开关电源经典设计步骤

合集下载

【最牛笔记】开关电源设计全过程!

【最牛笔记】开关电源设计全过程!

【最⽜笔记】开关电源设计全过程!反激变换器设计笔记1、概述开关电源的设计是⼀份⾮常耗时费⼒的苦差事,需要不断地修正多个设计变量,直到性能达到设计⽬标为⽌。

本⽂step-by-step 介绍反激变换器的设计步骤,并以⼀个6.5W 隔离双路输出的反激变换器设计为例,主控芯⽚采⽤NCP1015。

基本的反激变换器原理图如图 1 所⽰,在需要对输⼊输出进⾏电⽓隔离的低功率(1W~60W)开关电源应⽤场合,反激变换器(Flyback Converter)是最常⽤的⼀种拓扑结构(Topology)。

简单、可靠、低成本、易于实现是反激变换器突出的优点。

2、设计步骤接下来,参考图 2 所⽰的设计步骤,⼀步⼀步设计反激变换器1.Step1:初始化系统参数------输⼊电压范围:Vinmin_AC 及Vinmax_AC------电⽹频率:fline(国内为50Hz)------输出功率:(等于各路输出功率之和)------初步估计变换器效率:η(低压输出时,η取0.7~0.75,⾼压输出时,η取0.8~0.85)根据预估效率,估算输⼊功率:对多路输出,定义KL(n)为第n 路输出功率与输出总功率的⽐值:单路输出时,KL(n)=1.2. Step2:确定输⼊电容CbulkCbulk 的取值与输⼊功率有关,通常,对于宽输⼊电压(85~265VAC),取2~3µF/W;对窄范围输⼊电压(176~265VAC),取1µF/W 即可,电容充电占空⽐Dch ⼀般取0.2 即可。

⼀般在整流后的最⼩电压Vinmin_DC 处设计反激变换器,可由Cbulk 计算Vinmin_DC:3. Step3:确定最⼤占空⽐Dmax反激变换器有两种运⾏模式:电感电流连续模式(CCM)和电感电流断续模式(DCM)。

两种模式各有优缺点,相对⽽⾔,DCM 模式具有更好的开关特性,次级整流⼆极管零电流关断,因此不存在CCM 模式的⼆极管反向恢复的问题。

开关电源的设计步骤

开关电源的设计步骤

【开篇】针对开关电源很多人觉得难,主要是理论与实践相结合;万事开头难,我在这里只能算抛砖引玉,慢慢讲解如何设计,有任何技术问题可以随时打断,我将尽力来进行解答。

设计一款开关电源并不难,难就难在做精;我也不是一个很精熟的工程师,只能算一个领路人。

希望大家喜欢大家一起努力!!【第一步】开关电源设计的第一步就是看规格,具体的很多人都有接触过;也可以提出来供大家参考,我帮助分析。

我只带大家设计一款宽范围输入的,12V2A 的常规隔离开关电源1. 首先确定功率,根据具体要求来选择相应的拓扑结构;这样的一个开关电源多项选择择反激式(flyback) 基本上可以满足要求备注一个,在这里我会更多的选择是经验公式来计算,有需要分析的,可以拿出来再讨论【第二步】2.当我们确定用flyback 拓扑进行设计以后,我们需要选择相应的PWM IC 和MOS 来进行初步的电路原理图设计(sch)无论是选择采用分立式的还是集成的都可以自己考虑。

对里面的计算我还会进行分解分立式:PWM IC 与MOS 是分开的,这种优点是功率可以自由搭配,缺点是设计和调试的周期会变长〔仅从设计角度来说〕集成式:就是将PWM IC 与MOS 集成在一个封装里,省去设计者很多的计算和调试分步,适合于刚入门或快速开发的环境集成式,多是指PWM controller 和power switch 集成在一起的芯片不限定于是PSR 还是SSR【第三步】3. 确定所选择的芯片以后,开始做原理图(sch),在这里我选用ST VIPer53DIP(集成了MOS) 进行设计,原因为何(因为我们是销售这一颗芯片的)?设计之前最好都先看一下相应的datasheet,自己确认一下简单的参数无论是选用PI 的集成,或384x 或OB LD 等分立的都需要参考一下datasheet一般datasheet 里都会附有简单的电路原理图,这些原理图是我们的设计依据【第四步】4. 当我们将原理图完成以后,需要确定相应的参数才能进入下一步PCB Layout当然不同的公司不同的流程,我们需要遵守相应的流程,养成一个良好的设计习惯,这一步可能会有初步评估,原理图确认,等等,签核完毕后就可以进行计算一般有芯片厂家提供相关资料【第五步】5. 确定开关频率,选择磁芯确定变压器芯片的频率可以通过外部的RC 来设定,工作频率就等于开关频率,这个外设的功能有利于我们更好的设计开关电源,也可以采取外同步功能。

开关电源设计开发流程

开关电源设计开发流程

开关电源设计开发流程1. 需求分析
- 确定电源输入电压范围和输出电压规格
- 确定电源输出功率和效率要求
- 确定电源尺寸和工作环境要求
2. 拓扑结构选择
- 分析常见拓扑结构的优缺点
- 根据需求选择合适的拓扑结构
3. 关键器件选择
- 选择功率开关管
- 选择变压器
- 选择输出滤波电容和其他辅助器件
4. 电路设计
- 进行电路原理设计和仿真验证
- 进行PCB布局设计
5. 电源原型制作与调试
- 制作样机电路板
- 对电路进行调试和测试
- 进行功率和效率测试
6. 电磁兼容性(EMC)设计
- 分析电路的EMC问题
- 采取相应的EMC设计措施
7. 热设计
- 进行热分析和模拟
- 设计散热结构
8. 机械结构设计
- 确定外壳尺寸和材料
- 设计机械结构和组装工艺
9. 安全认证和标准符合性
- 进行安全认证测试
- 确保满足相关标准和规范
10. 试产和量产
- 制作小批量试产样品
- 进行可靠性测试和改进
- 量产和交付
这个流程概括了开关电源设计开发的主要步骤,具体细节需要根据实际产品需求进行调整和完善。

良好的设计流程有助于提高开发效率,确保产品质量和可靠性。

开关电源PCB设计流程及布线技巧

开关电源PCB设计流程及布线技巧

开关电源PCB设计流程及布线技巧在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析:一、从原理图到PCB的设计流程建立元件参数-》输入原理网表-》设计参数设置-》手工布局-》手工布线-》验证设计-》复查-》cam输出。

二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。

最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。

焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。

当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。

如图:三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。

例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。

每一个开关电源都有四个电流回路:(1)电源开关交流回路(2)输出整流交流回路(3)输入信号源电流回路(4)输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。

所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。

电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。

开关电源的制作流程

开关电源的制作流程

开关电源的制作流程开关电源(Switch Mode Power Supply,SMPS)具有高效率、低功率、体积小、重量轻等显著优点,代表了稳压电源的发展方向,现已成为稳压电源的主流产品。

开关电源的设计与制作要求设计者具有丰富的实践经验,既要完成设计制作,又要懂得调试、测试与分析等。

本文章介绍开关电源组成及制作、调试所需的基本步骤和方法。

第一节开关电源的电路组成开关电源一般是指输入与输出隔离的电源变换器,包括AC/DC电源变换器和DC/DC电源变换器,也称为AC/DC开关电源和DC/DC开关电源。

非隔离式DC/DC变换器也属于开关电源,通常称之为开关稳压器。

1、AC/DC开关电源的组成AC/DC开关电源的典型结构如图1-1-1所示。

电源由输入电磁干扰(EMI)滤波器、输入整流/滤波电路、功率变换电路、PWM控制器电路、输出整流/滤波电路和输出电压反馈电路组成。

图1-1-1 AC/DC开关电源的典型结构其中输入整流/滤波电路、功率变换电路、输出整流/滤波电路和PWM控制器电路是主要电路,其他为辅助电路。

有些开关电源中还有防雷击电路、输入过压/欠压保护电路、输出过压保护电路、输出过流保护电路、输出短路保护电路等其他辅助电路。

2. DC/DC开关电源的组成DC/DC开关电源的组成相对AC/DC开关电源要简单一点,其典型结构如图1-1-2所示。

电源由输入滤波电路、功率变换电路、PWM控制器电路、输出整流/滤波电路和输出电压反馈电路组成。

当然,有些DC/DC开关电源也会包含其他辅助电路。

图1-1-2 DC/DC开关电源的典型结构第二节开关电源的制作流程开关电源的设计与制作要从主电路开始,其中功率变换电路是开关电源的核心。

功率变换电路的结构也称开关电源拓扑结构,该结构有多种类型。

拓扑结构也决定了与之配套的PWM控制器和输出整流/滤波电路。

下面介绍开关电源设计与制作一般流程。

1.解定电路结构(DC/DC变换器的结构)无论是AC/DC开关电源还是DC/DC开关电源,其核心都是DC/DC变换器。

开关电源从原理图到PCB设计的流程解析

开关电源从原理图到PCB设计的流程解析

开关电源从原理图到PCB设计的流程解析描述一、从原理图到PCB的设计流程建立元件参数-输入原理网表-设计参数设置-手工布局-手工布线-验证设计-复查-CAM输出。

二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。

最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。

焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。

当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。

三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。

例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。

每一个开关电源都有四个电流回路:(1)。

电源开关交流回路(2)。

输出整流交流回路(3)。

输入信号源电流回路(4)。

输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。

所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。

电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。

这两个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路,每个回路的三种主要的元件滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,调整元件位置使它们之间的电流路径尽可能短。

如何一步一步设计开关电源?开关电源设计调试步骤全过程

如何一步一步设计开关电源?开关电源设计调试步骤全过程

如何一步一步设计开关电源?开关电源设计调试步骤全过程针对开关电源很多人觉得很难,其实不然。

设计一款开关电源并不难,难就难在做精,等你真正入门了,积累一定的经验,再采用分立的结构进行设计就简单多了。

万事开头难,笔者在这就抛砖引玉,慢慢讲解如何一步一步设计开关电源。

开关电源设计的第一步就是看规格,具体的很多人都有接触过,也可以提出来供大家参考,我帮忙分析。

在这里只带大家设计一款宽范围输入的,12V2A的常规隔离开关电源。

1、首先确定功率根据具体要求来选择相应的拓扑结构;这样的一个开关电源多选择反激式(flyback)基本上可以满足要求。

在这里我会更多的选择是经验公式来计算,有需要分析的,可以拿出来再讨论。

2、选择相应的PWMIC和MOS来进行初步的电路原理图设计当我们确定用flyback拓扑进行设计以后,我们需要选择相应的PWMIC和MOS来进行初步的电路原理图设计(sch)。

无论是选择采用分立式的还是集成的都可以自己考虑。

对里面的计算我还会进行分解。

分立式:PWMIC与MOS是分开的,这种优点是功率可以自由搭配,缺点是设计和调试的周期会变长(仅从设计角度来说);集成式:就是将PWMIC与MOS集成在一个封装里,省去设计者很多的计算和调试分步,适合于刚入门或快速开发的环境。

3、做原理图确定所选择的芯片以后,开始做原理图(sch),在这里我选用STVIPer53DIP(集成了MOS)进行设计。

设计前最好都先看一下相应的datasheet,确认一下简单的参数。

无论是选用PI的集成,或384x或OBLD等分立的都需要参考一下datasheet。

一般datasheet里都会附有简单的电路原理图,这些原理图是我们的设计依据。

4、确定相应的参数当我们将原理图完成以后,需要确定相应的参数才能进入下一步PCBLayout。

当然不同的公司不同的流程,我们需要遵守相应的流程,养成一个良好的设计习惯,这一步可能会有初步评估,原理图确认,等等,签核完毕后就可以进行计算了。

开关电源设计步骤

开关电源设计步骤

开关电源设计步骤开关电源设计步骤步骤1 确定开关电源的基本参数① 交流输入电压最小值umin② 交流输入电压最大值umax③ 电网频率Fl 开关频率f④ 输出电压VO(V):已知⑤ 输出功率PO(W):已知⑥ 电源效率η:一般取80%⑦ 损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级.一般取Z=0.5步骤2 根据输出要求,选择反馈电路的类型以及反馈电压VFB步骤3 根据u,PO值确定输入滤波电容CIN、直流输入电压最小值VImin① 令整流桥的响应时间tc=3ms② 根据u,查处CIN值③ 得到Vimin确定CIN,VImin值u(V) PO(W) 比例系数(μF/W) CIN(μF) VImin(V)固定输入:100/115 已知 2~3 (2~3)×PO ≥90通用输入:85~265 已知 2~3 (2~3)×PO ≥90固定输入:230±35 已知 1 PO ≥240步骤4 根据u,确定VOR、VB① 根据u由表查出VOR、VB值② 由VB值来选择TVSu(V) 初级感应电压VOR(V) 钳位二极管反向击穿电压VB(V)固定输入:100/115 60 90通用输入:85~265 135 200固定输入:230±35 135 200步骤5 根据Vimin和VOR来确定最大占空比Dmax① 设定MOSFET的导通电压VDS(ON)② 应在u=umin时确定Dmax值,Dmax随u升高而减小步骤6 确定初级纹波电流IR与初级峰值电流IP的比值KRP,KRP=IR/IPu(V) KRP最小值(连续模式) 最大值(不连续模式)固定输入:100/115 0.4 1通用输入:85~265 0.4 1固定输入:230±35 0.6 1步骤7 确定初级波形的参数① 输入电流的平均值IAVG② 初级峰值电流IP③ 初级脉动电流IR④ 初级有效值电流IRMS步骤8 根据电子数据表和所需IP值 选择TOPSwitch芯片① 考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值ILIMIT(min)应满足:0.9 ILIMIT(min)≥IP步骤9和10 计算芯片结温Tj① 按下式结算:Tj=[I2RMS×RDS(ON)+1/2×CXT×(VImax+VOR) 2 f ]×Rθ+25℃式中CXT是漏极电路结点的等效电容,即高频变压器初级绕组分布电容② 如果Tj>100℃,应选功率较大的芯片步骤11 验算IP IP=0.9ILIMIT(min)① 输入新的KRP且从最小值开始迭代,直到KRP=1② 检查IP值是否符合要求③ 迭代KRP=1或IP=0.9ILIMIT(min)步骤12 计算高频变压器初级电感量LP,LP单位为μH步骤13 选择变压器所使用的磁芯和骨架,查出以下参数:① 磁芯有效横截面积Sj(cm2),即有效磁通面积.② 磁芯的有效磁路长度l(cm)③ 磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2)④ 骨架宽带b(mm)步骤14 为初级层数d和次级绕组匝数Ns赋值① 开始时取d=2(在整个迭代中使1≤d≤2)② 取Ns=1(100V/115V交流输入),或Ns=0.6(220V或宽范围交流输入)③ Ns=0.6×(VO+VF1)④ 在使用公式计算时可能需要迭代步骤15 计算初级绕组匝数Np和反馈绕组匝数NF① 设定输出整流管正向压降VF1② 设定反馈电路整流管正向压降VF2③ 计算NP④ 计算NF步骤16~步骤22 设定最大磁通密度BM、初级绕组电流密度J、磁芯的气隙宽度δ,进行迭代.① 设置安全边距M,在230V交流输入或宽范围输入时M=3mm,在110V/115V交流输入时M=1.5mm.使用三重绝缘线时M=0② 最大磁通密度BM=0.2~0.3T若BM>0.3T,需增加磁芯的横截面积或增加初级匝数NP,使BM在0.2~0.3T范围之内.如BM<0.2T,就应选择尺寸较小的磁芯或减小NP值.③ 磁芯气隙宽度δ≥0.051mmδ=40πSJ(NP2/1000LP-1/1000AL)要求δ≥0.051mm,若小于此值,需增大磁芯尺寸或增加NP值.④ 初级绕组的电流密度J=(4~10)A/mm2若J>10A/mm2,应选较粗的导线并配以较大尺寸的磁芯和骨架,使J<10A/mm2.若J<4A/mm2,宜选较细的导线和较小的磁芯骨架,使J>4A/mm2;也可适当增加NP的匝数.⑤ 确定初级绕组最小直径(裸线)DPm(mm)⑥ 确定初级绕组最大外径(带绝缘层)DPM(mm)⑦ 根据初级层数d、骨架宽带b和安全边距M计算有效骨架宽带be(mm)be=d(b-2M)然后计算初级导线外径(带绝缘层)DPM:DPM=be/NP步骤23 确定次级参数ISP、ISRMS、IRI、DSM、DSm① 次级峰值电流ISP(A) ISP=IP×(NP/NS)② 次级有效值电流ISRMS(A)③ 输出滤波电容上的纹波电流IRI(A)⑤ 次级导线最小直径(裸线)DSm(mm)⑥ 次级导线最大外径(带绝缘层)DSM(mm)步骤24 确定V(BR)S、V(BR)FB① 次级整流管最大反向峰值电压V(BR)SV(BR)S=VO+VImax×NS/NP② 反馈级整流管最大反向峰值电压V(BR)FBV(BR)FB=VFB+ VImax×NF/NP步骤25 选择钳位二极管和阻塞二极管步骤26 选择输出整流管步骤27 利用步骤23得到的IRI,选择输出滤波电容COUT① 滤波电容COUT在105℃、100KHZ时的纹波电流应≥IRI② 要选择等效串连电阻r0很低的电解电容③ 为减少大电流输出时的纹波电流IRI,可将几只滤波电容并联使用,以降低电容的r0值和等效电感L0④ COUT的容量与最大输出电流IOM有关步骤28~29 当输出端的纹波电压超过规定值时,应再增加一级LC滤波器① 滤波电感L=2.2~4.7μH.当IOM<1A时可采用非晶合金磁性材料制成的磁珠;大电流时应选用磁环绕制成的扼流圈.② 为减小L上的压降,宜选较大的滤波电感或增大线径.通常L=3.3μH③ 滤波电容C取120μF /35V,要求r0很小步骤30 选择反馈电路中的整流管步骤31 选择反馈滤波电容反馈滤波电容应取0.1μF /50V陶瓷电容器步骤32 选择控制端电容及串连电阻控制端电容一般取47μF /10V,采用普通电解电容即可.与之相串连的电阻可选6.2Ω、1/4W,在不连续模式下可省掉此电阻.步骤33选定反馈电路步骤34选择输入整流桥① 整流桥的反向击穿电压VBR≥1.25√2 umax③ 设输入有效值电流为IRMS,整流桥额定有效值电流为IBR,使IBR≥2IRMS.计算IRMS公式如下: cosθ为开关电源功率因数,一般为0.5~0.7,可取cosθ=0.5步骤35 设计完毕在所有的相关参数中,只有3个参数需要在设计过程中进行检查并核对是否在允许的范围之内.它们是最大磁通密度BM(要求BM=0.2T~0.3T)、磁芯的气隙宽度δ(要求δ≥0.051mm)、初级电流密度J(规定J=4~10A/。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源设计步骤
步骤1 确定开关电源的基本参数
① 交流输入电压最小值u min
② 交流输入电压最大值u max
③ 电网频率F l 开关频率f
④ 输出电压V O (V ):已知
⑤ 输出功率P O (W ):已知
⑥ 电源效率η:一般取80%
⑦ 损耗分配系数Z :Z 表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,
Z=1表示发生在次级。

一般取Z=0.5
步骤2 根据输出要求,选择反馈电路的类型以及反馈电压V FB
步骤3 根据u ,P O 值确定输入滤波电容C IN 、直流输入电压最小值V Imin
① 令整流桥的响应时间tc=3ms
② 根据u ,查处C IN 值
③ 得到V imin
步骤4 根据u ,确定V OR 、V B
① 根据u 由表查出V OR 、V B 值
② 由V B 值来选择TVS
步骤5 根据Vimin 和V OR 来确定最大占空比Dmax
V OR Dmax= ×100% V OR +V Imin -V DS(ON) ① 设定MOSFET 的导通电压V DS(ON)
② 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小
步骤6 确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P
K RP u(V) 最小值(连续模式) 最大值(不连续模式)
固定输入:100/115
0.4 1 通用输入:85~265
0.4 1 固定输入:230±35 0.6
1
确定C IN ,V Imin 值 u(V) P O (W) 比例系数(μF/W)C IN (μF) V Imin (V) 固定输入:100/115 已知 2~3 (2~3)×P O ≥90 通用输入:85~265 已知 2~3 (2~3)×P O ≥90 固定输入:230±35 已知 1 P O ≥240 u(V) 初级感应电压V OR (V)钳位二极管 反向击穿电压V B (V)
固定输入:100/115 60 90
通用输入:85~265 135 200 固定输入:230±35 135 200
步骤7确定初级波形的参数
①输入电流的平均值I A VG
P O
I A VG=
ηV Imin
②初级峰值电流I P
I A VG
I P=
(1-0.5K RP)×Dmax
③初级脉动电流I R
④初级有效值电流I RMS
I RMS=I P√D max×(K RP2/3-K RP+1)
步骤8根据电子数据表和所需I P值选择TOPSwitch芯片
①考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值
I LIMIT(min)应满足:0.9 I LIMIT(min)≥I P
步骤9和10计算芯片结温Tj
①按下式结算:
Tj=[I2RMS×R DS(ON)+1/2×C XT×(V Imax+V OR) 2 f ]×Rθ+25℃
式中C XT是漏极电路结点的等效电容,即高频变压器初级绕组分布电容
②如果Tj>100℃,应选功率较大的芯片
步骤11验算I P IP=0.9I LIMIT(min)
① 输入新的K RP且从最小值开始迭代,直到K RP=1
② 检查I P值是否符合要求
③ 迭代K RP=1或I P=0.9I LIMIT(min)
步骤12计算高频变压器初级电感量L P,L P单位为μH
106P O Z(1-η)+ η
L P= ×
I2P×K RP(1-K RP/2)f η
步骤13选择变压器所使用的磁芯和骨架,查出以下参数:
① 磁芯有效横截面积Sj(cm2),即有效磁通面积。

② 磁芯的有效磁路长度l(cm)
③ 磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2)
④ 骨架宽带b(mm)
步骤14为初级层数d和次级绕组匝数Ns赋值
① 开始时取d=2(在整个迭代中使1≤d≤2)
② 取Ns=1(100V/115V交流输入),或Ns=0.6(220V或宽范围交流输入)
③ Ns=0.6×(V O+V F1)
④ 在使用公式计算时可能需要迭代
步骤15计算初级绕组匝数Np和反馈绕组匝数N F
① 设定输出整流管正向压降V F1
② 设定反馈电路整流管正向压降V F2
③ 计算N P
V OR
N P=N S×
V O+V F1
④ 计算N F
V FB+V F2
N F=N S×
V O+V F1
步骤16~步骤22设定最大磁通密度B M、初级绕组电流密度J、磁芯的气隙宽度δ,进行迭代。

① 设置安全边距M,在230V交流输入或宽范围输入时M=3mm,在110V/115V交流输
入时M=1.5mm。

使用三重绝缘线时M=0
② 最大磁通密度B M=0.2~0.3T
100I P L P
B M=
N P S J
若B M>0.3T,需增加磁芯的横截面积或增加初级匝数N P,使B M在0.2~0.3T范围之内。

如B M<0.2T,就应选择尺寸较小的磁芯或减小N P值。

③ 磁芯气隙宽度δ≥0.051mm
δ=40πS J(N P2/1000L P-1/1000A L)
要求δ≥0.051mm,若小于此值,需增大磁芯尺寸或增加N P值。

④ 初级绕组的电流密度J=(4~10)A/mm2
1980
J=
1.27πD2PM×(1000 /25.4)2
4I RMS
若J>10A/mm2,应选较粗的导线并配以较大尺寸的磁芯和骨架,使J<10A/mm2。

若J<4A/mm2,宜选较细的导线和较小的磁芯骨架,使J>4A/mm2;也可适当增加NP 的匝数。

⑤ 确定初级绕组最小直径(裸线)D Pm(mm)
⑥ 确定初级绕组最大外径(带绝缘层)D PM(mm)
⑦根据初级层数d、骨架宽带b和安全边距M计算有效骨架宽带be(mm)
be=d(b-2M)
然后计算初级导线外径(带绝缘层)D PM:D PM=be/NP
步骤23确定次级参数I SP、I SRMS、I RI、D SM、D Sm
① 次级峰值电流I SP(A)
I SP=I P×(N P/N S)
②次级有效值电流I SRMS(A)
I SRMS=I SP×√(1-D max)×(K2RP/3-K RP+1)
③输出滤波电容上的纹波电流I RI(A)
I RI=√I2SRMS-I2O波
⑤ 次级导线最小直径(裸线)D Sm(mm)
D Sm=1.13√I SRMS/J
⑥ 次级导线最大外径(带绝缘层)D SM(mm)
b-2M
D SM=
N S
步骤24确定V(BR)S、V(BR)FB
① 次级整流管最大反向峰值电压V(BR)S
V(BR)S=V O+V Imax×N S/N P
② 反馈级整流管最大反向峰值电压V(BR)FB
V(BR)FB=VFB+ V Imax×N F/N P
步骤25选择钳位二极管和阻塞二极管
步骤26选择输出整流管
步骤27利用步骤23得到的I RI,选择输出滤波电容C OUT
① 滤波电容C OUT在105℃、100KHZ时的纹波电流应≥I RI
② 要选择等效串连电阻r0很低的电解电容
③ 为减少大电流输出时的纹波电流I RI,可将几只滤波电容并联使用,以降低电容的r0
值和等效电感L0
④ C OUT的容量与最大输出电流I OM有关
步骤28~29当输出端的纹波电压超过规定值时,应再增加一级LC滤波器
① 滤波电感L=2.2~4.7μH。

当I OM<1A时可采用非晶合金磁性材料制成的磁珠;大电
流时应选用磁环绕制成的扼流圈。

② 为减小L上的压降,宜选较大的滤波电感或增大线径。

通常L=3.3μH
③ 滤波电容C取120μF /35V,要求r0很小
步骤30选择反馈电路中的整流管
步骤31选择反馈滤波电容
反馈滤波电容应取0.1μF /50V陶瓷电容器
步骤32选择控制端电容及串连电阻
控制端电容一般取47μF /10V,采用普通电解电容即可。

与之相串连的电阻可选
6.2Ω、1/4W,在不连续模式下可省掉此电阻。

步骤33选定反馈电路
步骤34选择输入整流桥
①整流桥的反向击穿电压V BR≥1.25√2 u max
③ 设输入有效值电流为I RMS,整流桥额定有效值电流为I BR,使I BR≥2I RMS。

计算I RMS
公式如下:
P O
I RMS=
ηu min cosθ
cosθ为开关电源功率因数,一般为0.5~0.7,可取cosθ=0.5
步骤35 设计完毕
在所有的相关参数中,只有3个参数需要在设计过程中进行检查并核对是否在允许的范围之内。

它们是最大磁通密度BM(要求BM=0.2T~0.3T)、磁芯的气隙宽度δ(要求δ≥0.051mm)、初级电流密度J(规定J=4~10A/mm2)。

这3个参数在设计的每一步都要检查,确保其在允许的范围之内。

相关文档
最新文档