中考数学经典难题
初三数学重点难点几何题及答案

压轴题 经典难题(1)1、已知:如图,P 是正方形ABCD 点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)2、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)D 2 C 2B 2 A 2 D 1C 1 B 1 C B DA A 1A FG CE B O D A P C D BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,D .求证:AB =DC ,BC =AD .(初三)经典难1、已知:△ABC 是正三角形,P求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆接凸四边形,求证:AB ·CD +AD ·BC =AC ·4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) 经典难题(五)1、设P 是边长为1的正△ABC 任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.FP DE CBAA PC BAC BPDEDA ACBPD经典难题(一)1.如下图做GH⊥AB,连接EO。
超难的中考数学试题及答案

超难的中考数学试题及答案一、选择题1. 已知等差数列{an}的公差为5,首项为3,若a1+a2+a3+a4=150,求a5的值。
A. -10B. 10C. 15D. 20答案:A. -10解析:根据已知条件,可以列出等差数列的通项公式an = a1 + (n-1)d,其中d为公差。
a1+a2+a3+a4 = 4a1 + 6d = 150由a1 = 3和d = 5,代入得到:12 + 30 = 15042 = 150解得d=-10。
因此,a5 = a1 + (5-1)d = 3 + 4(-10) = -37.2. 已知函数y = ax^2 + bx + c的图像经过点(1, 4),(2, 9),(3, 16),求a, b, c的值。
A. a=1, b=2, c=2B. a=1, b=2, c=3C. a=2, b=3, c=4D. a=2, b=2, c=1答案:A. a=1, b=2, c=2解析:将给定的三个点分别代入函数,可以得到以下三个方程:a(1)^2 + b(1) + c = 4a(2)^2 + b(2) + c = 9a(3)^2 + b(3) + c = 16化简并解方程可得:a +b +c = 44a + 2b + c = 99a + 3b + c = 16求解该方程组,得到a=1,b=2,c=2。
二、填空题1. 设正整数a、b、c满足a<b<c,且满足c的立方减去b的立方等于a的立方减去b的立方,求a、b、c的最小值。
答案:a=6,b=7,c=8解析:根据题意,可以列出方程c^3 - b^3 = a^3 - b^3。
根据立方差公式(a^3 - b^3 = (a-b)(a^2 + ab + b^2)),可以得到:(a-b)(a^2 + ab + b^2) = (c-b)(c^2 + cb + b^2)由于a<b<c,令a-b=1和c-b=2,代入方程得到:(1)(a^2 + ab + b^2) = (2)(c^2 + cb + b^2)化简并整理得:a^2 - 2b + b^2 = 4c + 2ba^2 + b^2 = 4c + 4b根据a<b<c,我们可以假设最小的三个数分别为6、7和8,代入方程验证:6^2 + 7^2 = 4(8) + 4(7)36 + 49 = 32 + 28因此,a=6,b=7,c=8是满足条件的最小值。
中考数学几何经典难题(标准答案)

中考数学几何经典难题(标准答案)中考数学几何经典难题(标准答案)
题目一
已知直角三角形ABC,∠B=90°,AB=3cm,BC=4cm。
求三角形ABC的斜边AC的长度。
解答一
根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
所以,斜边AC的长度可以通过计算得到:
AC² = AB² + BC²
AC² = 3² + 4²
AC² = 9 + 16
AC² = 25
根据开方运算,可以得到AC的长度为5cm。
题目二
已知等腰梯形ABCD,AB∥CD,AB=10cm,CD=16cm,AD=BC=6cm,求梯形ABCD的面积。
解答二
等腰梯形的面积可以通过以下公式计算:
其中,a和b分别表示上底和下底的长度,h表示梯形的高。
根据已知条件可以得到:
上底a = AB = 10cm
下底b = CD = 16cm
高h = AD = BC = 6cm
将这些值代入公式进行计算:
面积 = ((a + b) * h) / 2
面积 = ((10 + 16) * 6) / 2
面积 = (26 * 6) / 2
面积 = 156 / 2
面积 = 78
所以,梯形ABCD的面积为78平方厘米。
以上就是中考数学几何的两个经典难题的标准答案。
希望对你有帮助!。
中考数学经典难题

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F GC EBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、Ptolemy (托勒密)定理:设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD . (初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,l =PA +PB +PC ,求证:≤l <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.。
九年级上册数学难题及其解答

九年级上册数学难题及其解答一、一元二次方程相关(5题)1. 已知关于x的一元二次方程x^2-(2k + 1)x + k^2+k = 0。
- 求证:方程有两个不相等的实数根。
- 若ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5。
当ABC是等腰三角形时,求k的值。
- 解答:- 对于一元二次方程ax^2+bx + c = 0(a≠0),判别式Δ=b^2-4ac。
在方程x^2-(2k + 1)x + k^2+k = 0中,a = 1,b=-(2k + 1),c=k^2+k。
- Δ=(2k + 1)^2-4(k^2+k)- =4k^2+4k + 1-4k^2-4k- =1>0,所以方程有两个不相等的实数根。
- 由一元二次方程x^2-(2k + 1)x + k^2+k = 0,根据韦达定理x_1+x_2=-(b)/(a),x_1x_2=(c)/(a),可得x_1+x_2=2k + 1,x_1x_2=k^2+k。
- 因为ABC是等腰三角形,BC = 5,设AB=x_1,AC = x_2。
- 当AB=BC = 5或AC = BC = 5时,把x = 5代入方程x^2-(2k + 1)x +k^2+k = 0得:- 25-5(2k + 1)+k^2+k = 0- 25-10k - 5+k^2+k = 0- k^2-9k + 20 = 0- (k - 4)(k - 5)=0- 解得k = 4或k = 5。
- 当k = 4时,原方程为x^2-9x+20 = 0,解得x_1=5,x_2=4,三角形三边为5,5,4,满足三角形三边关系。
- 当k = 5时,原方程为x^2-11x + 30 = 0,解得x_1=5,x_2=6,三角形三边为5,5,6,满足三角形三边关系。
2. 若关于x的一元二次方程mx^2-(3m - 1)x+2m - 1 = 0,其根的判别式的值为1,求m的值及该方程的根。
- 解答:- 对于一元二次方程ax^2+bx + c = 0(a≠0),判别式Δ=b^2-4ac。
九年级数学难题压轴题

九年级数学难题压轴题题目:如图,在平面直角坐标系中,抛物线公式与公式轴的一个交点为公式,与公式轴的交点为公式,对称轴是公式,对称轴与公式轴交于点公式。
(1)求抛物线的函数表达式;(2)经过公式的直线公式平移后与抛物线交于点公式,与公式轴交于点公式,当以公式为顶点的四边形是平行四边形时,求出点公式的坐标。
解析:(1)1. 对于抛物线公式(本题公式),已知抛物线对称轴公式公式,对称轴是公式,所以公式,即公式。
2. 因为抛物线公式过点公式,把公式代入抛物线方程可得:公式。
3. 将公式代入上式得:公式,公式,解得公式。
4. 再把公式代入公式,得公式。
5. 所以抛物线的函数表达式为公式。
(2)1. 首先求公式点坐标,当公式时,公式,所以公式。
2. 由对称轴公式可得公式。
3. 设直线公式的解析式为公式,把公式,公式代入可得公式,解得公式,所以直线公式的解析式为公式。
4. 因为直线公式平移后与抛物线交于点公式,与公式轴交于点公式,设平移后的直线公式的解析式为公式。
5. 设公式,联立直线公式与抛物线方程公式,消去公式得:公式,整理得公式。
6. 即公式,根据韦达定理公式(设方程的另一个根为公式)。
7. 当以公式为顶点的四边形是平行四边形时,分两种情况:当公式为平行四边形的边时:因为公式平行公式,公式。
设公式,则公式。
由直线公式,当公式时,公式,即公式。
根据两点间距离公式公式。
又因为公式,联立方程求解。
由公式,公式,将其代入距离公式求解公式的值,进而得到公式的坐标。
当公式为平行四边形的对角线时:公式,设公式,公式。
根据中点坐标公式,公式中点坐标为公式,公式中点坐标公式,则公式,公式,即公式。
把公式代入抛物线公式,解得公式或公式。
当公式时,公式与公式重合,舍去。
当公式时,公式。
中考数学经典难题集锦

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)A P C DB A F G CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、Ptolemy (托勒密)定理:设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD . (初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:1≤L <中考数学经典难题集锦2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a4、如图,△ABC 中,∠ABC=∠ACB =800,D 、E 分别是AB 、AC 上的点,∠EBA =200,求∠BED 的度数.。
九年级数学难题精选(有答案)

一、如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF ∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3又设直线为y=kx+n过点A(﹣1,0)及C(2,3)得,解得故直线AC为y=x+1;(2)作N点关于直线x=3的对称点N',则N'(6,3),由(1)得D(1,4),故直线DN'的函数关系式为y=﹣x+,当M(3,m)在直线DN'上时,MN+MD的值最小,则m=﹣×=;(3)由(1)、(2)得D(1,4),B(1,2)∵点E在直线AC上,设E(x,x+1),①当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3,解得,x=0或x=1(舍去)∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1)由F在抛物线上∴x﹣1=﹣x2+2x+3解得x=或x=∴E(,)或(,)综上,满足条件的点E为E(0,1)、(,)或(,);(4)方法一:过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,如图1设Q(x,x+1),则P(x,-x2+2x+3)∴PQ=(-x2+2x+3)-(x﹣1)=-x2+x+2又∵S△APC=S△APQ+S△CPQ=PQ·AG=(-x2+x+2)×3=-(x﹣)2+∴面积的最大值为.二、已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB为直径的圆M交OC于D、E,连结AD、BD、BE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、已知:如图,O 是半圆的圆心,C、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.
求证:CD=GF.(初二)
2、已知:如图,P 是正方形ABCD 内点,∠PAD=∠PDA=150.
如图,已知四边形ABCD、A1B1C1D1都是正方形,
CC1、DD1的中点.
求证:四边形A2B2C2D2 是正方形.(初二)
4、已知:如图,在四边形ABCD 中,AD=BC,M、N 分别是AB、CD的中点,AD、BC
的延长线交MN 于E、F.求证:∠DEN=∠F.
求证:△PBC 是正三角形.(初二)
3、
B C
A2、
M
1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于 M .
1)求证:AH =2OM ;
2)若∠BAC =600,求证:AH =AO .(初二)
2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及 D 、E ,直线 EB 及 CD 分别交 MN 于 P 、Q . 求证:AP
=AQ .(初二) 3、如果上题把直线 MN 由圆外平移至圆内,则由此可得以下命题:
设 MN 是圆 O 的弦,过 MN 的中点 A 任作两弦 BC 、 DE ,设 CD 、 EB 分别交 MN
于 P 、Q .
求证:AP =AQ .(初二)
如图,分别以△ABC 的 AC 和 BC 为一边,在△ABC 的外侧作正方形 ACDE 和正方形 CBFG ,点P 是 EF 的中点.
4、 G
N
求证:点P 到边AB的距离等于AB的一半.
F
1、如图,四边形ABCD 为正方形,DE∥AC,AE=AC,AE与CD相交于F.
求证:CE=CF.(初二)
3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.
求证:PA=PF.(初二)
4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于
B、D.求证:AB=DC,BC=AD.(初三)E
2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:
AE=AF.(初二)
1、已知:△ABC 是正三角形,P 是三角形内一点,PA=3,PB=4,PC=5.求:∠APB 的度
数.(初二)
2、设P是平行四边形ABCD 内部的一点,且∠PBA=∠PDA.
求证:∠PAB=∠PCB.(初二)
3、Ptolemy(托勒密)定理:设ABCD 为圆内接凸四边形,求证:AB·CD+AD·BC=
AC·BD.
4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且
初三)
AE=CF.求证:∠DPA=∠DPC.(初二)
经典难题(五)
1、设P 是边长为 1 的正△ABC 内任一点,l =PA +PB +PC ,求证:
3、P 为正方形 ABCD 内的一点,并且 PA =a ,PB =2a ,PC =3a ,求正方形的边长.
4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是 AB 、AC 上的点,∠DCA =300, ∠EBA =200,求∠BED 的度数.
2、 已知:P 是边长为 1 的正方形 ABCD 内的一点,
≤l <2.
B C。