)若在一个图G 中的两个顶点j i v v 与之间有边e 相连,则称点j i v v 与是相邻的,否则就称j i v v 与是不相邻的.(2)如果顶点v 是边e 的一个端点,称点v 与边e 是相邻的.(3)如果顶点本身也有边相连,这样的边称为环.如果连接两个顶点的边可能不止一条,若两个顶点之间有k )2k (≥条边相连,则称这些边为平行边.(4)如果一个图没有环,并且没有平行边,这样的图称为简单图.竞赛中的图论问题涉及到的图一般都是简单图.(5)如果一个简单图中,每两个顶点之间都有一条边,这样的图称为完全图,通常将有n 个顶点的完全图记为n K .(6)在图G=(V,E)中,顶点个数|V|和边数|E|都是有限的,则称图G 是有限图;如果|V|或|E|是无限的,则称G 为无限图.1v 2v 4v 3v 1v '2v '3'4v '1v ''2v ''3v ''4v ''1G 2G 3G二.例题精选1.设S 为平面上的一个有限点集(含点数不少于5),若其中若干个点涂红色,其余点涂上兰色,又设任何三个同色点不共线,求证:存在一个同色三角形,且它至少有一条边不含另一种颜色. 证明:无穷递降法2.若平面上有997个点,如果两点连成一条线段,且中点涂成红色,证明:平面上至少有1991个红点,试找到正好是1991个红点的特例.证明:设997个点中M 、N 之间的距离最大,以M 、N 为圆心,2MN为半径作圆,如图,设P 为其它995 个点中的任意一个点,则PM 、PN 的中点R 、Q 都在圆M 、 N 内,且这些点个不相同,所以至少有995×2+1=1991个点.特例:在x 轴上横坐标依次为1,2,3,...,997的997个点,满足题设条件.3.正六边形被分为24个全等的三角形,在图中的19个结点处写上不同的数,证明:在24个三角形中,至少有7个三角形,其顶点处的三个数是按逆时针方向递增顺序书写的.证明:(1)正六边形的12(2)一个逆三角形有2条逆边,一个顺三角形有1条逆边;(3)除掉正六边形的边,图中有(24×3-12)÷2=30条边,没条边恰好是一个三角形的一条逆向边.综上,设24个三角形中有m 个逆三角形,n 个顺三角形,则有731224≥⇒⎪⎩⎪⎨⎧≥+=+m n m n m ,得证.RRRBBBMNPR QE 逆三角形顺三角形1231234.在正n 边形中,要求其每条边及每条对角线都染上任一种颜色,使得这些线段中任意两条有公共点的染不同颜色,为此,至少需要多少种颜色?的n 需要n 种颜色.当n=3 当n>3时,作正n 设MN 是另外一条边或对角线,若MN//BC ,则将MN 染成与BC 同色;若BC MN //,过A 引直线直线m//MN ,交圆于K ,则弧KN=弧AM ,所以K 也是正n 边形的顶点,即AK 是由A 出发的边或对角线,将MN 染成与AK 同色,所以n 种颜色足够了.5.某次大型活动有2003人参加,已知他们每个人都至少和其中的一个人握过手,证明:必有一个人至少和其中的两个人握过手. 证明:从5个点开始考虑奇数个点即可. 如图6.现有九个人,已知任意三人中总有两个人互相认识,证明:必有四人互相之间都认识. 证明:9个顶点的简单图,利用抽屉原理7.有n 名选手n 21A ,,A ,A 参加数学竞赛,其中有些选手是互相认识的,而且任何两个不相识的选手都恰好有两个共同的熟人,若已知选手21AA 与是互相认识,但他们没有共同的熟人,证明他们的熟人一样多.M NE P Q∙R∙1A 2A 3A 4A 5A KMNA1A 2A )(2A n )(1A n iA jA 1A 2A )(2A n )(1A n iA jA 'jA 'i A证明:的熟人一一对应与21A A8.有n (n>3)个人,他们之间有些人互相认识,有些人互相不认识,而且至少有一个人没有与其他人都认识,问与其他人都认识的人数的最大值是多少?解:作图G :用n 个点表示这n 个人,当两人认识,则在两相应顶点之间连一线,否则之间不连线.由于至少有一个人与其他人不认识,所以图G 中至少有两点之间没连线,设21A A 与之间没连线,则图G 的边数最多时,G 为21A A K n -,故最大值为n-2.9.次会议有n 名教授n 21A ,A ,A 参加,证明可以将这n 个人分为两组,使得每一个人A i 在另一组中认识的人数不少于他在同一组中认识的人数.证明:用n 个点n A A A ,,,21 表示这n 名教授,并在相互认识的人之间连一条边,且将同一组间的连线染成红色,不同组之间的线染成蓝色.将这n 个点任意分成两组,只有有限种分法.考虑在两组之间的蓝线条数S ,其中必存在一种分法,使S 达到最大值,此时有i A 在两组内引出的边的条数分别为),,2,1,(,n i l l l l i i i i ='≥',否则,若对i A 有'<i i l l ,将i A 调到另一组,S 增加了i i l l -'条,矛盾,得证.10.有三所中学,每所有学生n 名,每名学生都认识其他两所中学的n+1名学生,证明:从每所中学可以选出一名学生,使选出来的3名学生互相认识.证:用3n 个顶点表示这些学生,三所中学的学生组成的三个顶点集合分别记为A 、B 、C ,设M 和N 是两所不同学校的学生,而且是互相认识的,则在M 与N 之间连一线,得一个简单图.记A 中的元素x 在B 、C 中的相邻元素个数为k 和l ,则k+l =n+1.设k 与l 中大的记作m(x),让x 跑遍A ,m(x)的最大值记作A m ,同理记C B m m ,分别为集合B 、C 中的所有元素在另两个集合中相邻元素个数的最大值.记m 是A m ,C B m m ,中最大者,不妨设m=A m ,且的顶点相邻的顶点集和中和使得100,B x B A x ∈数为m ,于是C 中与00,11x C z m n x 与设相邻的顶点数为∈≥-+相邻.如果有中中的一个三角形.若是相邻,则与1000010B G z y x z B y ∆∈每一个y 与中相邻与.因此,相邻的顶点数与都不相邻,则A z m n z B z 000-≤的顶点数1)(1+=--+≥m m n n 与m 的最大性矛盾,得证.三.巩固练习1.有n 个药箱,每个药箱里有一种相同的药,每种药恰好在两个药箱里出现,问有多少种药?)1(21-n n 2.18个队进行比赛,每一轮中每一个队与另一个队比赛一场,并且在其他轮比赛中这两个已赛过的队彼此不再比赛,现在比赛已进行完8轮,证明一定有三个队在前8轮比赛中,彼此之间尚未比赛过.3.某次会议有n 名代表出席,已知任意的四名代表中都有一个人与其余的三个人握过手,证明任意的四名代表中必有一个人与其余的n-1名代表都握过手.4.空间18个点,任三点不共线,它们的两两连线染上红色或兰色,每条线段仅染一色.试证明其中一定存在一个同色的完全四边形.图论问题(二)用图论解决问题躲基本思路:把要考察的对象作为顶点,把对象之间是否具有我们所关注的某种关系作为顶点连边地条件.这样,就可以把一个具体问题化归成图论问题,用图论的理论和方法进行探讨,即使在图论中没有现成定理直接给出问题的解答,也可以(1)借助图论的分析方法拓宽解题思路;(2)把抽象的问题化为直观问题;(3)把复杂的逻辑关系问题化为简明的数量分析问题。
数学竞赛:图论讲义
数学竞赛:图论讲义大连市第二十四中学 邰海峰重要的概念与定理完全图 每两个顶点之间均有边相连的简单图称为完全图,有n 个顶点的完全图(n 阶完全图)记为n K .顶点的度 图G 中与顶点v 相关联的边数(环按2条边计算)称为顶点v 的度(或次数),记为()d v .()G δ与()G ∆分别表示图G 的顶点的最小度与最大度.度为奇数的顶点称为奇顶点,度为偶数的顶点称为偶顶点.树 没有圈的连通图称为树,用T 表示,其中度为1的顶点称为树叶(或悬挂点).n 阶树常表示为n T .k 部图 若图G 的顶点集V 可以分解为k 个两两不相交的非空子集的并,即1,()ki i j i V V V V i j ===∅≠并且同一子集i V (1,2,,)i k =内任何两个顶点没有边相连,则称这样的图为k 部图,记作12(,,,;)k G V V V E =. 2部图又叫做偶图,记为(,;)G X Y E =.完全k 部图 在一个k 部图12(,,,;)k G V V V E =中,i i V m =(1,2,,)i k =,若对任意,,(,,1,2,,)i i j j v V v V i j i j k ∈∈≠=均有边连接i v 和j v ,则称图G 为完全k 部图,记为12,,,k m m m K .欧拉迹 包含图中所有边的迹称为欧拉迹.起点与终点重合的欧拉迹称为闭欧拉迹.欧拉图 包含欧拉迹的图为欧拉图. 欧拉图必是连通图.哈密顿链(圈) 经过图上各顶点一次并且仅仅一次的链(圈)称为哈密顿链(圈).包含哈密顿圈的图称为哈密顿图.平面图 若一个图G 可画在平面上,即可作一个与G 同构的图G ',使G '的顶点与边在同一平面内,且任意两边仅在端点相交,则图G 称为平面图.一个平面图的顶点和边把一个平面分成若干个互相隔开的区域,称为平面图的一个面,在所有边的外面的面称为外部面,其余的称为内部面.竞赛图 有向完全简单图称为竞赛图.有n 个顶点的竞赛图记作n K .有向路 在有向图(,)D V U =中,一个由不同的弧组成的序列12,,,n u u u ,其中i u 的起点为i v ,终点为1(1,2,,)i v i n +=,称这个序列为从1v 到1n v +的有向路(简称路),n 为这个路的长,1v 为路的起点,1n v +为路的终点.若11n v v +=,则称这个路为回路.定理1 设G 是n 阶图,则G 中n 个顶点的度之和为边数的2倍.定理2 对于任意图G ,奇顶点的个数一定是偶数.定理3(Turan 定理) 有n 个顶点且不含三角形的图G 的最大边数为24n ⎡⎤⎢⎥⎣⎦.定理4 图G 为偶图,当且仅当G 中不含长度为奇数的圈.定理5 若树T 的顶点数2,则T 中至少有两个树叶.定理6 若数T 有n 个顶点,则T 的边数1e n =-.定理7 设T 是有n 个顶点、e 条边的图,则下列命题等价:⑴ 图T 是树; ⑵ 图T 无圈,且1e n =-; ⑶ 图T 连通,且1e n =-.定理8 n 阶连通图中以树的边数最少,且n 阶连通图必有一个子图是树.定理9(一笔画定理) 有限图G 是一条链或圈(可以一笔画成)的充要条件是G 是连通的,且奇顶点的个数为0或2. 当且仅当奇顶点个数为0时,连通图G 是一个圈.定理10 在偶图12(,;)G V V E =中,若12V V ≠,则G 一定无哈密顿圈.若1V 与2V 的差大于1,则G 一定无哈密顿链.定理11 设G 是(3)n n 阶简单图,且对每一对顶点,v v '有()()1d v d v n '+-,则图G 有哈密顿链.定理12 设G 是(3)n n 阶简单图,且对每一对不相邻的顶点,v v '有()()d v d v n '+,则图G 有哈密顿圈.定理13 设G 是(3)n n 阶简单图,若每个顶点的度()2n d v ,则图G 有哈密顿圈. 定理14 若图G 有哈密顿圈,从G 中去掉若干个点12,,,k v v v 及与它们关联的边得到图G ',则图G '的连通分支不超过k 个.定理15(欧拉公式) 若一个连通的平面图G 有v 个顶点、e 条边、f 个面,则2v f e +-=. 定理16 一个连通的平面简单图有v 个顶点、e 条边,则36ev -,对于连通的偶图,则有24ev -. 定理17 一个图是平面图当且仅当它不包含同胚于5K 或3,3K 的子图.定理18 设n 阶竞赛图n K 的顶点为12,,,n v v v ,则11(1)()()2n n i i i i n n d v d v +-==-==∑∑,且2211[()][()]n ni i i i dv d v +-===∑∑. 定理19 竞赛图中出度最大的点称为“优点”,“优点”到其余各点都有长度不超过2的链. 定理20 竞赛图n K 中存在一条长为1n -的哈密顿路. 定理21 竞赛图(3)n K n 中有一个回路是三角形的充要条件是有两个顶点,v v '满足()()d v d v ++'=.定理22(Ramsey 定理) 任意2色完全图6K 中必存在同色三角形.例题选讲例1 某天晚上21个人之间通了电话,有人发现这21人共通话102次,且每两人至多通话一次.他还发现,存在m 个人,第1个人与第2个人通了话,第2个人与第3个人通了话,……, 第1m -个人与第m 个人通了话,第m 个人又与第1个人通了话,他不肯透露m 的具体值,只说m 是奇数.求证: 21个人中必存在3人,他们两两通了话.证:用21个点表示21个人,若两人通电话则对应两点连一条边,构成图G .由已知,G 中存在一个长度为m 的奇圈.要证: G 中存在三角形.设图G 中长度最短的奇圈为C ,长度为21k +.若1k =,则C 为三角形.若2k ,设C 为12211k v v v v +,则i v 与j v 之间无边(1,21,1(mod 21)i j k j j k +-≡±+),否则,若i v 与j v 相邻,则圈12211i j k v v v v v v +与圈1i i j i v v v v +长度之和为23k +,故其中必然有一个长度小于21k +的奇圈,与C 最短矛盾.假设除1221,,,k v v v +外的21(21)202k k -+=-个点无三角形,由Turan 定理,它们至多连了22(202)(10)4k k ⎡⎤-=-⎢⎥⎣⎦条边. 又其中任意一点不与C 的相邻两点相邻(否则存在三角形),所以它至多与C 中k 个点相邻.故总边数为221(202)(10)k k k k ++-+-22210021102(1)102(21)101k k k =++-=----=(2k ).与图G 共有102条边矛盾. 故图G 中存在三角形,即存在三个人两两通话.例2 45个校友聚会,在这些人中,任意两个熟人数目相同的校友互不认识.问在参加校友聚会的所有人中,熟人最多的人的数目最多是多少?解: 用45个点表示45个人,若两人认识,则对应两点间连一条边,得图(,)G V E =.设共有m 个人熟人最多,每人有t 个熟人,这些人对应的点构成集合X ,其余的人对应点构成集合Y ,显然X Y V =,X Y =∅.由题意知,X 中任何两点不相邻,且(),(1,2,,)i d v t i m ==,G 中各顶点的度的最大值()G t ∆=.下面证明:22m. 若23m ,则X 中至少有23个点,每点的度为t ,且任意两点不相邻,则从X 中发出的另一端是Y 中点的边共有23t 条,而22Y .所以,Y 中至少有一个点的度大于t ,与()G t ∆=矛盾.当22m =时,构造完全偶图22,23G K =,满足题意. 故熟人最多的人数最多为22人.例3 在17名科学家中,每人都和其它人通信.在他们的通信中只讨论三个题目.而且任意两名科学家通信时,只讨论一个题目.证明,其中至少有三名科学家,他们相互通信时,讨论的是同一个题目.证: 用顶点代表科学家,两人相互通信则连上一条边.若两人在通信中讨论第i (1,2,3)i =个题目,则在此边上染上第i 种颜色. 在这个三色完全图17K 中,任取一个顶点, 从它出发的16条边中,至少有染上某一种颜色(设为第i 种颜色)的边的数目不小于6.从其中取出6条第i 种颜色的边,如果这些边的另一端点所构成的子图6K 中含第i 色边,这就构成第i 色三角形. 否则,6K 就是两色完全图,由Ramsey 定理知,其中必有单色三角形.这就是说,有三位科学家在通信中讨论的是同一题目.证毕.例4 设n 个新生中,任意3个人中有2个人互相认识,任意4个人中有2个人互不认识,求n 的最大值.解: 所求n 最大值为8.8n =时,如右图,其中128,,,A A A 表示8两点相邻当且仅当两人认识.下面设n 个学生满足题设要求,证明8n.为此,先证明如下两种情况 不可能出现.⑴若某人A 至少认识6个人,记为126,,,B B B .由Ramsey 定理知, 这6个人中或存在3个人互不认识(与已知任意3个人中有2个人互相认识 矛盾),或存在3个人互相认识,这时,A 与这3个人共4个人两两互相认识,与已知矛盾.⑵若某人A 至多认识5n -个人,则剩下至少4个人均与A 互不认识,从而,这4个人两两认识,与已知矛盾.当10n 时,⑴与⑵必有一种情况出现,故此时n 不满足要求.当9n =时,要使⑴与⑵都不出现,则此时每个人恰好认识其他5个人,于是,这9个人产生的“朋友对”的数目为952N ⨯∉,矛盾. 由上述讨论知,8n .3 4 A A综上,n 的最大值为8.例5 设(3)n n >是整数, 在一次会议上有n 位数学家,每一对数学家只能用会议规定的n 种办公语言之一进行交流,对于任意3种不同的办公语言,都存在3位数学家用这3种语言互相交流.求所有可能的n ,并证明你的结论.证:当n 位奇数时,结论成立.原命题等价于将完全图n K 的边染以n 种颜色之一,使得对于任意3种颜色,都存在3个顶点,它们相互所连的边为这3种颜色.由于n 种颜色有3n C 种选取方法,而顶点也有3n C 种选取方法,这就意味着每3个顶点相连的边一定被染为确定的3种颜色,不能染为其他情况的颜色,反之亦然.特别地,对于每一个三角形其3条边为3种不同颜色.固定颜色S ,恰好有21n C -个三角形,其有一条边为颜色S ,而颜色为S 的边可以与其他2n -个顶点构成2n -个三角形.于是,有21122n C n n --=-条边被染为颜色S .所以,n 不能为偶数. 当n 为奇数时,将n 个顶点分别记为顶点1,2,,n ,n 种颜色记为12,,,n S S S ,连结顶点,i j 的边染为颜色t S ,其中(mod )t i j n ≡+.则对于任意3种颜色123,,t t t S S S ,有同余方程组123(mod )(mod )(mod )i j t n j k t n k i t n +≡⎧⎪+≡⎨⎪+≡⎩. 利用消元法,可得在{}1,2,,n 内有唯一的解(,,)i j k ,且,,i j k 互不相同. 所以,对于任意3种颜色,存在唯一的三角形,其3条边的颜色为这3种颜色.例6 一个元素都是0或1的方阵称为二进制方阵. 若二进制方阵其主对角线(左上角到右下角的对角线)以上(不包括主对角线)的元素都相同,而且主对角线以下(不包括主对角线)的元素也相同,则称它为一个“好方阵”. 给定正整数m . 证明:存在一个正整数M ,使得对任意正整数n M >和给定的n n ⨯二进制方阵n A ,可选出整数121n m i i i n -<<<,从n A 中删除第12,,,n m i i i -行和第12,,,n m i i i -列后所得到的二进制方阵m B 是“好方阵”.证:记n A 中第i 行,第j 列的元素为,i j a ,n K 表示n 阶完全图. 我们对n K 的边按如下方式染色:对于连接顶点,(1)i j i j n <的边⑴ 若,,0i j j i a a ==,则染红色; ⑵ 若,,0,1i j j i a a ==,则染绿色;⑶ 若,,1,0i j j i a a ==,则染蓝色; ⑷ 若,,1i j j i a a ==,则染白色.按照上面的染色方式,则一个单色完全子图m K 对应于n A 的一个“好子方阵”.事实上,若12,,,,m i i i v v v 是m K 的顶点,我们可以删去指标12{1,2,3,,}\{,,,}m j n i i i ∈的n m -行和n m -列,得到一个“好子方阵”m B .我们只需取M 使得,对任何n M >,四染色的n K 必定包含一个单色子图m K .根据Ramsey 定理,我们可取(,,,)M R m m m m =即可.例7 现有十个互不相同的非零数.现知它们之中任意两个数的和或积是有理数.证明:每个数的平方都是有理数.证:考查其中任意6个数.作一个图,在它的6个顶点上分别放上我们的6个数.如果某两个数的和为有理数,就在相应的两个顶点之间连一条蓝边;如果某两个数的积为有理数,就在相应的两个顶点之间连一条红边.由Ramsey 定理,此图中存在一个同色三角形.⑴ 若存在蓝色三角形,则表明存在三个数,,x y z ,使得,,x y y z z x +++都是有理数.因而()()()x y z x y z +++-+2x =为有理数,亦即x 为有理数.同理可知y 和z 也都是有理数.此时我们再来观察其余的任意一个数t .显然,无论由xt 的有理性(由已知,所有的数均非0),还是由x t +的有理性,都可以推出t 为有理数.所以此时10个数都是有理数.⑵ 若存在红色三角形,则表明存在三个数,,x y z ,使得,,xy yz zx 都是有理数.因而()()xy zx yz2x =为有理数,同理可知2y 和2z 也都是有理数.如果,,x y z 三者中至少有一个为有理数,那么只要按照前一种情况进行讨论,即可得知我们的10个数都是有理数.现在设x =其中a 为有理数,而1m =±.由于xy b ==是有理数,所以y===其中c m ≠为有理数.再观察其余的任意一个数t ,若xt 或yt 为有理数,则经过与上述类似的讨论,可知t =其中d 为有理数,因而2t 为有理数.而若x t +与y t +都是有理数,则()()x t y t +-+是有理数,但()()(x t y t m c +-+=-,矛盾.综上,我们已证或者每个数都是有理数,或者每个数的平方都是有理数.练习1.旅行团一行6人到一个城市观光,此城市开放15个景点,每人可选择若干个景点参观(亦可不选或全选). 求证: 或者必有3人,他们选择的景点各不相同; 或者必有4人,在他们选择的景点中有相同的.2.设一次至少有5人参加的循环赛的结果满足如下条件:若A 胜B,则胜A 而负于B 的人数不少于胜B 而负于A 的人数.证明:对任意两人,x y ,总有另外两人,z w ,使得若x 胜y ,则y 胜z 、z 胜w 、w 胜x .3.在一个足球联赛里有20支球队.第一轮它们分成10对互相比赛,第二轮也分成10对互相比赛(每支球队两轮比赛的对手不一定不同).求证:在第三轮开赛之前,一定可以找到10支球队,它们两两没有比赛过.4.某国际社团共有 1978 名成员,他们来自六个国家,用号码1,2,3,,1978给成员编号.证明至少有一名成员,他的编号是他的某个同胞的 2 倍,或者是两位同胞编号之和.练习题答案1.证:用6个点表示6个人,再用15个点表示15个景点.若某人选择了某个景点,则在相应两点之间连一条边,得一偶图.以i N 表示点i v 在图中的邻域,它表示第i 个人选择的景点的集合(1,2,,6i =).假设结论不真,则⑴任意三个i N 有公共元,且⑵任意四个i N 无公共元.由⑴知,对每个i N ,在{},16j N j i j ≠中每取两个与i N 的交均非空,故可确定i N 的一个元素,用这样的方式可确定2510C =个元素.由⑵知,这些元素各不相同,故每个i N 至少有2510C =个不同的元素.对每个(16)i i 这样做,得到25660C =个元素.又由⑵知,每个元素至多是3个i N 的公共元,故每个元素至多重复计算3次.故其中不同的元素至少有256203C =个,即至少有20个景点,矛盾. 2. 证:由题意知,若A 胜B 且存在胜B 而负于A 的人,则必存在胜A 而负于B 的人.任取两选手,x y 且x 胜y ,分三种情况讨论:⑴若存在w 胜y 且有x 胜y 而负于w ,根据条件,存在z 胜w 而负于y ;⑵若存在z 同时负于,x y ,则y 胜z 而x 同时胜,y z ,同情形⑴;⑶若不存在有同时胜(或同时负于),x y 的人,在其余3人中,胜x 而负于y 的至少有2人,设为,w z ,且z 胜w ,则,,,x y z w 符合题意.3. 证:用20个点表示20个球队,第一轮互相赛过的队之间连红线,第二轮互相赛过的队之间连蓝线,则每个点都连有一红一蓝两条边,从而整个图必由一个或若干个偶圈组成.在每个偶圈中可以选出半数定点,任两个不相邻,共选出10支球队,两两未赛过.4.证: 用顶点表示成员,并加上编号.于是任意两顶点,i j v v 编号差大于 0 而小于 1978.如果这个差是第(16)i i 国成员的编号,则将(,)i j v v 边染上第i 种颜色i C ,这样我们就用六种颜色染了1978K 的所有边. 以下首先证明,六色完全图1978K 中必定含有单色三角形. 取1978K 的任一顶点v ,与它关联的 1977 条边分为 6 种颜色,于是其中必有一种颜色的边至少有197713306⎡⎤+=⎢⎥⎣⎦条. 不妨设12330,,,vu vu vu 是1C 色边.如果1978K 中以12330,,,u u u 为顶点的完全子图330K 中含有1C 色边(,)(1,330)i j u u i j ,则i j vu u 为1C 色三角形,命题得证.如果330K 不含1C 色边,则330K 是五色完全图.从它的顶点1u 引出的 329 条边中至少有3291665⎡⎤+=⎢⎥⎣⎦条边同色(1C 色之外的某色),不妨设1213167,,,u u u u u u 边为2C 色.以2367,,,u u u 为顶点的完全子图66K 中如果有2C 色边(,)(2,67)s t u u s t ,那么在1978K 中就有2C 色三角形1s t u u u ,命题得证.若此66K 中没有2C 色边,则此66K 是4色完全图.由66K 的顶点2u 伸出的65条边,共4种颜色,至少有651174⎡⎤+=⎢⎥⎣⎦条边是除12,C C 外的某种颜色.不妨设2324219(,),(,),,(,)u u u u u u 是3C 色边.66K 中以3419,,,u u u 为顶点的完全子图17K 中若含3C 色边(,)(3,19)p q u u p q ,则2p q u u u 为3C 色三角形.否则17K 为三色完全图.由例3可知必有单色三角形.因此六色完全图1978K 中必有单色三角形.其次,设三角形xyz 是1978K 中的i C 色三角形.其中x y z >>,由染色方法,若a x y =-, b y z =-,c x z =-,则,,a b c 都是第i 国成员的编号.显然c a b =+,如果a b =,那么2c a =.证明完毕.。
【数学建模】数模竞赛中的图论问题
-
-
T4
-
2:3 0:1 0:5 2:1 0:1 0:1
-
-
T5
-
0:1
-
-
-
-
1:0 0:0
T6
-
-
-
-
-
-
-
T7
-
1:0 2:1 3:1 3:1 2:0
T8
-
0:1 1:1 3:1 0:0
T9
-
3:0 1:0 1:0
T10
-
1:0 2:0
T11
-
1:2
2.分析与建模
竞赛图 (tournam ent)
定理2 (Perron-Frobenius定理)本原矩阵A的最大特征
根r是一个正的实数。进而有
上例其中中,,s是A对应, 于r的正特征lki向m 量( Ar。)k J s
点数小于5或非双向连通的情况.
r 2.232 s (.238, .164, .231, .113, .150, .104 )T
• 竞赛中的其它图论问题:
• 灾情巡视路线(1998 CMCM-B)
•
——点的行遍性
• 钢管的订购和运输(2000 CMCM-B)
•
——最短路算法
• 乘公交,看奥运(2007 CMCM-B)
•
——最短路算法
• 交巡警服务平台的设置与调度(2011-B)
•
——最短路算法
三.可以用图论方法 讨论的问题
Ak 的第i,j个元素是 vi v j 的长度为k的有向路的条数。
0 0 2 1 2 3
0 0 2 0 1 2
A2
0
1
0
2
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学竞赛:图论讲义大连市第二十四中学 邰海峰重要的概念与定理完全图 每两个顶点之间均有边相连的简单图称为完全图,有n 个顶点的完全图(n 阶完全图)记为n K .顶点的度 图G 中与顶点v 相关联的边数(环按2条边计算)称为顶点v 的度(或次数),记为()d v .()G δ与()G ∆分别表示图G 的顶点的最小度与最大度.度为奇数的顶点称为奇顶点,度为偶数的顶点称为偶顶点.树 没有圈的连通图称为树,用T 表示,其中度为1的顶点称为树叶(或悬挂点).n 阶树常表示为n T .k 部图 若图G 的顶点集V 可以分解为k 个两两不相交的非空子集的并,即1,()ki i j i V V V V i j ===∅≠并且同一子集i V (1,2,,)i k =内任何两个顶点没有边相连,则称这样的图为k 部图,记作12(,,,;)k G V V V E =. 2部图又叫做偶图,记为(,;)G X Y E =.完全k 部图 在一个k 部图12(,,,;)k G V V V E =中,i i V m =(1,2,,)i k =,若对任意,,(,,1,2,,)i i j j v V v V i j i j k ∈∈≠=均有边连接i v 和j v ,则称图G 为完全k 部图,记为12,,,k m m m K .欧拉迹 包含图中所有边的迹称为欧拉迹.起点与终点重合的欧拉迹称为闭欧拉迹.欧拉图 包含欧拉迹的图为欧拉图. 欧拉图必是连通图.哈密顿链(圈) 经过图上各顶点一次并且仅仅一次的链(圈)称为哈密顿链(圈).包含哈密顿圈的图称为哈密顿图.平面图 若一个图G 可画在平面上,即可作一个与G 同构的图G ',使G '的顶点与边在同一平面内,且任意两边仅在端点相交,则图G 称为平面图.一个平面图的顶点和边把一个平面分成若干个互相隔开的区域,称为平面图的一个面,在所有边的外面的面称为外部面,其余的称为内部面.竞赛图 有向完全简单图称为竞赛图.有n 个顶点的竞赛图记作n K .有向路 在有向图(,)D V U =中,一个由不同的弧组成的序列12,,,n u u u ,其中i u 的起点为i v ,终点为1(1,2,,)i v i n +=,称这个序列为从1v 到1n v +的有向路(简称路),n 为这个路的长,1v 为路的起点,1n v +为路的终点.若11n v v +=,则称这个路为回路.定理1 设G 是n 阶图,则G 中n 个顶点的度之和为边数的2倍.定理2 对于任意图G ,奇顶点的个数一定是偶数.定理3(Turan 定理) 有n 个顶点且不含三角形的图G 的最大边数为24n ⎡⎤⎢⎥⎣⎦.定理4 图G 为偶图,当且仅当G 中不含长度为奇数的圈.定理5 若树T 的顶点数2,则T 中至少有两个树叶.定理6 若数T 有n 个顶点,则T 的边数1e n =-.定理7 设T 是有n 个顶点、e 条边的图,则下列命题等价:⑴ 图T 是树; ⑵ 图T 无圈,且1e n =-; ⑶ 图T 连通,且1e n =-.定理8 n 阶连通图中以树的边数最少,且n 阶连通图必有一个子图是树.定理9(一笔画定理) 有限图G 是一条链或圈(可以一笔画成)的充要条件是G 是连通的,且奇顶点的个数为0或2. 当且仅当奇顶点个数为0时,连通图G 是一个圈.定理10 在偶图12(,;)G V V E =中,若12V V ≠,则G 一定无哈密顿圈.若1V 与2V 的差大于1,则G 一定无哈密顿链.定理11 设G 是(3)n n 阶简单图,且对每一对顶点,v v '有()()1d v d v n '+-,则图G 有哈密顿链.定理12 设G 是(3)n n 阶简单图,且对每一对不相邻的顶点,v v '有()()d v d v n '+,则图G 有哈密顿圈.定理13 设G 是(3)n n 阶简单图,若每个顶点的度()2n d v ,则图G 有哈密顿圈. 定理14 若图G 有哈密顿圈,从G 中去掉若干个点12,,,k v v v 及与它们关联的边得到图G ',则图G '的连通分支不超过k 个.定理15(欧拉公式) 若一个连通的平面图G 有v 个顶点、e 条边、f 个面,则2v f e +-=. 定理16 一个连通的平面简单图有v 个顶点、e 条边,则36ev -,对于连通的偶图,则有24ev -. 定理17 一个图是平面图当且仅当它不包含同胚于5K 或3,3K 的子图.定理18 设n 阶竞赛图n K 的顶点为12,,,n v v v ,则11(1)()()2n n i i i i n n d v d v +-==-==∑∑,且2211[()][()]n ni i i i dv d v +-===∑∑. 定理19 竞赛图中出度最大的点称为“优点”,“优点”到其余各点都有长度不超过2的链. 定理20 竞赛图n K 中存在一条长为1n -的哈密顿路. 定理21 竞赛图(3)n K n 中有一个回路是三角形的充要条件是有两个顶点,v v '满足()()d v d v ++'=.定理22(Ramsey 定理) 任意2色完全图6K 中必存在同色三角形.例题选讲例1 某天晚上21个人之间通了电话,有人发现这21人共通话102次,且每两人至多通话一次.他还发现,存在m 个人,第1个人与第2个人通了话,第2个人与第3个人通了话,……, 第1m -个人与第m 个人通了话,第m 个人又与第1个人通了话,他不肯透露m 的具体值,只说m 是奇数.求证: 21个人中必存在3人,他们两两通了话.证:用21个点表示21个人,若两人通电话则对应两点连一条边,构成图G .由已知,G 中存在一个长度为m 的奇圈.要证: G 中存在三角形.设图G 中长度最短的奇圈为C ,长度为21k +.若1k =,则C 为三角形.若2k ,设C 为12211k v v v v +,则i v 与j v 之间无边(1,21,1(mod 21)i j k j j k +-≡±+),否则,若i v 与j v 相邻,则圈12211i j k v v v v v v +与圈1i i j i v v v v +长度之和为23k +,故其中必然有一个长度小于21k +的奇圈,与C 最短矛盾.假设除1221,,,k v v v +外的21(21)202k k -+=-个点无三角形,由Turan 定理,它们至多连了22(202)(10)4k k ⎡⎤-=-⎢⎥⎣⎦条边. 又其中任意一点不与C 的相邻两点相邻(否则存在三角形),所以它至多与C 中k 个点相邻.故总边数为221(202)(10)k k k k ++-+-22210021102(1)102(21)101k k k =++-=----=(2k ).与图G 共有102条边矛盾. 故图G 中存在三角形,即存在三个人两两通话.例2 45个校友聚会,在这些人中,任意两个熟人数目相同的校友互不认识.问在参加校友聚会的所有人中,熟人最多的人的数目最多是多少?解: 用45个点表示45个人,若两人认识,则对应两点间连一条边,得图(,)G V E =.设共有m 个人熟人最多,每人有t 个熟人,这些人对应的点构成集合X ,其余的人对应点构成集合Y ,显然X Y V =,X Y =∅.由题意知,X 中任何两点不相邻,且(),(1,2,,)i d v t i m ==,G 中各顶点的度的最大值()G t ∆=.下面证明:22m. 若23m ,则X 中至少有23个点,每点的度为t ,且任意两点不相邻,则从X 中发出的另一端是Y 中点的边共有23t 条,而22Y .所以,Y 中至少有一个点的度大于t ,与()G t ∆=矛盾.当22m =时,构造完全偶图22,23G K =,满足题意. 故熟人最多的人数最多为22人.例3 在17名科学家中,每人都和其它人通信.在他们的通信中只讨论三个题目.而且任意两名科学家通信时,只讨论一个题目.证明,其中至少有三名科学家,他们相互通信时,讨论的是同一个题目.证: 用顶点代表科学家,两人相互通信则连上一条边.若两人在通信中讨论第i (1,2,3)i =个题目,则在此边上染上第i 种颜色. 在这个三色完全图17K 中,任取一个顶点, 从它出发的16条边中,至少有染上某一种颜色(设为第i 种颜色)的边的数目不小于6.从其中取出6条第i 种颜色的边,如果这些边的另一端点所构成的子图6K 中含第i 色边,这就构成第i 色三角形. 否则,6K 就是两色完全图,由Ramsey 定理知,其中必有单色三角形.这就是说,有三位科学家在通信中讨论的是同一题目.证毕.例4 设n 个新生中,任意3个人中有2个人互相认识,任意4个人中有2个人互不认识,求n 的最大值.解: 所求n 最大值为8.8n =时,如右图,其中128,,,A A A 表示8两点相邻当且仅当两人认识.下面设n 个学生满足题设要求,证明8n.为此,先证明如下两种情况 不可能出现.⑴若某人A 至少认识6个人,记为126,,,B B B .由Ramsey 定理知, 这6个人中或存在3个人互不认识(与已知任意3个人中有2个人互相认识 矛盾),或存在3个人互相认识,这时,A 与这3个人共4个人两两互相认识,与已知矛盾.⑵若某人A 至多认识5n -个人,则剩下至少4个人均与A 互不认识,从而,这4个人两两认识,与已知矛盾.当10n 时,⑴与⑵必有一种情况出现,故此时n 不满足要求.当9n =时,要使⑴与⑵都不出现,则此时每个人恰好认识其他5个人,于是,这9个人产生的“朋友对”的数目为952N ⨯∉,矛盾. 由上述讨论知,8n .3 4 A A综上,n 的最大值为8.例5 设(3)n n >是整数, 在一次会议上有n 位数学家,每一对数学家只能用会议规定的n 种办公语言之一进行交流,对于任意3种不同的办公语言,都存在3位数学家用这3种语言互相交流.求所有可能的n ,并证明你的结论.证:当n 位奇数时,结论成立.原命题等价于将完全图n K 的边染以n 种颜色之一,使得对于任意3种颜色,都存在3个顶点,它们相互所连的边为这3种颜色.由于n 种颜色有3n C 种选取方法,而顶点也有3n C 种选取方法,这就意味着每3个顶点相连的边一定被染为确定的3种颜色,不能染为其他情况的颜色,反之亦然.特别地,对于每一个三角形其3条边为3种不同颜色.固定颜色S ,恰好有21n C -个三角形,其有一条边为颜色S ,而颜色为S 的边可以与其他2n -个顶点构成2n -个三角形.于是,有21122n C n n --=-条边被染为颜色S .所以,n 不能为偶数. 当n 为奇数时,将n 个顶点分别记为顶点1,2,,n ,n 种颜色记为12,,,n S S S ,连结顶点,i j 的边染为颜色t S ,其中(mod )t i j n ≡+.则对于任意3种颜色123,,t t t S S S ,有同余方程组123(mod )(mod )(mod )i j t n j k t n k i t n +≡⎧⎪+≡⎨⎪+≡⎩. 利用消元法,可得在{}1,2,,n 内有唯一的解(,,)i j k ,且,,i j k 互不相同. 所以,对于任意3种颜色,存在唯一的三角形,其3条边的颜色为这3种颜色.例6 一个元素都是0或1的方阵称为二进制方阵. 若二进制方阵其主对角线(左上角到右下角的对角线)以上(不包括主对角线)的元素都相同,而且主对角线以下(不包括主对角线)的元素也相同,则称它为一个“好方阵”. 给定正整数m . 证明:存在一个正整数M ,使得对任意正整数n M >和给定的n n ⨯二进制方阵n A ,可选出整数121n m i i i n -<<<,从n A 中删除第12,,,n m i i i -行和第12,,,n m i i i -列后所得到的二进制方阵m B 是“好方阵”.证:记n A 中第i 行,第j 列的元素为,i j a ,n K 表示n 阶完全图. 我们对n K 的边按如下方式染色:对于连接顶点,(1)i j i j n <的边⑴ 若,,0i j j i a a ==,则染红色; ⑵ 若,,0,1i j j i a a ==,则染绿色;⑶ 若,,1,0i j j i a a ==,则染蓝色; ⑷ 若,,1i j j i a a ==,则染白色.按照上面的染色方式,则一个单色完全子图m K 对应于n A 的一个“好子方阵”.事实上,若12,,,,m i i i v v v 是m K 的顶点,我们可以删去指标12{1,2,3,,}\{,,,}m j n i i i ∈的n m -行和n m -列,得到一个“好子方阵”m B .我们只需取M 使得,对任何n M >,四染色的n K 必定包含一个单色子图m K .根据Ramsey 定理,我们可取(,,,)M R m m m m =即可.例7 现有十个互不相同的非零数.现知它们之中任意两个数的和或积是有理数.证明:每个数的平方都是有理数.证:考查其中任意6个数.作一个图,在它的6个顶点上分别放上我们的6个数.如果某两个数的和为有理数,就在相应的两个顶点之间连一条蓝边;如果某两个数的积为有理数,就在相应的两个顶点之间连一条红边.由Ramsey 定理,此图中存在一个同色三角形.⑴ 若存在蓝色三角形,则表明存在三个数,,x y z ,使得,,x y y z z x +++都是有理数.因而()()()x y z x y z +++-+2x =为有理数,亦即x 为有理数.同理可知y 和z 也都是有理数.此时我们再来观察其余的任意一个数t .显然,无论由xt 的有理性(由已知,所有的数均非0),还是由x t +的有理性,都可以推出t 为有理数.所以此时10个数都是有理数.⑵ 若存在红色三角形,则表明存在三个数,,x y z ,使得,,xy yz zx 都是有理数.因而()()xy zx yz2x =为有理数,同理可知2y 和2z 也都是有理数.如果,,x y z 三者中至少有一个为有理数,那么只要按照前一种情况进行讨论,即可得知我们的10个数都是有理数.现在设x =其中a 为有理数,而1m =±.由于xy b ==是有理数,所以y===其中c m ≠为有理数.再观察其余的任意一个数t ,若xt 或yt 为有理数,则经过与上述类似的讨论,可知t =其中d 为有理数,因而2t 为有理数.而若x t +与y t +都是有理数,则()()x t y t +-+是有理数,但()()(x t y t m c +-+=-,矛盾.综上,我们已证或者每个数都是有理数,或者每个数的平方都是有理数.练习1.旅行团一行6人到一个城市观光,此城市开放15个景点,每人可选择若干个景点参观(亦可不选或全选). 求证: 或者必有3人,他们选择的景点各不相同; 或者必有4人,在他们选择的景点中有相同的.2.设一次至少有5人参加的循环赛的结果满足如下条件:若A 胜B,则胜A 而负于B 的人数不少于胜B 而负于A 的人数.证明:对任意两人,x y ,总有另外两人,z w ,使得若x 胜y ,则y 胜z 、z 胜w 、w 胜x .3.在一个足球联赛里有20支球队.第一轮它们分成10对互相比赛,第二轮也分成10对互相比赛(每支球队两轮比赛的对手不一定不同).求证:在第三轮开赛之前,一定可以找到10支球队,它们两两没有比赛过.4.某国际社团共有 1978 名成员,他们来自六个国家,用号码1,2,3,,1978给成员编号.证明至少有一名成员,他的编号是他的某个同胞的 2 倍,或者是两位同胞编号之和.练习题答案1.证:用6个点表示6个人,再用15个点表示15个景点.若某人选择了某个景点,则在相应两点之间连一条边,得一偶图.以i N 表示点i v 在图中的邻域,它表示第i 个人选择的景点的集合(1,2,,6i =).假设结论不真,则⑴任意三个i N 有公共元,且⑵任意四个i N 无公共元.由⑴知,对每个i N ,在{},16j N j i j ≠中每取两个与i N 的交均非空,故可确定i N 的一个元素,用这样的方式可确定2510C =个元素.由⑵知,这些元素各不相同,故每个i N 至少有2510C =个不同的元素.对每个(16)i i 这样做,得到25660C =个元素.又由⑵知,每个元素至多是3个i N 的公共元,故每个元素至多重复计算3次.故其中不同的元素至少有256203C =个,即至少有20个景点,矛盾. 2. 证:由题意知,若A 胜B 且存在胜B 而负于A 的人,则必存在胜A 而负于B 的人.任取两选手,x y 且x 胜y ,分三种情况讨论:⑴若存在w 胜y 且有x 胜y 而负于w ,根据条件,存在z 胜w 而负于y ;⑵若存在z 同时负于,x y ,则y 胜z 而x 同时胜,y z ,同情形⑴;⑶若不存在有同时胜(或同时负于),x y 的人,在其余3人中,胜x 而负于y 的至少有2人,设为,w z ,且z 胜w ,则,,,x y z w 符合题意.3. 证:用20个点表示20个球队,第一轮互相赛过的队之间连红线,第二轮互相赛过的队之间连蓝线,则每个点都连有一红一蓝两条边,从而整个图必由一个或若干个偶圈组成.在每个偶圈中可以选出半数定点,任两个不相邻,共选出10支球队,两两未赛过.4.证: 用顶点表示成员,并加上编号.于是任意两顶点,i j v v 编号差大于 0 而小于 1978.如果这个差是第(16)i i 国成员的编号,则将(,)i j v v 边染上第i 种颜色i C ,这样我们就用六种颜色染了1978K 的所有边. 以下首先证明,六色完全图1978K 中必定含有单色三角形. 取1978K 的任一顶点v ,与它关联的 1977 条边分为 6 种颜色,于是其中必有一种颜色的边至少有197713306⎡⎤+=⎢⎥⎣⎦条. 不妨设12330,,,vu vu vu 是1C 色边.如果1978K 中以12330,,,u u u 为顶点的完全子图330K 中含有1C 色边(,)(1,330)i j u u i j ,则i j vu u 为1C 色三角形,命题得证.如果330K 不含1C 色边,则330K 是五色完全图.从它的顶点1u 引出的 329 条边中至少有3291665⎡⎤+=⎢⎥⎣⎦条边同色(1C 色之外的某色),不妨设1213167,,,u u u u u u 边为2C 色.以2367,,,u u u 为顶点的完全子图66K 中如果有2C 色边(,)(2,67)s t u u s t ,那么在1978K 中就有2C 色三角形1s t u u u ,命题得证.若此66K 中没有2C 色边,则此66K 是4色完全图.由66K 的顶点2u 伸出的65条边,共4种颜色,至少有651174⎡⎤+=⎢⎥⎣⎦条边是除12,C C 外的某种颜色.不妨设2324219(,),(,),,(,)u u u u u u 是3C 色边.66K 中以3419,,,u u u 为顶点的完全子图17K 中若含3C 色边(,)(3,19)p q u u p q ,则2p q u u u 为3C 色三角形.否则17K 为三色完全图.由例3可知必有单色三角形.因此六色完全图1978K 中必有单色三角形.其次,设三角形xyz 是1978K 中的i C 色三角形.其中x y z >>,由染色方法,若a x y =-, b y z =-,c x z =-,则,,a b c 都是第i 国成员的编号.显然c a b =+,如果a b =,那么2c a =.证明完毕.。