中考数学经典难题解答集锦
人教版初中数学中考经典好题难题(有答案)

数学难题一•填空题(共2小题)1如图,矩形纸片ABCD中,AB= 7, BC= .第一次将纸片折叠,使点B与点D重合,折痕与BD交于点O1;O i D的中点为D1,第二次将纸片折叠使点B与点D i重合,折痕与BD交于点。
2;设O2D1的中点为D2,第三次将纸片折叠使点B与点D2重合,折痕与BD交于点03,….按上述方法折叠,第n次折叠后的折痕与BD交于点O n,贝y B0i= , BO n= .2.如图,在平面直角坐标系xoy中,A (- 3, 0), B (0, 1),形状相同的抛物线C n ( n=1 , 2 , 3 , 4,…)的顶点在直线AB 上,其对称轴与x轴的交点的横坐标依次为 2 , 3 , 5 , 8 , 13 ,…,根据上述规律,抛物线C2的顶点坐标为 ;抛物线C s的顶点坐标为 ______ .二.解答题(共28小题)23 .已知:关于x的一元二次方程kx +2x+2 - k=0 ( k昌).(1)求证:方程总有两个实数根;(2)当k取哪些整数时,方程的两个实数根均为整数.24. 已知:关于x的方程kx + (2k - 3) x+k - 3=0.(1)求证:方程总有实数根;2(2)当k取哪些整数时,关于x的方程kx + (2k- 3) x+k - 3=0的两个实数根均为负整数?3 35. 在平面直角坐标系中,将直线I:「一 - 一沿x轴翻折,得到一条新直线与x轴交于点A,与y轴交于点B ,将抛物线C1:*沿x轴平移,得到一条新抛物线C2与y轴交于点D,与直线AB交于点E、点F.(1)求直线AB的解析式;(2)若线段DF // x轴,求抛物线C2的解析式;(3)在(2)的条件下,若点F在y轴右侧,过F作FH丄x轴于点G ,与直线I交于点H,—条直线m( m不过△ AFH 的顶点)与AF交于点M,与FH交于点N,如果直线m既平分△ AFH的面积,又平分△ AFH的周长,求直线m 的解析式.第一次折叠第二次折叠第三次折叠0^126. 已知:关于x的一元二次方程-x+ (m+4) x - 4m=0,其中0 v m v4.(1)求此方程的两个实数根(用含m的代数式表示);(2)设抛物线y= - x + ( m+4) x - 4m与x轴交于A、B两点(A在B的左侧),若点D的坐标为(0,- 2),且AD?BD=10,求抛物线的解析式;(3)已知点E (a, y i)、F (2a, y2)、G (3a, y3)都在(2)中的抛物线上,是否存在含有y i、y2、y3,且与a无关的等式?如果存在,试写出一个,并加以证明;如果不存在,说明理由.2 27. 点P为抛物线y=x - 2mx+m (m为常数,m>0) 上任一点,将抛物线绕顶点G逆时针旋转90°后得到的新图象与y轴交于A、B两点(点A在点B的上方),点Q为点P旋转后的对应点.(1)当m=2,点P横坐标为4时,求Q点的坐标;(2)设点Q (a, b),用含m、b的代数式表示a;(3)如图,点Q在第一象限内,点D在x轴的正半轴上,点C为OD的中点,QO平分/ AQC , AQ=2QC ,当QD=m 时,求m的值.2&关于x的一元二次方程x1 2 3- 4x+c=0有实数根,且c为正整数.1 求c的值;22 若此方程的两根均为整数,在平面直角坐标系xOy中,抛物线y=x - 4x+c与x轴交于A、B两点(A在B左侧),与y轴交于点C .点P为对称轴上一点,且四边形OBPC为直角梯形,求PC的长;3 将(2)中得到的抛物线沿水平方向平移,设顶点D的坐标为(m, n),当抛物线与(2)中的直角梯形OBPC只有两个交点,且一个交点在PC边上时,直接写出m的取值范围.210.如图,AD 是厶ABC 的角平分线,EF 是AD 的垂直平分线. 求证:(1)/ EAD= / EDA .(2) DF // AC . (3) Z EAC= / B .一 211 .已知:关于 x 的一兀二次方程(m - 1) x + (m - 2) x -仁0 ( m 为实数) (1)若方程有两个不相等的实数根,求 m 的取值范围;(2) 在(1)的条件下,求证:无论 m 取何值,抛物线 y= (m - 1) x 2+ (m - 2) x - 1总过x 轴上的一个固定点;一、 2 2 (3)关于x 的一兀二次方程(m - 1) x + (m - 2) x -仁0有两个不相等的整数根,把抛物线 y= (m - 1) x + (m -2)x - 1向右平移3个单位长度,求平移后的解析式.12. 已知△ ABC ,以AC 为边在△ ABC 外作等腰 △ ACD ,其中AC=AD .(1) ____________________________________________________________________________________ 如图1,若/ DAC=2 / ABC , AC=BC ,四边形 ABCD 是平行四边形,则/ ABC= __________________________________ ; (2) 如图2,若/ ABC=30 ° △ ACD 是等边三角形, AB=3 , BC=4 .求BD 的长;(3) 如图3,若/ ACD 为锐角,作 AH 丄BC 于H .当BD 2=4AH 2+BC 2时,/ DAC=2 / ABC 是否成立?若不成立, 请说明你的理由;若成立,证明你的结论.213. 已知关于 x 的方程 mx + (3- 2m ) x+ ( m - 3) =0,其中m >0. (1) 求证:方程总有两个不相等的实数根;垃 ~ I(2) 设方程的两个实数根分别为 X 1, X 2,其中X 1>X 2,图33 x |(3) 在(2)的条件下,请根据函数图象,直接写出使不等式yw- m成立的m的取值范围.2 214. 已知:关于x的一元二次方程x+ (n-2m) x+m - mn=O①(1)求证:方程① 有两个实数根;(2)若m- n-仁0,求证:方程① 有一个实数根为1;(3)在(2)的条件下,设方程①的另一个根为a.当x=2时,关于m的函数y i=nx+am与y2=x2+a (n - 2m) x+m2 -mn的图象交于点A、B (点A在点B的左侧),平行于y轴的直线L与y i、y2的图象分别交于点C、D .当L沿AB由点A平移到点B时,求线段CD的最大值.y= ( 3- m) x2+2 ( m - 3) x+4m - m2的顶点A在双曲线y==上,直线y=mx+b经过点A ,与y轴交于点B,与x轴交于点C.(1) 确定直线AB的解析式;(2) 将直线AB绕点O顺时针旋转90°与x轴交于点D,与y轴交于点E,求sin/ BDE的值;(3) 过点B作x轴的平行线与双曲线交于点G,点M在直线BG上,且到抛物线的对称轴的距离为6.设点N在15.如图,已知抛物线16.如图,AB为O O的直径,AB=4,点C在O O上,CF丄OC,且CF=BF .(1)证明BF是O O的切线;(2) 设AC与BF的延长线交于点M,若MC=6,求/ MCF的大小.17 .如图1,已知等边△ ABC的边长为1,D、E、F分别是AB、BC、AC边上的点(均不与点A、B、C重合),记厶DEF的周长为p.(1)____________________________________________________________ 若D、E、F分别是AB、BC、AC边上的中点,贝U p= _______________________________________________________ ;(2)_______________________________________________________________________ 若D、E、F分别是AB、BC、AC边上任意点,贝U p的取值范围是_____________________________________________ .小亮和小明对第(2)问中的最小值进行了讨论,小亮先提出了自己的想法:将△ ABC以AC边为轴翻折一次得△ AB1C,再将△ AB1C以B1C为轴翻折一次得△ A1B1C,如图2所示.则由轴对称的性质可知,DF+FE1+E1D2=p, 根据两点之间线段最短,可得p£D2.老师听了后说:你的想法很好,但DD2的长度会因点D的位置变化而变化,所以还得不出我们想要的结果. ”小明接过老师的话说:那我们继续再翻折3次就可以了”请参考他们的想法,写出你的答案.图1 图2218. 已知关于x的方程x -( m- 3) x+m - 4=0 .(1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m的取值范围;2(3)设抛物线y=x -( m - 3) x+m - 4与y轴交于点M,若抛物线与x轴的一个交点关于直线y= - x的对称点恰好是点M,求m的值.19. 在Rt△ ABC中,/ ACB=90 ° tan/BAC=2 .点D在边AC上(不与A, C重合),连接BD , F为BD中点.2(1)若过点D作DE丄AB于E,连接CF、EF、CE,如图1 .设CF=kEF,则k= _ _ ;(2)若将图1中的△ ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示.求证:BE -DE=2CF ;(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最20•我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点•例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE (要求:画出必要的辅助线);(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1, S2, S3, S4四者之间的等量关系(S1, S2, S3, S4分别表示△ ABP , △ CBP , △ CDP, △ ADP的面积):①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是 ____________________ ;②如图4,当四边形ABCD没有等高点时,你得到的一个结论是____________________ .221. 已知:关于x的一元一次方程kx=x+2① 的根为正实数,二次函数y=ax - bx+kc (c旳)的图象与x轴一个交点的横坐标为1.(1)若方程①的根为正整数,求整数k的值;(2)求代数式一的值;akc(3)求证:关于x的一元二次方程ax2- bx+c=0②必有两个不相等的实数根.22. 已知抛物线经过点A (0, 4)、B (1, 4)、C (3, 2),与x轴正半轴交于点D.(1)求此抛物线的解析式及点D的坐标;(2)在x轴上求一点E,使得△ BCE是以BC为底边的等腰三角形;(3)在(2)的条件下,过线段ED上动点P作直线PF// BC,与BE、CE分别交于点F、6,将厶EFG沿FG翻折得到△ E F G .设P ( x, 0), △ E F G与四边形FGCB重叠部分的面积为S,求S与x的函数关系式及自变量x的取值范围.223. 已知二次函数y=ax +bx+c的图象分别经过点(0, 3) , (3, 0), (- 2, - 5).求:(1)求这个二次函数的解析式;(2)求这个二次函数的最值;(3)若设这个二次函数图象与x轴交于点C, D (点C在点D的左侧),且点A是该图象的顶点,请在这个二次函数的对称轴上确定一点B,使△ ACB是等腰三角形,求出点B的坐标.24•根据所给的图形解答下列问题:(1)如图1, △ ABC中,AB=AC,/ BAC=90 ° AD丄BC于D,把△ ABD绕点A旋转,并拼接成一个与△ ABC 面积相等的正方形,请你在图中完成这个作图;(2)如图2,△ ABC中,AB=AC,/ BAC=90 °请你设计一种与(1)不同的方法,将这个三角形拆分并拼接成一个与其面积相等的正方形,画出利用这个三角形得到的正方形;(3)设计一种方法把图3中的矩形ABCD拆分并拼接为一个与其面积相等的正方形,请你依据此矩形画出正形,并根据你所画的图形,证明正方形面积等于矩形ABCD的面积的结论.25. 例.如图①,平面直角坐标系xOy中有点B (2,3)和C (5,4),求厶OBC的面积. 解:过点B作BD丄x轴于D,过点C作CE丄x轴于E.依题意,可得S A OBC=S梯形BDEC+S A OBD- S^OCE=- -1 - ;i-.l ■・•・“w £w=',X ( 3+4) X( 5- 2) +[X2>3—[拓>4=3.5 .££w•••△ OBC的面积为3.5.(1)如图②,若B (X1,yd、C (X2,y2)均为第一象限的点,O、B、C三点不在同一条直线上.仿照例题的解法,求△ OBC的面积(用含X1、X2、y1、y2的代数式表示);(2)如图③,若三个点的坐标分别为 A (2,5),B (7,7),C (9,1),求四边形OABC的面积.① ② ③26. 阅读:①按照某种规律移动一个平面图形的所有点,得到一个新图形称为原图形的像. 如果原图形每一个点只对应像的一个点,且像的每一个点也只对应原图形的一个点,这样的运动称为几何变换•特别地,当新图形与原图形的形状大小都不改变时,我们称这样的几何变换为正交变换.问题1:我们学习过的平移、________________ 、______________ 变换都是正交变换.② 如果一个图形绕着一个点(旋转中心)旋转n°(O v nW60)后,像又回到原图形占据的空间(重合)变换为该图形的n度旋转变换.特别地,具有180?旋转变换的图形称为中心对称图形.例如,图A中奔驰车标示意图具有120°, 240°, 360°的旋转变换.图B的几何图形具有180。
中考数学20道几何难题

中考数学20道几何难题经典难题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15度求证:△PBC是正三角形.3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典难题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB 分别交MN于P、Q.求证:AP=AQ.4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.求证:点P到边AB的距离等于AB的一半.经典难题(三)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC 交DA延长线于F.求证:AE=AF.3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.经典难题(四)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.经典难题(五)1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC 的最小值.3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=80度,D、E分别是AB、AC 上的点,∠DCA=30度,∠EBA=20度,求∠BED的度数.答案经典难题(一)1、如下图做GH⊥AB,连接EO。
初三数学超难试题及答案

初三数学超难试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数y=ax^2+bx+c(a≠0)的对称轴?A. x=-b/2aB. x=b/2aC. x=a/2bD. x=b/2c答案:A2. 已知等腰三角形的两边长分别为3和6,那么这个三角形的周长是多少?A. 12B. 15C. 18D. 21答案:B3. 在一次函数y=kx+b中,若k>0且b<0,则该函数的图像不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 计算下列二次根式中,哪个是同类二次根式?A. √2和√8B. √3和√12C. √5和√20D. √6和√24答案:C6. 一个数的立方等于8,那么这个数是多少?A. 2B. -2C. 2和-2D. 以上都不对答案:C7. 一个长方体的长、宽、高分别为2cm、3cm、4cm,那么这个长方体的体积是多少?A. 24cm³B. 36cm³C. 48cm³D. 52cm³答案:A8. 已知一个角的余角是30°,那么这个角的度数是多少?A. 60°B. 90°C. 120°D. 150°答案:A9. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A10. 计算:(1/2)^-1的值是多少?A. 2B. -2C. 1/2D. -1/2答案:A二、填空题(每题4分,共20分)1. 一个数的绝对值是5,那么这个数可以是______。
答案:±52. 一个角的补角是120°,那么这个角的度数是______。
答案:60°3. 一个正数的倒数是1/4,那么这个数是______。
答案:44. 一个三角形的内角和是______。
中考数学几何经典难题(标准答案)

中考数学几何经典难题(标准答案)中考数学几何经典难题(标准答案)
题目一
已知直角三角形ABC,∠B=90°,AB=3cm,BC=4cm。
求三角形ABC的斜边AC的长度。
解答一
根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
所以,斜边AC的长度可以通过计算得到:
AC² = AB² + BC²
AC² = 3² + 4²
AC² = 9 + 16
AC² = 25
根据开方运算,可以得到AC的长度为5cm。
题目二
已知等腰梯形ABCD,AB∥CD,AB=10cm,CD=16cm,AD=BC=6cm,求梯形ABCD的面积。
解答二
等腰梯形的面积可以通过以下公式计算:
其中,a和b分别表示上底和下底的长度,h表示梯形的高。
根据已知条件可以得到:
上底a = AB = 10cm
下底b = CD = 16cm
高h = AD = BC = 6cm
将这些值代入公式进行计算:
面积 = ((a + b) * h) / 2
面积 = ((10 + 16) * 6) / 2
面积 = (26 * 6) / 2
面积 = 156 / 2
面积 = 78
所以,梯形ABCD的面积为78平方厘米。
以上就是中考数学几何的两个经典难题的标准答案。
希望对你有帮助!。
初中数学经典几何难题及答案

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)第1题图第2题图2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)第3题图第4题图4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)ANFE CDM BD 2C 2B 2A 2D 1C 1B 1C BDAA 1APC DBAFGCEB O D第1题图第2题图2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)第3题图第4题图4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)PCGFBQ ADE· OQPBDEC NM· A·GA O DBECQPNM·AD HEM C BO第1题图第2题图2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)第3题图第4题图4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D . 求证:AB =DC ,BC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)第1题图第2题图2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)PADCBAPC BOD BF AECPFE PCBAE DA CBFAFDECBD3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)第3题图第4题图4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.第1题图第2题图2、P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.第3题图第4题图4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300, ∠EBA =200,求∠BED 的度数.EDCBAAC BPDAC BPDAPCBFPDE CBACBDA经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF 。
初中数学好题难题集锦(含答案解析)

初三下学期数学好题难题集锦一、分式:1、如果abc=1,求证++=1.2、已知+=,则+等于多少?3、一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.4、(2009•邵阳)已知M=、N=,用“+”或“﹣”连接M、N,有三种不同的形式,M+N、M﹣N、N﹣M,请你任取其中一种进行计算,并简求值,其中x:y=5:2.二、反比例函数:5、一张边长为16cm正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E”图案如图1所示.小矩形的长x(cm)与宽y(cm)之间的函数关系如图2所示:(1)求y与x之间的函数关系式;(2)“E”图案的面积是多少?(3)如果小矩形的长是6≤x≤12cm,求小矩形宽的范围.6、(2009•邵阳)如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的端点.(1)求此函数的解析式,并写出自变量x的取值范围;(2)请你举出一个能用本题的函数关系描述的生活实例.7、如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数的图象上,则图中阴影部分的面积等于_________.8、(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y 轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP 面积相等如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.9、如图,在平面直角坐标系中,直线AB与y轴和x轴分别交于点A、点B,与反比例函数y在第一象限的图象交于点c(1,6)、点D(3,x).过点C作CE上y轴于E,过点D 作DF上X轴于F.(1)求m,n的值;(2)求直线AB的函数解析式.三、勾股定理:10、清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:=m;第二步:=k;第三步:分别用3、4、5乘以k,得三边长”.(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗请写出证明过程.11、(2009•温州)一张等腰三角形纸片,底边长15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A、第4张B、第5张C、第6张D、第7张12、(2009•茂名)如图,甲,乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A 处目测得点A与甲,乙楼顶B、C刚好在同一直线上,若小明的身高忽略不计,则乙楼的高度是_________米.13、(2009•恩施州)恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷(A)和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路X同侧,AB=50km、B到直线X的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP与直线X 垂直,垂足为P),P到A、B的距离之和S1=PA+PB,图(2)是方案二的示意图(点A关于直线X的对称点是A',连接BA'交直线X于点P),P到A、B的距离之和S2=PA+PB.(1)求S1、S2,并比较它们的大小;(2)请你说明S2=PA+PB的值为最小;(3)拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.14、(2009•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.(1)求证:BG=FG;(2)若AD=DC=2,求AB的长.四、四边形:15、(2008•佛山)如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.16、(2008•山西)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;(2)判断四边形ABDF是怎样的四边形,并说明理由;(3)若AB=6,BD=2DC,求四边形ABEF的面积.17、(2008•资阳)如图,在△ABC中,∠A,∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.(1)点D是△ABC的_________心;(2)求证:四边形DECF为菱形.18、(2008•哈尔滨)在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q.(1)当点P在线段ED上时(如图1),求证:BE=PD+PQ;(2)若BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与x 的函数关系式(不要求写出自变量x的取值范围);(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长.19、(2008•常州)如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意图,并写出它们的周长.20、(2008•常州)已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.21、(2008•潍坊)如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.(1)当折痕的另一端F在AB边上时,如图.求△EFG的面积;(2)当折痕的另一端F在AD边上时,如图.证明四边形BGEF为菱形,并求出折痕GF 的长.22、(2008•新疆)(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹)(2)写出你的作法.23、(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.24、(2008•义乌市)如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;(2)将原题中正方形改为矩形(如图4﹣6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k >0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由;(3)在第(2)题图5中,连接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.五、几何:25、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)26、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)27、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)28、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F G CEBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF29、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)30、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)31、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)32、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.33、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)34、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)35、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)36、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)E37、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)38、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)39、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)40、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)41、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.42、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.43、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.44、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.APCB ACBPDEDCB A A CBPD五、数据的分析:45、(2005•南平)为了帮助贫困失学儿童,宿迁市团委发起“爱心储蓄”活动,鼓励学生将自己的压岁钱和零花钱存入银行,定期一年,到期后取回本金,而把利息捐赠给贫困失学儿童.某中学共有学生1200人,图1是该校各年级学生人数比例分布的扇形统计图,图2是该校学生人均存款情况的条形统计图.(1)求该学校的人均存款数;(2)已知银行一年定期存款的年利率是2.25%(“爱心储蓄”免收利息税),且每351元能提供给1位失学儿童一年的基本费用,那么该学校一学年能够帮助多少位失学儿童?46、(2005•河北)如图是连续十周测试甲、乙两名运动员体能训练情况的折线统计图.教练组规定:体能测试成绩70分以上(包括70分)为合格.(1)请根据图中所提供的信息填写右表:(2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙,_________的体能测试成绩较好;②依据平均数与中位数比较甲和乙,_________的体能测试成绩较好.③依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.47、(2005•重庆)如图所示,A、B两个旅游点从2001年至2005年“五•一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题:(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A、B两个旅游点从2001到2005年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系y=5﹣.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少?答案与评分标准一、分式:1、如果abc=1,求证++=1.考点:分式的混合运算。
中考数学难题归纳

一.选择题(共3小题)1.(1998•南京)若双曲线的两个分支在第二、四象限内,则抛物线y=kx2﹣2x+k2的图象大致是图中的( )大致是图中的(A.B.C.D.2.如图,∠AOD=90°,OA=OB=BC=CD,那么下列结论成立的是(,那么下列结论成立的是( )OCA B B.△OAB∽△ODA A.△OAB∽△OCA C.△BAC∽△BDA D.以上结论都不成立.以上结论都不成立3.(2012•绵阳)已知△ABC中,∠C=90°,tanA=,D是AC上一点,∠CBD=∠A,则sin∠ABD=()A.B. C.D.二.填空题(共11小题)4.(2012•黄石)“数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下:,今天我们可以将高斯的做法归纳如下:令S=1+2+3+…+98+99+100 ①S=100+99+98+…+3+2+1 ②①+②:有2S=(1+100)×100 解得:S=5050 请类比以上做法,回答下列问题:请类比以上做法,回答下列问题:若n为正整数,3+5+7+…+(2n+1)=168,则n=_________.5.如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C,D在以OA为直的坐标为 _________.径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为6.如图,⊙O的半径是5cm,P是⊙O外一点,PO=8cm,∠P=30°,则AB=_________cm.7.(2000•甘肃)如图,AB 是半圆的直径,直线MN 切半圆于C ,CM ⊥MN ,BN ⊥MN ,如果AM=a ,BN=b ,那么半圆的半径是那么半圆的半径是 _________ .8.已知双曲线y=与直线y=相交于A ,B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线y=上的动点.过点B 作BD ∥y 轴交x 轴于点D .过N (0,﹣n )作NC ∥x 轴交双曲线y=于点E ,交BD于点C .若B 是CD 的中点,四边形OBCE 的面积为4,则直线CM 的解析式为的解析式为 _________ .9.如图,M 为双曲线y=上的一点,过点M 作x 轴、y 轴的垂线,分别交直线y=﹣x+m 于D 、C 两点,若直线y=﹣x+m 与y 轴、x 轴分别交于点A 、B ,则AD •BC 的值为的值为 _________ .10.如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是BC 的中点,DE 交AC 于F ,若DE=6,则EF 等于等于 _________ .11.(2012•金山区二模)金山区二模)如图,如图,如图,已知已知AD 为△ABC 的角平分线,DE ∥AB 交AC 于E ,如果,那么=_________ .12.如图,在△ABC中,D、E是BC的三等分点,M是AC的中点,BM交AD、AE于G、H,则BG:GH:HM=_________.13.(2013•上海)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为的长为 _________.14.(2013•芦淞区模拟)在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.已知AC=,BC=2,那么sin∠ACD= _________.三.解答题(共9小题)15.已知:如图,△ABC内接于圆,AD⊥BC于D,弦BH⊥AC于E,交AD于F.求证:FE=EH.16.把抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2﹣3x+5,求b,c的值.的值.17.(2003•海南)已知抛物线y=ax2+bx+c开口向下,并且经过A(0,1)和M(2,﹣3)两点.)两点.,求此抛物线的解析式;(1)若抛物线的对称轴为直线x=﹣1,求此抛物线的解析式;的取值范围;(2)如果抛物线的对称轴在y轴的左侧,试求a的取值范围;的值.(3)如果抛物线与x轴交于B、C两点,且∠BAC=90°,求此时a的值.18.(2000•杭州)已知一个正三角形和一个正六边形的周长相等,求它们的面积的比值.杭州)已知一个正三角形和一个正六边形的周长相等,求它们的面积的比值. 19.(原创题)如图所示,扇形OAB从图①无滑动旋转到图②,再由图②到图③,∠O=60°,OA=1.点所运动的路径长;(1)求O点所运动的路径长;围成的面积.(2)O点走过路径与直线L围成的面积.20.(2013•重庆)重庆) 已知:如图,抛物线y=x 2+2x ﹣3与x 轴的交点为A 、B 两点,与y 轴交于点C ,直线AC 与抛物线交于A 、C 两点.两点.如图,的y=ax 2+bx+c (a ≠0)与x 轴相交于A 、B 两点,其中点A 的坐标为(﹣3,0).(1)求点B 的坐标.的坐标.(2)在抛物线的对称轴x=﹣1上是否存在一点P ,使得△BCP 为等腰三角形,若存在,直接写出点P 的坐标;若不存在,说明理由.标;若不存在,说明理由.(3)若点Q 在直线AC 下方的抛物线上,且S △QOC =2S △BOC ,求点Q 的坐标.的坐标.21.(2014•徐州模拟)如图,已知抛物线y=﹣x 2+2x+1﹣m 与x 轴相交于A 、B 两点,与y 轴相交于点C ,其中点C 的坐标是(0,3),顶点为点D ,连接CD ,抛物线的对称轴与x 轴相交于点E .(1)求m 的值;的值;(2)求∠CDE 的度数;的度数;(3)在抛物线对称轴的右侧部分上是否存在一点P ,使得△PDC 是等腰三角形?如果存在,求出符合条件的点P 的坐标;如果不存在,请说明理由.的坐标;如果不存在,请说明理由.22.(2006•锦州)如图,在平面直角坐标系中,在平面直角坐标系中,四边形四边形OABC 为菱形,为菱形,点点C 的坐标为(4,0),∠AOC=60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线l 与菱形OABC的两边分别交于点M 、N (点M 在点N 的上方).(1)求A 、B 两点的坐标;两点的坐标;(2)设△OMN 的面积为S ,直线l 运动时间为t 秒(0≤t ≤6),试求S 与t 的函数表达式;的函数表达式;(3)在题(2)的条件下,t 为何值时,S 的面积最大?最大面积是多少?的面积最大?最大面积是多少?23.(2007•济宁)如图,先把一矩形ABCD 纸片对折,设折痕为MN ,再把B 点叠在折痕线上,得到△ABE ,过B 点折纸片使D 点叠在直线AD 上,得折痕PQ .(1)求证:△PBE ∽△QAB ;(2)你认为△PBE和△BAE相似吗?如果相似给出证明,如不相似请说明理由;相似吗?如果相似给出证明,如不相似请说明理由;上?为什么?(3)如果沿直线EB折叠纸片,点A是否能叠在直线EC上?为什么?2南京)若双曲线的两个分支在第二、四象限内,则抛物线A.B.C.D.考点:二次函数的图象;反比例函数的性质.分析:的符号判断抛物线的开口方向及对称轴. 根据双曲线的图象位置可知k<0;再根据k的符号判断抛物线的开口方向及对称轴.解答:解:∵双曲线的两个分支在第二、四象限内,即k<0,抛物线开口向下,∴抛物线开口向下,对称轴x=﹣=<0,对称轴在y轴的左边.故选A.本题考查了反比例函数图象的性质和二次函数系数与抛物线形状的关系.点评:本题考查了反比例函数图象的性质和二次函数系数与抛物线形状的关系.A.△OAB∽△OCA B.△OAB∽△ODA C.△BAC∽△BDA D.以上结论都不成立上结论都不成立考点:相似三角形的判定.专题:常规题型.常规题型.根据已知及相似三角形的判定进行分析,从而得到答案.分析:根据已知及相似三角形的判定进行分析,从而得到答案.解答:解:∵∠AOD=90°,设OA=OB=BC=CD=x ∴AB=x,AC=x,AD=x,OC=2x,OD=3x,BD=2x ∴,,∴∴△BAC∽△BDA 故选C.点评:此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;如果两个三角形的两个对应角相等,那么这两个三角形相似.③如果两个三角形的两个对应角相等,那么这两个三角形相似.3.(2012•绵阳)已知△ABC中,∠C=90°,tanA=,D是AC上一点,∠CBD=∠A,则sin∠ABD=()A.B.C.D.考点:相似三角形的判定与性质;勾股定理;锐角三角函数的定义.压轴题.专题:压轴题.分析:作DE⊥AB于点E,根据相等的角的三角函数值相等即可得到===,设CD=1,则可以求得AD的长,然后利用勾股定理即可求得DE、AE的长,则BE可以求得,根据同角三角函数之间的关系即可求解.解答:解:作DE⊥AB于点E.∵∠CBD=∠A,∴tanA=tan∠CBD====,设CD=1,则BC=2,AC=4,∴AD=AC﹣CD=3,在直角△ABC中,AB===2,在直角△ADE中,设DE=x,则AE=2x,∵AE2+DE2=AD2,∴x2+(2x)2=9,解得:x=,则DE=,AE=.∴BE=AB﹣AE=2﹣=,∴tan∠DBA==,∴sin∠DBA=.故选:A.本题考查了三角函数的定义,以及勾股定理,正确理解三角函数就是直角三角形中边的比值是关键.点评:本题考查了三角函数的定义,以及勾股定理,正确理解三角函数就是直角三角形中边的比值是关键.n=12.考点:有理数的混合运算.压轴题;规律型.专题:压轴题;规律型.根据题目提供的信息,列出方程,然后求解即可.分析:根据题目提供的信息,列出方程,然后求解即可.解答:解:设S=3+5+7+…+(2n+1)=168①,则S=(2n+1)+…+7+5+3=168②,①+②得,2S=n(2n+1+3)=2×168,整理得,n2+2n﹣168=0,即(n﹣12)(n+14)=0,解得n1=12,n2=﹣14(舍去).故答案为:12.点评:本题考查了有理数的混合运算,读懂题目提供的信息,表示出这列数据的和并列出方程是解题的关键.的坐标为 (1,3).的坐标为考点:垂径定理;勾股定理;平行四边形的性质.计算题.专题:计算题.分析:过点M作MF⊥CD于点F,则CF=CD=4,过点C作CE⊥OA于点E,由勾股定理可求得MF的长,从而的坐标.得出OE的长,然后写出点C的坐标.解答:解:∵四边形OCDB是平行四边形,B(8,0),∴CD∥OA,CD=OB=8 过点M作MF⊥CD于点F,则CF=CD=4 过点C作CE⊥OA于点E,∵A(10,0),∴OE=OM﹣ME=OM﹣CF=5﹣4=1.连接MC,则MC=OA=5 ∴在Rt△CMF中,由勾股定理得∴点C的坐标为(1,3)本题考查了勾股定理、垂径定理以及平行四边形的性质,是基础知识要熟练掌握.点评:本题考查了勾股定理、垂径定理以及平行四边形的性质,是基础知识要熟练掌握.6.如图,⊙O的半径是5cm,P是⊙O外一点,PO=8cm,∠P=30°,则AB=6cm.考点:垂径定理;含30度角的直角三角形;勾股定理.的长,再解直角三角形并根据垂径定理即可求出.分析:首先作出辅助线,求出OD的长,再解直角三角形并根据垂径定理即可求出.解答:解:如图:作OD⊥AB于D,连接OB,因为∠P=30°所以OD=PO=×8=4cm 在直角三角形ODB中,BD===3cm 根据垂径定理,BD=AD,则AB=2BD=2×3=6cm.,根据垂径定理解答.点评:解答此题的关键是作出辅助线OD,根据垂径定理解答.7.(2000•甘肃)如图,AB是半圆的直径,直线MN切半圆于C,CM⊥MN,BN⊥MN,如果AM=a,BN=b,那么半圆的半径是 .半圆的半径是考点:梯形中位线定理;切线的性质.分析:根据切线的性质,只需连接OC.根据切线的性质定理以及平行线等分线段定理得到梯形的中位线,再根据梯形的中位线定理进行计算即可.梯形的中位线定理进行计算即可.解答:解:连接OC,则OC⊥MN.∴OC∥AM∥BN,又OA=OB,则MC=NC.根据梯形的中位线定理,得该半圆的半径是.点评:此题主要是根据切线的性质定理和平行线等分线段定理,发现梯形的中位线,进而熟练运用梯形的中位线定理求解.定理求解.8.已知双曲线y=与直线y=相交于A,B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=上的动点.过点B作BD∥y轴交x轴于点D.过N(0,﹣n)作NC∥x轴交双曲线y=于点E,交BD于点C.若B是CD的中点,四边形OBCE的面积为4,则直线CM的解析式为的解析式为 y=.考点:反比例函数与一次函数的交点问题.动点型.专题:动点型.根据一次函数和反比例函数的性质及点的坐标和解析式的关系解答.分析:根据一次函数和反比例函数的性质及点的坐标和解析式的关系解答.解答:解:设B点坐标为(x1,﹣),代入y=x得,﹣=x1,x1=﹣2n;∴B点坐标为(﹣2n,﹣).因为BD∥y轴,所以C点坐标为(﹣2n,﹣n).因为四边形ODCN的面积为2n•n=2n2,三角形ODB,三角形OEN的面积均为,四边形OBCE的面积为4.则有2n2﹣k=4﹣﹣﹣①;又因为2n•=k,即n2=k﹣﹣﹣②②代入①得,4=2k﹣k,解得k=4;则解析式为y=;又因为n2=4,故n=2或n=﹣2.M在第一象限,n>0;将M(m,2)代入解析式y=,得m=2.故M点坐标为(2,2);C(﹣4,﹣2);设直线CM解析式为y=kx+b,则,解得∴一次函数解析式为:y=x+.点评:解答本题要明确两个关系:(1)双曲线中,xy=k;(2)S△DBO=|k|.9.如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于D、C两点,若直线y=﹣x+m与y轴、x轴分别交于点A、B,则AD•BC的值为的值为 2.考点:反比例函数综合题.综合题.专题:综合题.分析:作CE⊥x轴于E,DF⊥y轴于F,如图所示,根据直线y=﹣x+m,表示出A与B坐标,可得出三角形OAB 为等腰直角三角形,进而确定出三角形ADF与三角形CEB都为等腰直角三角形,设M(a,b),代入反比的值.例解析式得到ab=,CE=b,DF=a,表示出AD与BC,即可求出AD•BC的值.解答:解:作CE⊥x轴于E,DF⊥y轴于F,如图,,如图,对于y=﹣x+m,令x=0,得到y=m;令y=0,得到x=m,∴A(0,m),B(m,0),为等腰直角三角形,∴△OAB为等腰直角三角形,都是等腰直角三角形,∴△ADF与△CEB都是等腰直角三角形,设M(a,b),则ab=,CE=b,DF=a,∴AD=DF=a,BC=CE=b,∴AD•BC=a•b=2ab=2.故答案为:2.点评:此题属于反比例函数综合题,涉及的知识有:等腰直角三角形的性质,坐标与图形性质,反比例函数的性质,以及矩形的性质,熟练掌握等腰直角三角形的性质是解本题的关键.质,以及矩形的性质,熟练掌握等腰直角三角形的性质是解本题的关键.10.如图,正方形ABCD的对角线AC、BD相交于点O,E是BC的中点,DE交AC于F,若DE=6,则EF等于等于 2.考点:相似三角形的判定与性质;正方形的性质.分析:因为四边形ABCD是正方形,E是BC中点,所以CE=AD,由相似三角形的判定定理得出△CEF∽△ADF,再根据相似三角形的对应边成比例可得出.再根据相似三角形的对应边成比例可得出.中点,解答:解:∵四边形ABCD是正方形,E是BC中点,∴CE=AD,∵AD∥BC,∴∠ADF=∠DEC,∠AFD=∠EFC,∴△CEF∽△ADF,∴=,∴,即,解得EF=2,故答案为2.点评:本题考查的是相似三角形的判定与性质及正方形的性质,先根据题意判断出△CEF∽△ADF,再根据相似三角形的对应边成比例进行解答是解答此题的关键.形的对应边成比例进行解答是解答此题的关键.11.(2012•金山区二模)如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果,那么=.考点:相似三角形的判定与性质;等腰三角形的判定与性质.分析:的值. 根据角平分线的定义,平行线的性质易证EA=ED,△CED∽△CAB,从而求得的值.的角平分线,解答:解:∵AD为△ABC的角平分线,∴∠BAD=∠EAD,∵DE∥AB,∴△CED∽△CAB,∠BAD=∠EDA.∴∠EDA=∠EAD,∴EA=ED,∵=,∴ED:EC=2:3,∴=ED:EC=2:3.故答案为:.点评:本题主要考查了相似三角形的判定与性质,相似三角形的对应边对应成比例,同时考查了角平分线的定义.12.如图,在△ABC中,D、E是BC的三等分点,M是AC的中点,BM交AD、AE于G、H,则BG:GH:HM= 5:3:2.考点:平行线分线段成比例;三角形中位线定理.分析:首先过点M作MK∥BC,交AD,AE分别于K,N,由M是AC的中点与D、E是BC的三等分点,根据平行线分线段成比例定理,即可求得MN=NK=BD=DE=EC,然后根据比例的性质,即可求得BG:GH:HM的值.的值.解答:解:法一:过点M作MK∥BC,交AD,AE分别于K,N,∵M是AC的中点,的中点,∴=,的三等分点,∵D、E是BC的三等分点,∴BD=DE=EC,∴MN=NK,∵=,=1,∴MH=BH,MG=BG,设MH=a,BH=4a,BG=GM=,∴GH=GM﹣MH=,∴BG:GH:HM=::a=5:3:2.故答案为:5:3:2.点评:此题考查了平行线分线段成比例定理与比例的性质.此题难度适中,解题的关键是注意辅助线的作法,注意数形结合思想的应用.意数形结合思想的应用.13.(2013•上海)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的长为 .的中点处,直线l与边BC交于点D,那么BD的长为考点:翻折变换(折叠问题).压轴题.专题:压轴题.即可.分析:首先根据已知得出△ABC的高以及B′E的长,利用勾股定理求出BD即可.解答:解:过点A作AQ⊥BC于点Q,∵AB=AC,BC=8,tanC=,∴=,QC=BQ=4,∴AQ=6,的中点处,∵将△ABC沿直线l翻折后,点B落在边AC的中点处,过B′点作B′E⊥BC于点E,∴B′E=AQ=3,∴=,∴EC=2,设BD=x,则B′D=x,∴DE=8﹣x﹣2=6﹣x,∴x2=(6﹣x)2+32,解得:x=,直线l与边BC交于点D,那么BD的长为:.故答案为:.点评:此题主要考查了翻折变换的性质以及勾股定理和锐角三角函数关系,根据已知表示出DE的长是解题关键.AC=,ACD=.考点:解直角三角形.分析:在直角△ABC中,根据勾股定理即可求得AB,而∠B=∠ACD,即可把求sin∠ACD转化为求sinB.解答:解:在直角△ABC中,根据勾股定理可得:AB===3.∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD.∴sin∠ACD=sin∠B==.本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.考点:圆周角定理.证明题.专题:证明题.分析:首先连接AH,由AD⊥BC,BH⊥AC与∠AFE=∠BFD,即可得∠EAF=∠FBD,又由圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,即可得∠HAC=∠HBC,即可得∠HAE=∠F AE,则可用ASA证得△AEF≌△AEH,继而证得FE=EH.解答:证明:连接AH,∵AD⊥BC,BH⊥AC,∴∠FDB=∠AEF=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠HAC=∠HBC,∴∠HAE=∠EAF,∵BH⊥AC,∴∠AEF=∠AEH=90°,中,在△AEF和△AEH中,∴△AEF≌△AEH(ASA),∴FE=EH.点评:此题考查了圆周角定理、直角三角形的性质、全等三角形的判定与性质.此题难度适中,解题的关键是准确作出辅助线,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.确作出辅助线,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.16.把抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2﹣3x+5,求b,c的值.值.考点:二次函数图象与几何变换.分析:先求出y=x2﹣3x+5的顶点坐标,再根据“左加右减”求出平移前的抛物线的顶点坐标,然后利用顶点式解析式写出,整理成二次函数的一般形式,再根据对应项系数相等解答.式写出,整理成二次函数的一般形式,再根据对应项系数相等解答.解答:解:∵y=x2﹣3x+5=(x﹣)2+,∴y=x2﹣3x+5的顶点坐标为(,),个单位,∵向右平移3个单位,向下平移2个单位,∴平移前的抛物线的顶点的横坐标为﹣3=﹣,纵坐标为+2=,∴平移前的抛物线的顶点坐标为(﹣,),∴平移前的抛物线为y=(x+)2+=x2+3x+7,∴b=3,c=7.点评:本题考查了二次函数的图象与几何变换,根据两个函数图象的顶点坐标确定平移方法更简便,要注意知道平移后的顶点坐标求平移前的顶点坐标的方法.平移后的顶点坐标求平移前的顶点坐标的方法.17.(2003•海南)已知抛物线y=ax2+bx+c开口向下,并且经过A(0,1)和M(2,﹣3)两点.)两点.,求此抛物线的解析式;(1)若抛物线的对称轴为直线x=﹣1,求此抛物线的解析式;的取值范围;(2)如果抛物线的对称轴在y轴的左侧,试求a的取值范围;的值.(3)如果抛物线与x轴交于B、C两点,且∠BAC=90°,求此时a的值.考点:二次函数综合题.压轴题.专题:压轴题.分析:(1)可将A、M的坐标代入抛物线的解析式中,用a替换掉b、c的值,再根据抛物线的对称轴为﹣1,即可求出a的值,也就确定了抛物线的解析式.的值,也就确定了抛物线的解析式.的取值范围. (2)抛物线的对称轴在y轴左侧,即抛物线对称轴方程小于0,由此可得出a的取值范围.(3)可设出B、C的坐标,如果∠BAC=90°,在直角三角形BAC中,可根据射影定理得出OA2=OC•OB,的值.据此可得出a的值.解答:解:将A、M的坐标代入抛物线的解析式中有:的坐标代入抛物线的解析式中有:,解得:∴抛物线的解析式为y=ax2﹣(2+2a)x+1.(1)∵x=﹣=﹣1,∴=﹣1,解得a=﹣.∴抛物线的解析式为y=﹣x2﹣x+1.(2)由题意知:x=﹣<0,即﹣<0;抛物线开口向下,∵抛物线开口向下,∴a<0 ∴1+a>0,且a<0 ∴﹣1<a<0.(3)设B(x1,0),C(x2,0),x1<x2;∵x1x2=,且a<0.轴正半轴;∴x1x2<0,即B在x轴负半轴,C在x轴正半轴;∴OB=﹣x1,OC=x2.∵∠BAC=90°,,根据射影定理可得:在直角三角形BAC中,AO⊥BC,根据射影定理可得:OA2=OB•OC=﹣x1•x2=1,即﹣=1,a=﹣1.本题主要考查了抛物线对称轴解析式、二次函数与一元二次方程的关系、韦达定理等知识.点评:本题主要考查了抛物线对称轴解析式、二次函数与一元二次方程的关系、韦达定理等知识.18.(2000•杭州)已知一个正三角形和一个正六边形的周长相等,求它们的面积的比值.杭州)已知一个正三角形和一个正六边形的周长相等,求它们的面积的比值.考点:正多边形和圆.分析:根据正多边形的面积等于周长与边心距的乘积的一半,所以只需根据它们的周长计算其边心距;在由正多边形的半径、边心距和边长组成的直角三角形中,根据锐角三角函数的概念可以分别求得它们的边心距,再进一步计算其面积,从而得到其比值.再进一步计算其面积,从而得到其比值..根据题意,得解答:解:设它们的周长是1.根据题意,得正三角形的边长是,正六边形的边长是.则正三角形的边心距是,正六边形的边心距是.则正三角形的面积是,正六边形的面积是.则它们的面积比是2:3.点评:熟悉正多边形的面积公式:正多边形的面积等于周长与边心距的乘积的一半.能够根据由半径、边心距和半边组成的直角三角形,运用锐角三角函数进行计算.半边组成的直角三角形,运用锐角三角函数进行计算.19.(原创题)如图所示,扇形OAB从图①无滑动旋转到图②,再由图②到图③,∠O=60°,OA=1.点所运动的路径长;(1)求O点所运动的路径长;围成的面积.(2)O点走过路径与直线L围成的面积.考点:扇形面积的计算;弧长的计算.本题一共转动了三次,关键是分析每一次转动的圆心角和半径,然后利用弧长公式求.分析:本题一共转动了三次,关键是分析每一次转动的圆心角和半径,然后利用弧长公式求.解答:解:(1)运动路径第一段弧长=,第二段路径为线段长为,第三段路径为,即O在L上运动路径为.)围成面积,(2)围成面积,S1=.本题的难点是第二次,实际上就是扇形的弧长,其它二次则简单.点评:本题的难点是第二次,实际上就是扇形的弧长,其它二次则简单.20.(2013•重庆)重庆) 已知:如图,抛物线y=x2+2x﹣3与x轴的交点为A、B两点,与y轴交于点C,直线AC与抛两点.物线交于A、C两点.如图,的y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).的坐标.(1)求点B的坐标.(2)在抛物线的对称轴x=﹣1上是否存在一点P,使得△BCP为等腰三角形,若存在,直接写出点P的坐标;若不存在,说明理由.存在,说明理由.的坐标.(3)若点Q在直线AC下方的抛物线上,且S△QOC=2S△BOC,求点Q的坐标.考点:二次函数综合题.压轴题.专题:压轴题.分析:(1)由抛物线y=ax2+bx+c的对称轴为直线x=﹣1,交x轴于A、B两点,其中A点的坐标为(﹣3,0),点的坐标;根据二次函数的对称性,即可求得B点的坐标;(2)①a=1时,先由对称轴为直线x=﹣1,求出b的值,再将B(1,0)代入,求出二次函数的解析式为y=x2+2x ﹣3,得到C点坐标,然后设P点坐标为(x,x2+2x﹣3),根据S△POC=4S△BOC列出关于x的方程,解方程的坐标;求出x的值,进而得到点P的坐标;②先运用待定系数法求出直线AC的解析式为y=﹣x﹣3,再设Q点坐标为(x,﹣x﹣3),则D点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.长度的最大值.解答:解:(1)∵对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,两点,对称,∴A、B两点关于直线x=﹣1对称,∵点A的坐标为(﹣3,0),∴点B的坐标为(1,0);(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=﹣1,∴=﹣1,解得b=2.将B(1,0)代入y=x2+2x+c,得1+2+c=0,解得c=﹣3.则二次函数的解析式为y=x2+2x﹣3,∴抛物线与y轴的交点C的坐标为(0,﹣3),OC=3.设P点坐标为(x,x2+2x﹣3),∵S△POC=4S△BOC,∴×3×|x|=4××3×1,∴|x|=4,x=±4.当x=4时,x2+2x﹣3=16+8﹣3=21;当x=﹣4时,x2+2x﹣3=16﹣8﹣3=5.∴点P的坐标为(4,21)或(﹣4,5);)代入,②设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,﹣3)代入,得,解得,即直线AC的解析式为y=﹣x﹣3.设Q点坐标为(x,﹣x﹣3)(﹣3≤x≤0),则D点坐标为(x,x2+2x﹣3),QD=(﹣x﹣3)﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.点评:此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题.此题难度适中,解题的关键是运用方程思想与数形结合思想.题难度适中,解题的关键是运用方程思想与数形结合思想.21.(2014•徐州模拟)如图,已知抛物线y=﹣x2+2x+1﹣m与x轴相交于A、B两点,与y轴相交于点C,其中点C的坐标是(0,3),顶点为点D,连接CD,抛物线的对称轴与x轴相交于点E.(1)求m的值;的值;的度数;(2)求∠CDE的度数;(3)在抛物线对称轴的右侧部分上是否存在一点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.坐标;如果不存在,请说明理由.考点:二次函数综合题.综合题.专题:综合题.的值. 分析:(1)由于抛物线的解析式中只有一个未知数m,因此只需将C点的坐标代入抛物线中即可求出m的值.(2)此题可首先表示出抛物线的顶点式,就可以求出D点的坐标,然后过C点作DE的垂线CF,在△DCF的度数;中根据C、D、F三点的坐标求出DF和CF长度相等,得出∠CDE的度数;的坐标. (3)利用二次函数的对称性可求出,以及利用线段垂直平分线的性质求出P的坐标.解答:(1)∵抛物线过点C(0,3)∴1﹣m=3 ∴m=﹣2 (2)由(1)可知该抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4 ∴此抛物线的对称轴x=1 抛物线的顶点D(1,4)过点C作CF⊥DE,则CF∥OE ∴F(1,3)所以CF=1,DF=4﹣3=1 ∴CF=DF 又∵CF⊥DE ∴∠DFC=90°∴∠CDE=45°)存在.(3)存在.的对称点时,①延长CF交抛物线于点P1,则CP1∥X轴,所以P1正好是C点关于DE的对称点时,有DC=DP1,得出P1点坐标(2,3);由y=﹣x2+2x+3得,D点坐标为(1,4),对称轴为x=1.②若以CD为底边,则PD=PC,,根据两点间距离公式,设P点坐标为(x,y),根据两点间距离公式,得x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.)在抛物线上,又∵P点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,,应舍去;解得:x=,<1,应舍去;∴x=,∴y=4﹣x=则P2点坐标(,).∴符合条件的点P坐标为(,)和(2,3).点评:此题主要考查了二次函数的对称性,以及等腰三角形的判定方法和垂直平分线的性质等知识,题目综合性较强,是中考中热点题型.较强,是中考中热点题型.22.(2006•锦州)如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).两点的坐标;(1)求A、B两点的坐标;的函数表达式;(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤6),试求S与t的函数表达式;(3)在题(2)的条件下,t为何值时,S的面积最大?最大面积是多少?的面积最大?最大面积是多少?。
历年中考数学难题及答案

应用题20.(本小题满分8分)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)22.(本小题满分10分)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368y x =-+,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示.(1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?21.(本题满分10分)星期天,小明和七名同学共8人去郊游,途中,他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完. (1)有几种购买方式?每种方式可乐和奶茶各多少杯?(2)每人至少一杯饮料且奶茶至少二杯时,有几种购买方式?20.(9分)某项工程,甲工程队单独完成任务需要40天.若 乙队先做30天后,甲、乙两队一起合做20天就恰好完成任务. 请问: (1)(5分)乙队单独做需要多少天才能完成任务?(2)(4分)现将该工程分成两部分,甲队做其中一部分工程用了x 天,乙队做另一部分工程用了y 天.若x 、y 都是正整数,且甲队做的时间不到15天,乙队做的时间不到 70天,那么两队实际各做了多少天? 3、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售y 2价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典难题(一)
1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)
2、已知:如图,P 是正方形ABCD 点,∠PAD =∠PDA =150.
3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.
求证:四边形A 2B 2C 2D 2是正方形.(初二)
连接BC1和AB1分别找其中点F,E.连接C2F 与A2E 并延长相交于Q 点, 连接EB2并延长交C2Q 于H 点,连接FB2并延长交A2Q 于G 点,
由A2E= A1B1= B1C1= FB2 ,EB2= AB= BC=FC1 ,又∠GFQ+∠Q=900和 ∠GEB2+∠Q=900,所以∠GEB2=∠GFQ 又∠B2FC2=∠A2EB2 , 可得△B2FC2≌△A2EB2 ,所以A2B2=B2C2 , 又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 , 从而可得∠A2B2 C2=900 , 同理可得其他边垂直且相等,
从而得出四边形A2B2C2D2是正方形。
A F G C
E B
O D D 2 C 2
B 2
A 2 D
1
C 1
B 1
C
B
D
A A 1
4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC
的延长线交MN 于E 、F . 求证:∠DEN =∠F .
求∠DEN ,不是吧,这求不出来的吧,是不是求证:∠DEN =∠MFC .
连接AC,取AC 中点G,连接MG,NG
∵N,G 是CD,AC 的中点 ∴GN ‖AD,GN=0.5DA ∴∠GNM=∠DEN 同理,∠NMG=∠MFC,MG=0.5BC ∵AD=BC ∴MG=NG
∴∠GMN=∠GNM ∴∠DEN =∠MFC
经典难题(二)
1、已知:△ABC 中,H 为垂心(各边高线的交点),O
(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)
2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)
3、如果上题把直线MN 由圆外平移至圆,则由此可得以下命题:
B
F
设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)
4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二)
分别过P 、C 、E 、F 作AB 的垂线,垂足依次是Q 、∵ACDE 是正方形,∴∠EAM 、∠CAH 互余,又∠CAH 、∠ACH 互余,∴∠EAM =∠ACH ,
∵ACDE 是正方形,∴AE =CA ,显然有∠AME =∠CHA =90°,∴△AEM ≌△CAH ,∴EM =AH 。
∵CBFG 是正方形,∴∠FBN 、∠CBH 互余,又∠FBN 、∠BFN 互余,∴∠BFN =∠CBH ,
∵CBFG 是正方形,∴BF =CB ,显然有∠BNF =∠CHB =90°,∴△BFN ≌△CBH ,∴FN =BH 。
由EM =AH 、FN =BH ,得:EM +FN =AH +BH =AB 。
由PQ ⊥AB 、EM ⊥AB 、FN ⊥AB ,得:FN ∥PQ ∥EM ,又EP =FP ,∴PQ 是梯形EFNM 的中位线,
∴由梯形中位线定理,有:PQ =(EM +FN )/2,结合证得的EM +FN =AB ,得:
PQ =AB/2。
经典难题(三)
1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .
求证:CE =CF .(初二)
证明:连接BD 交AC 于点O ,过点E 作EG ⊥AC.
∵四边形ABCD 是正方形,
∴AC=BD ,OD=BD/2,∠DOC=90°,∠ACD=45°, ∵EG ⊥AC , ∴∠EGO=90°,
∴∠DOC+∠EGO=180°, ∴OD//EG , 又∵OG//DE ,
∴四边形DOGE 是矩形, ∴DO=EG=BD/2=AC/2, ∵AE=AC ,
∴在Rt △AGE 中,EG=AE/2,∠ACE=∠AEC , ∴∠EAG=30°,
∴∠AEC+∠ACE=180°-∠EAG=180°-30°=150°, ∴∠AEC=∠ACE=150°÷2=75°, ∴∠ECF=∠ACE-∠ACD=75°-45°=30°, ∴∠EFC=180°-∠ECF-∠FEC=180°-30°-75°=75°, ∴∠EFC=∠CEF , ∴CE =CF.
2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .
求证:AE =AF .(初二)
过E ,D 分别做AC
∵AC 是正方形ABCD ∴DH = AC/2 ∵ED//AC ∴
EG=DH ∵AC = AE ∴DH = AE/2
∴在Rt △EGC 中,∠ECG = 30° ∴∠CEA = ∠CAE = 75° ∵∠DCA = 45° ∴∠DCF = 15°
∴∠EFA = ∠DFC = 75° ∴∠EFA = ∠FEA ∴AE = AF
3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .
求证:PA =PF .(初二) 证明:【此题见过,E 应为BC 延长线上的点】
在AB 上截取AG=PC ,连接PG ∵ABCD 是正方形
∴AB=BC ,∠B=∠DCB=∠APF=90º【∵PF ⊥AP 】 ∵AC=CP
∴BG=BP 【等量减等量】 ∴∠BGP=∠BPG=45º ∴∠AGP=180º-∠BGP=135º ∵CF 平分∠DCE ∴∠FCE=45º ∴∠PCF=180º-∠FCE=135º ∴∠AGP=∠PCF
∵∠BAP+∠APB=90º ∠FPC+∠APB=90º
∴∠BAP=∠FPC 【加上∠AGP=∠PCF ,AG=PC 】 ∴⊿AGP ≌⊿PCF (ASA ) ∴PA=PF
4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于
B 、D .求证:AB =D
C ,BC =A
D .(初三)
经典难题(四)
1、已知:△ABC 是正三角形,P 是三角形一点,PA =3,PB =4,PC =5.
求:∠APB 的度数.(初二)
2、设P 是平行四边形ABCD 部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)
过点P 作DA 的平行线,过点A 作DP 的平行线,两者相交于点E ;连接BE
所以,∠PBA=∠AEP
所以,A 、E 、B 、P 四点共圆 所以,∠PAB=∠PEB
因为四边形AEPD 为平行四边形,所以:PE//AD ,且PE=AD 而,四边形ABCD 为平行四边形,所以:AD//BC ,且AD=BC 所以,PE//BC ,且PE=BC
即,四边形EBCP 也是平行四边形 所以,∠PEB=∠PCB 所以,∠PAB=∠PCB
3、Ptolemy (托勒密)定理:设ABCD 为圆接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD . (初三)
4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)
经典难题(五)
1、设P 是边长为1的正△ABC 任一点,l =PA +PB +PC ,求证:
≤l <2.
2、已知:P 是边长为1的正方形ABCD 的一点,求PA +PB +PC 的最小值.
3、P 为正方形ABCD 的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.
4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.。