《新步步高》北师大版数学(文)大一轮复习文档:高考专题突破一.doc
【新步步高】高考数学北师大版(理)一轮复习第3章导数及其应用高考专题突破一高考中的导.doc

高考专题突破一高考中的导数应用问题■I考点自测快速解答自查自纠1.(2015-课标全国II)设函数(x)是奇函数./(x)(xWR)的导函数,./(一1)=0,当x>0时,xf (x) —沧)<0,贝ij使得.心)>0成立的x的取值范围是()A.(—I —1)U(O,1)B.(-1,O)U(1, +oo)C.(—8, -1)U(-1,O)D.(O,1)U(1, +8)答案Afix' 解析因为,/(x)(xeR)为奇函数,/(—1) = 0,所以/(—1) = 0.当xHO时,令规力=丫, 则g(x)为偶函数,且g(l)=g(—1)=0.则当x>0时,丈(力=庠尊'=护(¥金)vo,故g(x) 在(0, +°°)上为减函数,在(一8, 0)上为增函数.所以在(0, +°°)上,当0<x<l时,g(x)> g(l)=Oo号>oo/(x)>0;在(一8, 0)上,当x<-l时,g(x)<g(—l)=0o¥<0o/(x)>0.?A综上,使得/(x)>0成立的x的取值范围是(一8, -1)U(O,1),选A.2.若函数^x)=kx~\wc在区间(1, +呵上单调递增,则£的取值范围是()A.(—8, —2]B.( —8, — 1]C.[2, +8)D.[l, +8)答案D 解析由于.广(x)=?—£心)=也一lnx在区间(1, +8)上单调递增of(x)=R—£三0在(1, + oo)上恒成立.由于&丄,而0<丄<1,所以k2\.X X即k的取值范围为[1, +-).3.函数,/(x)=3x2 + lnx-Zr的极值点的个数是()A.O B」 C.2 D.无数个答案A解析函数定义域为(0, +-),_ . , 1 6x2—2x+l且./ (x)=6x+~— 2= - ,由于x>0, 中/ = 一20<0,所以g(x)>0恒成立,故f (x)>0恒成立,即/(X)在定义域上单调递增,无极值点.4.(2015-课标全国I )已知函数/(x)=a0+x+l的图像在点(1, ./⑴)处的切线过点(2,7),则a答案1解析 / (X)=3?X2+1, / (l)=l+3a, ./(l)=a+2.(1, XI))处的切线方程为j-(a+2)=(l+3a)(x-l).将(2,7)代入切线方程,得7-(a+2)=l+3a,解得a=l.2 °25. ____________________ 设函数y(x)=e "Ji,g(x)=亍,对任意兀1,疋丘(0, +°°),不等式赵护w誓吟恒成立,则正数k的取值范围是.答案[1, +°)解析因为对任意X],兀2丘(0, +°), 不等式嚳W倍恒成立,所以缶三沢迦k k /(X2)min因为g(x)=亍,所以g‘ w=e2_x(l—x).当0<x<l 时,g‘ (x)>0;当x>l 时,g‘ (x)<0,所以g(x)在(0,1]上单调递增,在[1, +8)上单调递减.所以当x=l时,g(x)取到最大值,即g(x)max=g(l)=e.X/(x)=e2x+丄N2c(x>0).X当且仅当e2x=^即兀三时取等号,故./(x)min=2e.Ji V所以如皿皿=2=丄应有一^-3丄力以您)斷2e 2' “驾+1 一2'又£>0,所以kM\.题型分类对接高考深度剖析题型一利用导数研究函数性质例1 (2015-课标全国II )己知函数./(Q = hu+d(l-r).⑴讨论/(X)的单调性;(2)当有最大值,且最大值大于2a —2时,求a的取值范围. 解(1)/?的定义域为(0, +-), f (x)=g—a?即心X2+2Xx+1(兀+1)2—x+1若aWO,则产(x)>0,所以/(x)在(0, +8)上单调递增.若a>0,则当炸(0, 时,/⑴>0;当用(£ +oo)时,f (x)<0.所以/⑴在(0, 上单调递增,在+?>)上单调递减.(2)由(1)知,当G WO时,./(X)在(0, +8)无最大值;当Q>0时,.几¥)在x=+取得最大值,最大值为./(毎=1I£+Q(1—£)=—lno+a—1.因此层>2a~2等价于\na+a-i<0.令g(a)=lM + a—1,则g(Q)在(0, +°°)上单调递增,g(l)=0.于是,当0GV1 时,g(a)<0;当时,g(a)>0.因此,G的取值范围是(0,1).思维升华利用导数主要研究函数的单调性、极值、最值.已知.兀对的单调性,可转化为不等式f (x)N0或.厂(x)W0在单调区间上恒成立问题;含参函数的最值问题是高考的热点题型,解此类题的关键是极值点与给定区间位置关系的讨论,此时要注意结合导函数图像的性质进行分析.跟踪训练1已知Q GR,函数f[x)=(—x2+ax)c x (xR, c为自然对数的底数).(1)当。
2021届步步高数学大一轮复习讲义(文科)第三章 高考专题突破一 第2课时 导数与方程

第2课时 导数与方程求函数零点个数例1 设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x ,当m ≥1时,讨论f (x )与g (x )图象的交点个数. 解 令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,问题等价于求函数F (x )的零点个数. F ′(x )=-(x -1)(x -m )x,当m =1时,F ′(x )≤0,函数F (x )为减函数, 注意到F (1)=32>0,F (4)=-ln 4<0,所以F (x )有唯一零点.当m >1时,若0<x <1或x >m ,则F ′(x )<0; 若1<x <m ,则F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增, 注意到F (x )的极小值F (1)=m +12>0,F (2m +2)=-m ln(2m +2)<0, 所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象总有一个交点.将本例条件“m ≥1”改为“m ≥0”,讨论f (x )与g (x )图象的交点个数.解 由例题解法知m ≥1时,两函数图象有一个交点; 当m =0时,F (x )=-12x 2+x ,x >0有唯一零点;当0<m <1时,0<x <m 或x >1时,F ′(x )<0;m <x <1时,F ′(x )>0,所以函数F (x )在(0,m )和(1,+∞)上单调递减,在(m,1)上单调递增,易得ln m <0, 所以F (x )的极小值F (m )=m2(m +2-2ln m )>0,而F (2m +2)=-m ln(2m +2)<0, 所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象有一个交点.思维升华 (1)可以通过构造函数,将两函数图象的交点问题转化为函数零点问题.(2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况.跟踪训练1 设函数f (x )=ln x +m x ,m ∈R ,讨论函数g (x )=f ′(x )-x3的零点的个数.解 由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知 ①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.根据函数零点情况求参数范围例2 已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )=2f (x )在区间⎣⎡⎦⎤1e ,e 上有两个不等实根,求实数a 的取值范围. 解 由g (x )=2f (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x ,设h (x )=x +2ln x +3x(x >0),所以h ′(x )=1+2x -3x 2=(x +3)(x -1)x 2.所以x 在⎣⎡⎦⎤1e ,e 上变化时,h ′(x ),h (x )的变化情况如下表:x⎝⎛⎭⎫1e ,11(1,e)又h ⎝⎛⎭⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2. 且h (e)-h ⎝⎛⎭⎫1e =4-2e +2e <0. 所以在⎣⎡⎦⎤1e ,e 上,h (x )min =h (1)=4, h (x )max =h ⎝⎛⎭⎫1e =1e +3e -2,若方程在⎣⎡⎦⎤1e ,e 上有两个不等实根,则4<a ≤e +2+3e , 所以实数a 的取值范围为⎝⎛⎦⎤4,e +2+3e . 思维升华 方程根或函数零点的个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致图象,充分利用导数工具和数形结合思想.跟踪训练2 已知函数g (x )=14x 2-32x +ln x -b 在[1,4]上有两个不同的零点,求实数b 的取值范围.解 g (x )=14x 2-32x +ln x -b (x >0),则g ′(x )=(x -2)(x -1)2x.在[1,4]上,当x 变化时,g ′(x ),g (x )的变化情况如下:g (x )极小值=g (2)=ln 2-b -2, 又g (4)=2ln 2-b -2,g (1)=-54-b .若方程g (x )=0在[1,4]上恰有两个不相等的实数根,则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (4)≥0,解得ln 2-2<b ≤-54.故实数b 的取值范围是⎝⎛⎦⎤ln 2-2,-54.1.已知函数f (x )=a +x ln x (a ∈R ). (1)求f (x )的单调区间; (2)判断f (x )的零点个数.解 (1)函数f (x )的定义域是(0,+∞), f ′(x )=(x )′ln x +x ·1x =x (ln x +2)2x,令f ′(x )>0,解得x >e -2,令f ′(x )<0,解得0<x <e -2, 所以f (x )的单调减区间为(0,e -2),单调增区间为(e -2,+∞). (2)由(1)得f (x )min =f (e -2)=a -2e ,若a >2e ,则f (x )min >0,f (x )无零点;若a =2e ,则f (x )min =0,f (x )有一个零点;若a <2e,则f (x )min <0,f (x )在(0,e -2]上单调递减,在[e -2,+∞)上单调递增, 当a ≤0时,在(0,e -2]上有f (x )=a +x ln x <a ≤0,∴f (x )在区间(0,e -2]上无零点,在[e -2,+∞)上有f (e -2a )=a (1-2e -a )≥0,f (x )在区间[e -2,+∞)上有一个零点;当0<a <2e时,有0<4e a -<e -2,424e ,e a af a a -⎛⎫=- ⎪⎝⎭易证当x >0时,e x >x 2成立,∴4e a f -⎛⎫ ⎪⎝⎭>a -4a ⎝⎛⎭⎫2a 2=0,又f (e -2)<0,f (1)=a >0,∴f (x )在(0,e -2]上有一个零点,在(e -2,+∞)上有一个零点. 综上,当a >2e 时,f (x )无零点,当a ≤0或a =2e 时,f (x )有一个零点,当0<a <2e 时,f (x )有2个零点.2.已知函数f (x )=13x 3-12x 2-2x +c 有三个零点,求实数c 的取值范围.解 f ′(x )=x 2-x -2=(x +1)(x -2), 由f ′(x )>0可得x >2或x <-1, 由f ′(x )<0可得-1<x <2,所以函数f (x )在(-∞,-1),(2,+∞)上是增函数, 在(-1,2)上是减函数,所以函数f (x )的极大值为f (-1)=76+c ,极小值为f (2)=c -103.而函数f (x )恰有三个零点,故必有⎩⎨⎧76+c >0,c -103<0,解得-76<c <103,所以使函数f (x )恰有三个零点的实数c 的取值范围是⎝⎛⎭⎫-76,103. 3.已知函数f (x )=12x 2-a ln x ,a ∈R .(1)讨论函数f (x )的单调性;(2)若a >0,函数f (x )在区间(1,e)上恰有两个零点,求a 的取值范围. 解 (1)f (x )=12x 2-a ln x 的定义域为(0,+∞),f ′(x )=x -a x =x 2-ax.①a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增; ②a >0时,由f ′(x )>0,得x >a , f ′(x )<0,得0<x <a .即f (x )在(0,a )上单调递减, 在(a ,+∞)上单调递增.综上,当a ≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在(0,a )上单调递减, 在(a ,+∞)上单调递增.(2)当a >0时,由(1)知f (x )在(0,a )上单调递减, 在(a ,+∞)上单调递增, ①若a ≤1,即0<a ≤1时,f (x )在(1,e)上单调递增, f (1)=12,f (x )在区间(1,e)上无零点.②若1<a <e ,即1<a <e 2时,f (x )在(1,a )上单调递减,在(a ,e)上单调递增, f (x )min =f (a )=12a (1-ln a ).∵f (x )在区间(1,e)上恰有两个零点,∴⎩⎪⎨⎪⎧f (1)=12>0,f (a )=12a (1-ln a )<0,f (e )=12e 2-a >0,∴e<a <12e 2.③若a ≥e ,即a ≥e 2时,f (x )在(1,e)上单调递减,f (1)=12>0,f (e)=12e 2-a <0,f (x )在区间(1,e)上有一个零点.综上,f (x )在区间(1,e)上恰有两个零点时,a 的取值范围是⎝⎛⎭⎫e ,12e 2.4.已知函数f (x )=(2-a )(x -1)-2ln x (a ∈R ). (1)当a =1时,求f (x )的单调区间;(2)若函数f (x )在⎝⎛⎭⎫0,13上无零点,求a 的取值范围. 解 (1)当a =1时,f (x )=x -1-2ln x ,x >0, 则f ′(x )=1-2x =x -2x,由f ′(x )>0,得x >2,由f ′(x )<0,得0<x <2.故f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)因为当x →0时,f (x )→+∞,所以f (x )<0在区间⎝⎛⎭⎫0,13上不可能恒成立, 故要使函数f (x )在⎝⎛⎭⎫0,13上无零点, 只要对任意的x ∈⎝⎛⎭⎫0,13,f (x )>0恒成立, 即对x ∈⎝⎛⎭⎫0,13,a >2-2ln xx -1恒成立. 令h (x )=2-2ln xx -1,x ∈⎝⎛⎦⎤0,13, 则h ′(x )=2ln x +2x-2(x -1)2,再令m (x )=2ln x +2x-2,x ∈⎝⎛⎦⎤0,13, 则m ′(x )=-2(1-x )x 2<0,故m (x )在⎝⎛⎦⎤0,13上为减函数. 于是m (x )≥m ⎝⎛⎭⎫13=4-2ln 3≥0. 从而h ′(x )≥0,于是h (x )在⎝⎛⎦⎤0,13上为增函数, 所以对x ∈⎝⎛⎭⎫0,13有h (x )<h ⎝⎛⎭⎫13=2-3ln 3, 所以a 的取值范围为[2-3ln 3,+∞).5.(2020·贵州遵义第一次统考)已知f (x )=ln x ,g (x )=-13x 3+ax -34.(1)讨论函数g (x )的单调性;(2)记max{m ,n }表示m ,n 中的最大值,若F (x )=max{f (x ),g (x )}(x >0),且函数y =F (x )恰有三个零点,求实数a 的取值范围. 解 (1)g (x )=-13x 3+ax -34的定义域为R ,g ′(x )=-x 2+a .①当a ≤0时,g ′(x )≤0,所以g (x )的单调递减区间为(-∞,+∞); ②当a >0时,令g ′(x )>0,得x ∈(-a ,a ), 令g ′(x )<0,得x ∈(-∞,-a )∪(a ,+∞),综上得,当a ≤0时,g (x )的单调递减区间为(-∞,+∞);当a >0时,g (x )的单调递减区间为(-∞,-a )和(a ,+∞),单调递增区间为(-a ,a ). (2)F (x )=max{f (x ),g (x )}(x >0), f (x )=ln x 的唯一一个零点是x =1, ∴g ′(x )=-x 2+a (x >0),由(1)可得,①当a ≤0时,g (x )的单调递减区间为(-∞,+∞), 此时y =F (x )至多有两个零点,不符合题意. ②当a >0时,令G (x )=g (x )+34, 则G (x )=-13x 3+ax 的图象关于点(0,0)对称,即g (x )的图象关于⎝⎛⎭⎫0,-34中心对称, 注意到ln x 在(1,+∞)上恒正, F (x )要有3个零点,则g (x )必须在(0,1)上取到2个零点,如图,∴极大值g (a )>0,且g (1)<0,则有⎩⎨⎧g (1)<0,g (a )>0⇒⎩⎨⎧-13+a -34<0,-13(a )3+a ·a -34>0⇒34<a <34+13, 综上,实数a 的取值范围是⎝⎛⎭⎫34,34+13.。
新步步高北师大数学文大一轮复习文档:第七章 不等式 2

1.“三个二次”的关系(x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解法【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ ) (2)不等式x -2x +1≤0的解集是[-1,2].( × )(3)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( √ )(4)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (5)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × )1.不等式x 2-3x -10>0的解集是( ) A .(-2,5) B .(5,+∞)C .(-∞,-2)D .(-∞,-2)∪(5,+∞)答案 D解析 解方程x 2-3x -10=0得x 1=-2,x 2=5,由y =x 2-3x -10的开口向上,所以x 2-3x -10>0的解集为(-∞,-2)∪(5,+∞). 2.已知集合P ={x |x 2-x -2≤0},Q ={x |log 2(x -1)≤1},则(∁R P )∩Q 等于( ) A .[2,3] B .(-∞,-1]∪[3,+∞) C .(2,3] D .(-∞,-1]∪(3,+∞) 答案 C解析 依题意,得P ={x |-1≤x ≤2},Q ={x |1<x ≤3}, 则(∁R P )∩Q =(2,3],故选C.3.已知不等式ax 2-bx -1≥0的解集是⎣⎡⎦⎤-12,-13,则不等式x 2-bx -a <0的解集是( ) A .(2,3) B .(-∞,2)∪(3,+∞) C.⎝⎛⎭⎫13,12 D.⎝⎛⎭⎫-∞,13∪⎝⎛⎭⎫12,+∞ 答案 A解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝⎛⎭⎫-13=b a ,-12×⎝⎛⎭⎫-13=-1a.解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).4.(教材改编)若关于x 的不等式m (x -1)>x 2-x 的解集为{x |1<x <2},则实数m 的值为________. 答案 2解析 因为m (x -1)>x 2-x 的解集为{x |1<x <2}. 所以1,2一定是m (x -1)=x 2-x 的解,∴m =2.5.(教材改编)若关于x 的方程x 2+ax +a 2-1=0有一正根和一负根,则a 的取值范围为________. 答案 (-1,1)解析 由题意可知,Δ>0且x 1x 2=a 2-1<0,故-1<a <1.题型一 一元二次不等式的求解 命题点1 不含参的不等式例1 求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0 得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪(32,+∞),即原不等式的解集为(-∞,-1)∪(32,+∞).命题点2 含参不等式例2 解关于x 的不等式:x 2-(a +1)x +a <0. 解 由x 2-(a +1)x +a =0得(x -a )(x -1)=0, ∴x 1=a ,x 2=1,①当a >1时,x 2-(a +1)x +a <0的解集为{x |1<x <a }, ②当a =1时,x 2-(a +1)x +a <0的解集为∅, ③当a <1时,x 2-(a +1)x +a <0的解集为{x |a <x <1}. 引申探究将原不等式改为ax 2-(a +1)x +1<0,求不等式的解集. 解 若a =0,原不等式等价于-x +1<0,解得x >1. 若a <0,原不等式等价于(x -1a )(x -1)>0,解得x <1a 或x >1.若a >0,原不等式等价于(x -1a )(x -1)<0.①当a =1时,1a =1,(x -1a )(x -1)<0无解;②当a >1时,1a <1,解(x -1a )(x -1)<0得1a <x <1;③当0<a <1时,1a >1,解(x -1a )(x -1)<0得1<x <1a .综上所述:当a <0时,解集为{x |x <1a或x >1};当a =0时,解集为{x |x >1};当0<a <1时,解集为{x |1<x <1a };当a =1时,解集为∅;当a >1时,解集为{x |1a<x <1}.思维升华 含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式; (3)对方程的根进行讨论,比较大小,以便写出解集.求不等式12x 2-ax >a 2(a ∈R )的解集.解 ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a 3.①a >0时,-a 4<a 3,解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0}; ③a <0时,-a 4>a 3,解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.综上所述,当a >0时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.题型二 一元二次不等式恒成立问题 命题点1 在R 上恒成立例3 (1)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0]B .[-3,0)C .[-3,0]D .(-3,0)(2)设a 为常数,任意x ∈R ,ax 2+ax +1>0,则a 的取值范围是( ) A .(0,4) B .[0,4)C .(0,+∞)D .(-∞,4) 答案 (1)D (2)B解析 (1)2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×(-38)<0,解之得-3<k <0. (2)任意x ∈R ,ax 2+ax +1>0,则必有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0或a =0,∴0≤a <4. 命题点2 在给定区间上恒成立例4 设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 解 要使f (x )<-m +5在x ∈[1,3]上恒成立,即 m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0,所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0. 综上所述:m 的取值范围是{m |m <67}.方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以,m 的取值范围是⎩⎨⎧⎭⎬⎫m |m <67.命题点3 给定参数范围的恒成立问题例5 对任意的k ∈[-1,1],函数f (x )=x 2+(k -4)x +4-2k 的值恒大于零,则x 的取值范围是____________. 答案 {x |x <1或x >3}解析 x 2+(k -4)x +4-2k >0恒成立, 即g (k )=(x -2)k +(x 2-4x +4)>0, 在k ∈[-1,1]时恒成立. 只需g (-1)>0且g (1)>0,即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,解之得x <1或x >3.思维升华 (1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.(1)若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( ) A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5](2)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________. 答案 (1)A (2)(-22,0) 解析 (1)x 2-2x +5=(x -1)2+4的最小值为4, 所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立, 只需a 2-3a ≤4,解得-1≤a ≤4.(2)作出二次函数f (x )的草图,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.题型三 一元二次不等式的应用例6 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解 (1)由题意得,y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价,所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=40(10-x )(25+4x ),定义域为x ∈[0,2].(2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.思维升华 求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型.(3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果.某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量. (1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? 解 (1)y =[(1+0.75x )×12-(1+x )×10]×(1+0.6x )×10 000 =-6 000x 2+2 000x +20 000,即y =-6 000x 2+2 000x +20 000(0<x <1). (2)上年利润为(12-10)×10 000=20 000. ∴y -20 000>0,即-6 000x 2+2 000x >0, ∴0<x <13,即x 的范围为(0,13).13.转化与化归思想在不等式中的应用典例 (1)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.(2)已知函数f (x )=x 2+2x +ax,若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.思维点拨 (1)考虑“三个二次”间的关系; (2)将恒成立问题转化为最值问题求解. 解析 (1)由题意知f (x )=x 2+ax +b =⎝⎛⎭⎫x +a 22+b -a 24. ∵f (x )的值域为[0,+∞), ∴b -a 24=0,即b =a 24.∴f (x )=⎝⎛⎭⎫x +a 22. 又∵f (x )<c ,∴⎝⎛⎭⎫x +a22<c , 即-a 2-c <x <-a2+c .∴⎩⎨⎧-a2-c =m , ①-a2+c =m +6. ②②-①,得2c =6,∴c =9.(2)∵x ∈[1,+∞)时,f (x )=x 2+2x +a x >0恒成立,即x 2+2x +a >0恒成立.即当x ≥1时,a >-(x 2+2x )=g (x )恒成立.而g (x )=-(x 2+2x )=-(x +1)2+1在[1,+∞)上单调递减, ∴g (x )max =g (1)=-3,故a >-3. ∴实数a 的取值范围是{a |a >-3}. 答案 (1)9 (2){a |a >-3}温馨提醒 (1)本题的解法充分体现了转化与化归思想:函数的值域和不等式的解集转化为a ,b 满足的条件;不等式恒成立可以分离常数,转化为函数值域问题. (2)注意函数f (x )的值域为[0,+∞)与f (x )≥0的区别.[方法与技巧]1.“三个二次”的关系是解一元二次不等式的理论基础,一般可把a <0时的情形转化为a >0时的情形.2.f (x )>0的解集即为函数y =f (x )的图像在x 轴上方的点的横坐标的集合,充分利用数形结合思想.3.简单的分式不等式可以等价转化,利用一元二次不等式解法进行求解. [失误与防范]1.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 2.当Δ<0时,ax 2+bx +c >0 (a ≠0)的解集为R 还是∅,要注意区别. 3.含参数的不等式要注意选好分类标准,避免盲目讨论.A 组 专项基础训练 (时间:30分钟)1.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6, x ≥0,x +6, x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)答案 A解析 由题意得⎩⎪⎨⎪⎧ x ≥0,x 2-4x +6>3或⎩⎪⎨⎪⎧x <0,x +6>3,解得-3<x <1或x >3.2.已知函数f (x )=⎩⎪⎨⎪⎧x +2, x ≤0,-x +2, x >0,则不等式f (x )≥x 2的解集为( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]答案 A解析 方法一 当x ≤0时,x +2≥x 2, ∴-1≤x ≤0;①当x >0时,-x +2≥x 2,∴0<x ≤1.②由①②得原不等式的解集为{x |-1≤x ≤1}.方法二 作出函数y =f (x )和函数y =x 2的图像,如图,由图知f (x )≥x 2的解集为[-1,1].3.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( )A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4}答案 D解析 由题意知a =0时,满足条件. a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4.4.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集是B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3答案 A解析 由题意,得A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2},则不等式x 2+ax +b <0的解集为{x |-1<x <2}.由根与系数的关系可知,a =-1,b =-2,所以a +b =-3,故选A.5.设a >0,不等式-c <ax +b <c 的解集是{x |-2<x <1},则a ∶b ∶c 等于( )A .1∶2∶3B .2∶1∶3C .3∶1∶2D .3∶2∶1 答案 B解析 ∵-c <ax +b <c ,又a >0,∴-b +c a <x <c -b a .∵不等式的解集为{x |-2<x <1},∴⎩⎪⎨⎪⎧ -b +c a =-2,c -b a =1,∴⎩⎨⎧ b =a 2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a 2=2∶1∶3. 6.若不等式-2≤x 2-2ax +a ≤-1有唯一解,则a 的值为( ) A.-1-52B.1-52C.-1±52D.1±52答案 D解析 若不等式-2≤x 2-2ax +a ≤-1有唯一解,则x 2-2ax +a =-1有两个相等的实根,所以Δ=4a 2-4(a +1)=0,解得a =1±52,所以选D. 7.若0<a <1,则不等式(a -x )(x -1a)>0的解集是________________. 答案 {x |a <x <1a} 解析 原不等式即(x -a )(x -1a)<0, 由0<a <1得a <1a ,∴a <x <1a. 8.已知关于x 的不等式ax -1x +1<0的解集是⎩⎨⎧⎭⎬⎫x |x <-1或x >-12,则实数a =________. 答案 -2 解析 ax -1x +1<0⇔(x +1)(ax -1)<0, 依题意,得a <0,且1a =-12.∴a =-2. 9.设f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=2a -3a +1,则实数a 的取值范围是________. 答案 (-1,23) 解析 ∵f (x +3)=f (x ),∴f (2)=f (-1+3)=f (-1)=-f (1)<-1.∴2a -3a +1<-1⇔3a -2a +1<0⇔(3a -2)(a +1)<0, ∴-1<a <23. 10.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小. 解 (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ).当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a, ∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .B 组 专项能力提升(时间:20分钟)11.已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( )A .(-∞,-32)∪(12,+∞) B .(-32,12) C .(-∞,-12)∪(32,+∞) D .(-12,32) 答案 A解析 f (x )=0的两个解是x 1=-1,x 2=3且a <0,由f (-2x )<0得-2x >3或-2x <-1,∴x <-32或x >12. 12.若关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a 等于( ) A.52 B.72C.154D.152答案 A解析 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52. 13.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( )A .-1<b <0B .b >2C .b <-1或b >2D .不能确定答案 C解析 由f (1-x )=f (1+x )知f (x )图像的对称轴为直线x =1,则有a 2=1,故a =2. 由f (x )的图像可知f (x )在[-1,1]上为增函数.∴x ∈[-1,1]时,f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,令b 2-b -2>0,解得b <-1或b >2.14.设函数f (x )=x 2-1,对任意x ∈[32,+∞),f (x m)-4m 2·f (x )≤f (x -1)+4f (m )恒成立,则实数m 的取值范围是________________.答案 {m |m ≤-32或m ≥32} 解析 依据题意得x 2m 2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在x ∈[32,+∞)上恒成立,即1m 2-4m 2≤-3x 2-2x +1在x ∈[32,+∞)上恒成立. 当x =32时,函数y =-3x 2-2x +1取得最小值-53, 所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0, 解得m ≤-32或m ≥32. 15.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围. 解 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0. 令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去.(2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧ f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0, 解得x <2或x >4.所以x 的取值范围是{x |x <2或x >4}.。
新步步高北师大数学文大一轮复习文档:第五章 平面向量 54

1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题. 2.平面向量与其他数学知识的交汇平面向量作为一种运算工具,经常与函数、不等式、三角函数、数列、解析几何等知识结合.当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式.在此基础上,可以求解有关函数、不等式、三角函数、数列的综合问题. 此类问题的解题思路是转化为代数运算,其转化途径主要有两种:一是利用平面向量平行或垂直的充要条件;二是利用向量数量积的公式和性质. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)若AB →∥AC →,则A ,B ,C 三点共线.( √ ) (2)向量b 在向量a 方向上的射影是向量.( × )(3)若a ·b >0,则a 和b 的夹角为锐角,若a ·b <0,则a 和b 的夹角为钝角.( × ) (4)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )(5)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ )1.已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则这个三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形答案 B解析 ∵AB →=(2,-2),CB →=(6,6), ∴AB →·CB →=12-12=0,∴AB →⊥CB →,∴△ABC 为直角三角形.2.已知在△ABC 中,|BC →|=10,AB →·AC →=-16,D 为边BC 的中点,则|AD →|等于( ) A .6 B .5 C .4 D .3答案 D解析 在△ABC 中,由余弦定理可得,AB 2+AC 2-2AB ·AC cos A =BC 2,又AB →·AC →=|AB →|·|AC →|cos A =-16,所以AB 2+AC 2+32=100,AB 2+AC 2=68.又D 为边BC 的中点,所以AB →+AC →=2AD →,两边平方得4|AD →|2=68-32=36,解得|AD →|=3,故选D.3.设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△AOB 与△AOC 的面积之比为________.解析 设D 为AC 的中点, 如图所示,连接OD , 则OA →+OC →=2OD →. 又OA →+OC →=-2OB →,所以OD →=-OB →,即O 为BD 的中点,从而容易得△AOB 与△AOC 的面积之比为1∶2.4.平面上有三个点A (-2,y ),B ⎝⎛⎭⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程为________. 答案 y 2=8x (x ≠0)解析 由题意得AB →=⎝⎛⎭⎫2,-y 2,BC →=⎝⎛⎭⎫x ,y 2, 又AB →⊥BC →,∴AB →·BC →=0,即⎝⎛⎭⎫2,-y 2·⎝⎛⎭⎫x ,y 2=0,化简得y 2=8x (x ≠0). 5.已知函数f (x )=A sin(πx +φ)的部分图像如图所示,点B ,C 是该图像与x 轴的交点,过点C 的直线与该图像交于D ,E 两点,则(BD →+BE →)·(BE →-CE →)=________.答案 2解析 (BD →+BE →)·(BE →-CE →)=(BD →+BE →)·BC →=2BC →·BC →=2|BC →|2,显然|BC →|的长度为半个周期,周期T =2ππ=2,∴|BC →|=1,所求值为2.题型一 向量在平面几何中的应用例1 已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA +λ(AB +AC ),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心 答案 C解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究在本例中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的______. 答案 内心解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC的内心.思维升华 解决向量与平面几何综合问题,可先利用基向量或坐标系建立向量与平面图形的联系,然后通过向量运算研究几何元素之间的关系.(1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( ) A .矩形 B .梯形 C .正方形 D .菱形答案 (1)12(2)D解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →)=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝⎛⎭⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12. (2)AB →+CD →=0⇒AB →=-CD →=DC →⇒平面四边形ABCD 是平行四边形,(AB →-AD →)·AC →=DB →·AC →=0⇒DB →⊥AC →,所以平行四边形ABCD 是菱形. 题型二 向量在解析几何中的应用例2 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则yx=________. 答案 (1)2x +y -3=0 (2)±3解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx ,由|2k |1+k 2=3,得k =±3,即yx=±3.思维升华 向量在解析几何中的作用:(1)载体作用,向量在解析几何问题中出现,多用于“包装”,解决此类问题关键是利用向量的意义、运算,脱去“向量外衣”;(2)工具作用,利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题.(2015·江西重点中学盟校第一次联考)已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是( ) A .5 B .6 C .10 D .12答案 B解析 圆(x -2)2+y 2=4的圆心C (2,0),半径为2,圆M (x -2-5cos θ)2+(y -5sin θ)2=1,圆心M (2+5cos θ,5sin θ),半径为1,∵CM =5>2+1,故两圆相离.如图所示,设直线CM 和圆M 交于H ,G 两点, 则PE →·PF →最小值是HE →·HF →,HC =CM -1=5-1=4,HE =HC 2-CE 2=16-4=23,sin ∠CHE =CE CH =12,∴cos ∠EHF =cos 2∠CHE =1-2sin 2∠CHE =12,HE →·HF →=|HE →|·|HF →|cos ∠EHF =23×23×12=6,故选B.题型三 向量的综合应用例3 (1)已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是( ) A .1 B.13 C.14D.18(2)函数y =sin(ωx +φ)在一个周期内的图像如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是________.答案 (1)D (2)3解析 (1) 因为OA →=(x,1),OB →=(2,y ),所以OA →·OB →=2x +y ,令z =2x +y ,依题意,不等式组所表示的可行域如图中阴影部分所示,观察图像可知,当目标函数z =2x +y 过点C (1,1)时,z max =2×1+1=3,目标函数z =2x +y 过点F (a ,a )时,z min =2a +a =3a ,所以3=8×3a ,解得a =18,故选D.(2)由图像可知,M ⎝⎛⎭⎫12,1,N ()x N ,-1,所以OM →·ON →=⎝⎛⎭⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝⎛⎭⎫2-12=3. 思维升华 利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________. 答案 3解析 ∵OP →=(x ,y ),OM →=(1,1),ON →=(0,1),OQ →=(2,3), ∴OP →·OM →=x +y ,OP →·ON →=y ,OQ →·OP →=2x +3y ,即在⎩⎨⎧0≤x +y ≤1,0≤y ≤1条件下,求z =2x +3y 的最大值,由线性规划知识得,当x =0,y =1时,z max =3.三审图形抓特点典例 已知A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2一个周期内的图像上的四个点,如图所示,A ⎝⎛⎭⎫-π6,0,B 为y 轴上的点,C 为图像上的最低点,E 为该函数图像的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的射影为π12,则ω, φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6解析 由E 为该函数图像的一个对称中心,作点C 的对称点为M ,作MF ⊥x 轴,垂足为F ,如图.B 与D 关于点E 对称,CD →在x 轴上的射影为π12,知OF =π12.又A ⎝⎛⎭⎫-π6,0,所以AF =T 4=π2ω=π4,所以ω=2.同时函数y =sin(ωx +φ)图像可以看作是由y =sin ωx 的图像向左平移得到,故可知φω=φ2=π6,即φ=π3.答案 A温馨提醒 对于在图形中给出解题信息的题目,要抓住图形的特点,通过图形的对称性、周期性以及图形中点的位置关系提炼条件,尽快建立图形和欲求结论间的联系.[方法与技巧]1.向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题.2.以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法. [失误与防范]1.注意向量夹角和三角形内角的关系,两者并不等价. 2.注意向量共线和两直线平行的关系.3.利用向量解决解析几何中的平行与垂直,可有效解决因斜率不存在使问题漏解的情况.A 组 专项基础训练(时间:40分钟)1.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 C解析 由(BC →+BA →)·AC →=|AC →|2, 得AC →·(BC →+BA →-AC →)=0, 即AC →·(BC →+BA →+CA →)=0, 2AC →·BA →=0, ∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形.2.已知点A (-2,0),B (3,0),动点P (x ,y )满足P A →·PB →=x 2,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 答案 D解析 ∵P A →=(-2-x ,-y ),PB →=(3-x ,-y ), ∴P A →·PB →=(-2-x )(3-x )+y 2=x 2, ∴y 2=x +6.即点P 的轨迹是抛物线.3.在△ABC 所在平面上有一点P ,满足P A →+PB →+PC →=AB →,则△P AB 与△ABC 的面积的比值是( )A.13B.12C.23D.34 答案 A解析 由题意可得PC →=2AP →,所以P 是线段AC 的三等分点(靠近点A ),易知S △P AB =13S △ABC ,即S △P AB ∶S △ABC =1∶3. 4.在△ABC 中,AC →·AB →|AB →|=1,BC →·BA →|BA →|=2,则AB 边的长度为( ) A .1B .3C .5D .9答案 B解析 由题意画示意图,作CD ⊥AB ,垂足为D ,如图.AC →·AB →|AB →|=1表示AC →在AB →上的射影为1,即AD 的长为1,BC →·BA →|BA →|=2表示BC →在BA →上的射影为2,即BD 的长为2,故AB 边的长度为3.5.若函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图像如图所示,M ,N 分别是这段图像的最高点和最低点,且OM →·ON →=0(O 为坐标原点),则A 等于( )A.π6B.712πC.76πD.73π 答案 B解析 由题意知M (π12,A ),N (7π12,-A ), 又∵OM →·ON →=π12×7π12-A 2=0, ∴A =712π. 6.已知O 为△ABC 内一点,且OA →+OC →+2OB →=0,则△AOC 与△ABC 的面积之比是________.答案 1∶2解析 如图所示,取AC 中点D .∴OA →+OC →=2OD →.∴OD →=BO →.∴O 为BD 中点,∴面积比为高之比.7.单位圆上三点A ,B ,C 满足OA →+OB →+OC →=0,则向量OA →,OB →的夹角为________.答案 120°解析 ∵A ,B ,C 为单位圆上三点,∴|OA →|=|OB →|=|OC →|=1,又∵OA →+OB →+OC →=0.∴-OC →=OB →+OA →.∴OC →2=(OB →+OA →)2=OB →2+OA →2+2OB →·OA →,可得cos 〈OA →,OB →〉=-12. ∴向量OA →,OB →的夹角为120°.8.设点O 是△ABC 的外心,AB =13,AC =12,则BC →·AO →=________.答案 -252解析 设{AB →,AC →}为平面内一组基底.如图所示,O 为△ABC 的外心,设M 为BC 中点,连接OM 、AM 、OA ,则易知OM ⊥BC .又AO →=AM →+MO →,∴BC →·AO →=BC →·(AM →+MO →)=BC →·AM →+BC →·MO →=BC →·AM →(其中BC →·MO →=0)=(AC →-AB →)·12(AB →+AC →) =12(AC →2-AB →2)=12×(122-132)=-252. 9.设向量a =(cos ωx -sin ωx ,-1),b =(2sin ωx ,-1),其中ω>0,x ∈R ,已知函数f (x )=a·b 的最小正周期为4π.(1)求ω的值;(2)若sin x 0是关于t 的方程2t 2-t -1=0的根,且x 0∈⎝⎛⎭⎫-π2,π2,求f (x 0)的值. 解 (1)f (x )=a·b =(cos ωx -sin ωx ,-1)·(2sin ωx ,-1)=2sin ωx cos ωx -2sin 2ωx +1=sin 2ωx+cos 2ωx =2sin ⎝⎛⎭⎫2ωx +π4. 因为T =4π,所以2π2ω=4π,ω=14. (2)方程2t 2-t -1=0的两根为t 1=-12,t 2=1. 因为x 0∈⎝⎛⎭⎫-π2,π2,所以sin x 0∈(-1,1), 所以sin x 0=-12,即x 0=-π6. 又由(1)知f (x 0)=2sin ⎝⎛⎭⎫12x 0+π4, 所以f ⎝⎛⎭⎫-π6=2sin ⎝⎛⎭⎫-π12+π4=2sin π6=22. 10.已知向量a =⎝⎛⎭⎫sin x ,34,b =(cos x ,-1). (1)当a ∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =3,b =2,sin B =63,求f (x )+4cos ⎝⎛⎭⎫2A +π6⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π3的取值范围. 解 (1)因为a ∥b , 所以34cos x +sin x =0,所以tan x =-34. cos 2x -sin 2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85. (2)f (x )=2(a +b )·b =2sin ⎝⎛⎭⎫2x +π4+32. 由正弦定理a sin A =b sin B,得 sin A =22,所以A =π4,或A =3π4. 因为b >a ,所以A =π4.f (x )+4cos ⎝⎛⎭⎫2A +π6=2sin ⎝⎛⎭⎫2x +π4-12, 因为x ∈⎣⎡⎦⎤0,π3,所以2x +π4∈⎣⎡⎦⎤π4,11π12, 32-1≤f (x )+4cos ⎝⎛⎭⎫2A +π6≤2-12. 所以所求范围是⎣⎡⎦⎤32-1,2-12. B 组 专项能力提升(时间:25分钟)11.已知平面上不共线的四点O ,A ,B ,C ,若OA →-4OB →+3OC →=0,则|AB →||BC →|等于( ) A.13 B.12C .3D .2 答案 C解析 由OA →-4OB →+3OC →=0,得OA →-OB →=3OB →-3OC →=3(OB →-OC →),所以-AB →=-3BC →,所以|AB →|=3|BC →|,即|AB →||BC →|=3.故选C. 12.已知|a |=2|b |≠0,且关于x 的函数f (x )=13x 3+12|a |x 2+a ·b x 在R 上有极值,则向量a 与b 的夹角的范围是( )A.⎣⎡⎭⎫0,π6 B.⎝⎛⎦⎤π6,π C.⎝⎛⎦⎤π3,πD.⎝⎛⎭⎫π3,23π答案 C解析 设a 与b 的夹角为θ.∵f (x )=13x 3+12|a |x 2+a ·b x .∴f ′(x )=x 2+|a |x +a ·b . ∵函数f (x )在R 上有极值,∴方程x 2+|a |x +a ·b =0有两个不同的实数根,即Δ=|a |2-4a ·b >0,∴a ·b <a 24, 又∵|a |=2|b |≠0,∴cos θ=a ·b |a ||b |<a 24a 22=12,即cos θ<12, 又∵θ∈[0,π],∴θ∈⎝⎛⎦⎤π3,π,故选C.13.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若∠ABC 为锐角,则实数m 的取值范围是________________.答案 (-34,12)∪(12,+∞) 解析 由已知得AB →=OB →-OA →=(3,1),AC →=OC →-OA →=(2-m,1-m ).若AB →∥AC →,则有3(1-m )=2-m ,解得m =12. 由题设知,BA →=(-3,-1),BC →=(-1-m ,-m ).∵∠ABC 为锐角,∴BA →·BC →=3+3m +m >0,可得m >-34. 由题意知,当m =12时,AB →∥AC →. 故当∠ABC 为锐角时,实数m 的取值范围是(-34,12)∪(12,+∞). 14.(2015·淮北模拟)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是________. 答案 ⎣⎡⎦⎤π6,5π6解析 如图,向量α与β在单位圆O 内,由于|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12, 故以向量α,β为两边的三角形的面积为14,故β的终点在如图所示的线段AB 上⎝⎛⎭⎫α∥AB →,且圆心O 到AB 的距离为12,因此夹角θ的取值范围为⎣⎡⎦⎤π6,5π6.15.在△ABC 中,设内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos A ,sin A ),向量n =(2-sin A ,cos A ),若|m +n |=2.(1)求内角A 的大小;(2)若b =42,且c =2a ,求△ABC 的面积.解 (1)|m +n |2=(cos A +2-sin A )2+(sin A +cos A )2=4+22(cos A -sin A )=4+4cos(π4+A ).∵4+4cos(π4+A )=4,∴cos(π4+A )=0. ∵A ∈(0,π),∴π4+A =π2,A =π4. (2)由余弦定理知:a 2=b 2+c 2-2bc cos A ,即a 2=(42)2+(2a )2-2×42×2a cos π4, 解得a =42,∴c =8.∴S △ABC =12bc sin A =12×42×8×22=16.。
高中数学步步高大一轮复习讲义(文科)-64省公开课获奖课件市赛课比赛一等奖课件

练出高分
题型分类·深度剖析
题型一
分组转化求和
思维启迪 解析 思维升华
【例 1】 已知数列{an}是 3+2 解 由已知得,数列{an}的通项公式
-1,6+22-1,9+23-1,12+24 为 an=3n+2n-1=3n-1+2n,
-1,…,写出数列{an}的通项 ∴Sn=a1+a2+…+an
=(2+5+…+3n-1)+(2+22+…
题型分类
思想方法
练出高分
题型分类·深度剖析
题型三
裂项相消法求和
思维启迪 解析 思维升华
【例 3】 在数列{an}中,a1=1,
当 n≥2 时,其前 n 项和 Sn 满足 S2n=anSn-12.
(1)求 Sn 的表达式; (2)设 bn=2nS+n 1,求{bn}的前
n 项和 Tn.
第(1)问利用 an=Sn-Sn-1 (n≥2) 后,再同除 Sn-1·Sn 转化为S1n的 等差数列即可求 Sn.
题型分类·深度剖析
题型一
分组转化求和
思维启迪 解析 思维升华
【例 1】 已知数列{an}是 3+2
-1,6+22-1,9+23-1,12+24 先写出通项,然后对 分组后利用等差数列、等比数列
公式并求其前 n 项和 Sn.
的求和公式求解.
基础知识
题型分类
思想方法
∴S1n=1+2(n-1)=2n-1, ∴Sn=2n1-1. (2)∵bn=2nS+n 1=2n-112n+1
=122n1-1-2n1+1,
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型三
裂项相消法求和
思维启迪 解析 思维升华
新步步高北师大数学文大一轮复习文档:高考专题突破一

1.若函数f (x )在R 上可导,且满足f (x )-xf ′(x )>0,则( )A.3f (1)<f (3)B.3f (1)>f (3)C.3f (1)=f (3)D.f (1)=f (3) 答案 B解析 由于f (x )>xf ′(x ),则⎣⎡⎦⎤f (x )x ′=f ′(x )x -f (x )x 2<0恒成立,因此f (x )x 在R 上是单调递减函数, ∴f (3)3<f (1)1,即3f (1)>f (3).故选B. 2.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( )A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)答案 D解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上单调递增⇔f ′(x )=k -1x≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1. 即k 的取值范围为[1,+∞).3.函数f (x )=3x 2+ln x -2x 的极值点的个数是( )A.0B.1C.2D.无数个答案 A解析 函数定义域为(0,+∞),且f ′(x )=6x +1x -2=6x 2-2x +1x, 由于x >0,g (x )=6x 2-2x +1中Δ=-20<0,所以g (x )>0恒成立,故f ′(x )>0恒成立,即f (x )在定义域上单调递增,无极值点.4.(2015·课标全国Ⅰ)已知函数f (x )=ax 3+x +1的图像在点(1,f (1))处的切线过点(2,7),则a =________.答案 1解析 f ′(x )=3ax 2+1,f ′(1)=1+3a ,f (1)=a +2.(1,f (1))处的切线方程为y -(a +2)=(1+3a )(x -1).将(2,7)代入切线方程,得7-(a +2)=1+3a ,解得a =1.5.设函数f (x )=e 2x 2+1x ,g (x )=e 2x e x ,对任意x 1,x 2∈(0,+∞),不等式g (x 1)k ≤f (x 2)k +1恒成立,则正数k 的取值范围是________.答案 [1,+∞)解析 因为对任意x 1,x 2∈(0,+∞),不等式g (x 1)k ≤f (x 2)k +1恒成立,所以k k +1≥g (x 1)max f (x 2)min. 因为g (x )=e 2x e x ,所以g ′(x )=e 2-x (1-x ).当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0,所以g (x )在(0,1]上单调递增,在[1,+∞)上单调递减.所以当x =1时,g (x )取到最大值,即g (x )max =g (1)=e.又f (x )=e 2x +1x≥2e(x >0). 当且仅当e 2x =1x ,即x =1e时取等号,故f (x )min =2e. 所以g (x 1)max f (x 2)min =e 2e =12,应有k k +1≥12, 又k >0,所以k ≥1.题型一 利用导数研究函数性质例1 (2015·课标全国Ⅱ)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a . 若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减.(2)由(1)知,当a≤0时,f(x)在(0,+∞)无最大值;当a>0时,f(x)在x=1a 取得最大值,最大值为f⎝⎛⎭⎫1a=ln1a+a⎝⎛⎭⎫1-1a=-ln a+a-1.因此f⎝⎛⎭⎫1a>2a-2等价于ln a+a-1<0.令g(a)=ln a+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,a的取值范围是(0,1).思维升华利用导数主要研究函数的单调性、极值、最值.已知f(x)的单调性,可转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题;含参函数的最值问题是高考的热点题型,解此类题的关键是极值点与给定区间位置关系的讨论,此时要注意结合导函数图像的性质进行分析.已知a∈R,函数f(x)=(-x2+ax)e x (x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围.解(1)当a=2时,f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2<x < 2.所以函数f (x )的单调递增区间是(-2,2).(2)因为函数f (x )在(-1,1)上单调递增,所以f ′(x )≥0对x ∈(-1,1)都成立.因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x=[-x 2+(a -2)x +a ]e x ,所以[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立.因为e x >0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立,即a ≥x 2+2x x +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立. 令y =(x +1)-1x +1,则y ′=1+1(x +1)2>0. 所以y =(x +1)-1x +1在(-1,1)上单调递增, 所以y <(1+1)-11+1=32.即a ≥32. 因此a 的取值范围为a ≥32.题型二 利用导数研究不等式问题例2 已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围;(2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x成立.(1)解 任意x ∈(0,+∞),有 2x ln x ≥-x 2+ax -3,则a ≤2ln x +x +3x, 设h (x )=2ln x +x +3x(x >0),则h ′(x )=(x +3)(x -1)x 2, ①当x ∈(0,1)时,h ′(x )<0,h (x )单调递减,②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以h (x )min =h (1)=4.因为对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,所以a ≤h (x )min =4.(2)证明 问题等价于证明x ln x >x e x -2e(x ∈(0,+∞)). f (x )=x ln x (x ∈(0,+∞))的最小值是-1e, 当且仅当x =1e 时取到,设m (x )=x e x -2e (x ∈(0,+∞)),则m ′(x )=1-x e x ,易知m (x )max =m (1)=-1e, 当且仅当x =1时取到.从而对一切x ∈(0,+∞),都有ln x >1e x -2e x成立. 思维升华 (1)恒成立问题可以转化为我们较为熟悉的求最值的问题进行求解,若不能分离参数,可以将参数看成常数直接求解.(2)证明不等式,可以转化为求函数的最值问题.已知函数f (x )=a ln x x +1+b x,曲线y =f (x )在点(1,f (1)处的切线方程为x +2y -3=0.(1)求a ,b 的值;(2)证明:当x >0,且x ≠1时,f (x )>ln x x -1. (1)解 f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln x (x +1)2-b x 2. 由于直线x +2y -3=0的斜率为-12,且过点(1,1), 故⎩⎪⎨⎪⎧ f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12.解得a =1,b =1.(2)证明 由(1)知f (x )=ln x x +1+1x, 所以f (x )-ln x x -1=11-x 2⎝⎛⎭⎪⎫2ln x -x 2-1x . 考虑函数h (x )=2ln x -x 2-1x(x >0), 则h ′(x )=2x -2x 2-(x 2-1)x 2=-(x -1)2x 2. 所以当x ≠1时,h ′(x )<0.而h (1)=0,故当x ∈(0,1)时,h (x )>0,可得11-x 2h (x )>0;当x ∈(1,+∞)时,h (x )<0,可得11-x 2h (x )>0. 从而当x >0,且x ≠1时,f (x )-ln x x -1>0. 即f (x )>ln x x -1. 题型三 利用导数研究函数零点或图像交点问题例3 设函数f (x )=ln x +m x,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x 3零点的个数. 解 (1)由题设,当m =e 时,f (x )=ln x +e x, 则f ′(x )=x -e x 2,由f ′(x )=0,得x =e. ∵当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减,当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增,∴当x =e 时,f (x )取得极小值f (e)=ln e +e e=2, ∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0), 令g (x )=0,得m =-13x 3+x (x >0). 设φ(x )=-13x 3+x (x ≥0), 则φ′=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点.∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图像(如图),可知①当m >23时,函数g (x )无零点; ②当m =23时,函数g (x )有且只有一个零点; ③当0<m <23时,函数g (x )有两个零点; ④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点; 当m =23或m ≤0时,函数g (x )有且只有一个零点; 当0<m <23时,函数g (x )有两个零点. 思维升华 用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图像的交点问题,利用数形结合思想画草图确定参数范围.已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与f(x)的图像有三个不同的交点,求m的取值范围.解(1)由已知得,f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R恒有f′(x)>0,此时f(x)的单调增区间为(-∞,+∞).当a>0时,f′(x)>0,解得x<-a或x>a,由f′(x)<0,解得-a<x<a,此时f(x)的单调增区间为(-∞,-a),(a,+∞),f(x)的单调减区间为(-a,a).(2)因为f(x)在x=-1处取得极值,所以f′(-1)=3×(-1)2-3a=0,所以a=1.所以f(x)=x3-3x-1,f′(x)=3x2-3.由f′(x)=0,解得x1=-1,x2=1.由(1)可知f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.因为直线y=m与函数f(x)的图像有三个不同的交点,又f(-3)=-19<-3,f(3)=17>1,结合f (x )的单调性,可知m 的取值范围是(-3,1).(时间:70分钟)1.(2015·重庆)设函数f (x )=3x 2+ax e x(a ∈R ). (1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围.解 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x(e x )2=-3x 2+(6-a )x +a e x, 因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x ,故f (1)=3e ,f ′(1)=3e,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e(x -1),化简得3x -e y =0. (2)由(1)知f ′(x )=-3x 2+(6-a )x +a e x. 令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数;当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92, 故a 的取值范围为⎣⎡⎭⎫-92,+∞. 2.已知函数f (x )=x cos x -sin x ,x ∈[0,π2]. (1)求证:f (x )≤0;(2)若a <sin x x <b 对x ∈(0,π2)恒成立,求a 的最大值与b 的最小值. 解 (1)由f (x )=x cos x -sin x 得f ′(x )=cos x -x sin x -cos x =-x sin x .因为在区间(0,π2)上f ′(x )=-x sin x <0, 所以f (x )在区间[0,π2]上单调递减. 从而f (x )≤f (0)=0.(2)当x >0时,“sin x x>a ”等价于“sin x -ax >0”; “sin x x <b ”等价于“sin x -bx <0”. 令g (x )=sin x -cx ,则g ′(x )=cos x -c .当c ≤0时,g (x )>0对任意x ∈(0,π2)恒成立, 当c ≥1时,因为对任意x ∈(0,π2),g ′(x )=cos x -c <0, 所以g (x )在区间[0,π2]上单调递减. 从而g (x )<g (0)=0对任意x ∈(0,π2)恒成立. 当0<c <1时,存在唯一的x 0∈(0,π2)使得g ′(x 0)=cos x 0-c =0.g (x )与g ′(x )在区间(0,π2)上的情况如下:因为g (x )在区间[0,x 0]上是增函数,所以g (x 0)>g (0)=0.进一步,“g (x )>0对任意x ∈(0,π2)恒成立”当且仅当 g (π2)=1-π2c ≥0,即0<c ≤2π. 综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈(0,π2)恒成立; 当且仅当c ≥1时,g (x )<0对任意x ∈(0,π2)恒成立. 所以,若a <sin x x <b 对任意x ∈(0,π2)恒成立,则a 的最大值为2π,b 的最小值为1. 3.某种产品每件成本为6元,每件售价为x 元(6<x <11),年销售为u 万件,若已知5858-u 与(x -214)2成正比,且售价为10元时,年销量为28万件. (1)求年销售利润y 关于售价x 的函数表达式;(2)求售价为多少时,年利润最大,并求出最大年利润.解 (1)设5858-u =k (x -214)2, ∵售价为10元时,年销量为28万件,∴5858-28=k (10-214)2,解得k =2. ∴u =-2(x -214)2+5858=-2x 2+21x +18. ∴y =(-2x 2+21x +18)(x -6)=-2x 3+33x 2-108x -108(6<x <11).(2)y ′=-6x 2+66x -108=-6(x 2-11x +18)=-6(x -2)(x -9).令y ′=0,得x =2(舍去)或x =9,显然,当x ∈(6,9)时,y ′>0;当x ∈(9,11)时,y ′<0.∴函数y =-2x 3+33x 2-108x -108在(6,9)上单调递增,在(9,11)上单调递减.∴当x =9时,y 取最大值,且y max =135,即售价为9元时,年利润最大,最大年利润为135万元.4.已知f (x )=x 2+3x +1,g (x )=a -1x -1+x . (1)a =2时,求y =f (x )和y =g (x )的公共点个数;(2)a 为何值时,y =f (x )和y =g (x )的公共点个数恰为两个.解 (1)a =2时,由⎩⎪⎨⎪⎧y =f (x ),y =g (x ), 得x 2+3x +1=1x -1+x , 整理得x 3+x 2-x -2=0(x ≠1).令y =x 3+x 2-x -2,求导得y ′=3x 2+2x -1,令y ′=0,得x 1=-1,x 2=13, 故得极值点分别在-1和13处取得,且极大值、极小值都是负值. 所以y =x 3+x 2-x -2=0的解只有一个.即y =f (x )与y =g (x )的公共点只有一个. (2)由⎩⎪⎨⎪⎧y =f (x ),y =g (x ),得x 2+3x +1=a -1x -1+x , 整理得a =x 3+x 2-x (x ≠1),令h (x )=x 3+x 2-x (x ≠1), 联立⎩⎪⎨⎪⎧y =a ,y =h (x )=x 3+x 2-x (x ≠1), 对h (x )求导可以得到极值点分别在-1和13处,h (x )的草图如图所示,h (-1)=1,h (13)=-527, 当a =h (-1)=1时,y =a 与y =h (x )仅有一个公共点(因为(1,1)点不在y =h (x )曲线上),故a=-527时恰有两个公共点. 5.已知函数f (x )=x +a e x . (1)若f (x )在区间(-∞,2)上为单调递增函数,求实数a 的取值范围;(2)若a =0,x 0<1,设直线y =g (x )为函数f (x )的图像在x =x 0处的切线,求证:f (x )≤g (x ).(1)解 易得f ′(x )=-x -(1-a )e x, 由已知得f ′(x )≥0对x ∈(-∞,2)恒成立,故x ≤1-a 对x ∈(-∞,2)恒成立,∴1-a ≥2,∴a ≤-1.(2)证明 a =0,则f (x )=x e x . 函数f (x )的图像在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0).令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0),x ∈R ,则h ′(x )=f ′(x )-f ′(x 0)=1-x e x -001e x x -000(1)e (1)e .ex x x x x x +---= 设φ(x )=(1-x )0e x -(1-x 0)e x ,x ∈R , 则φ′(x )=0-e x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0,∴φ(x )在R 上单调递减,而φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0, ∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴x ∈R 时,h (x )≤h (x 0)=0, ∴f (x )≤g (x ).。
高中数学步步高大一轮复习讲义文科压轴题目突破练解析几何
1
2
3
4
5
6
7
8
9 10
Evaluation only. eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0
Copyright 2004-2011 Aspose Pty Ltd.
练出高分
A组 专项基础训练
1
2
3
4
5
则椭圆 E 的离心率为
( A)
A.
5 3
B.23 EvaluCa.tio32n only.D.13
eated解w析ith由A题sp意os可e知.S,lid∠eFs1fPoFr2 .是N直ET角3,.5且Client Profile 5.2.0 tan∠PCFo1Fp2=yr2ig,h∴t ||2PPFF0120||=4-22,0又1|1PFA1|s+p|oPFse2| Pty Ltd.
解析 设C点opPy(xr0i,ghy0t).20依0题4意 -2得01,1焦A点spFo(2s,e0),Pty Ltd.
x0+2=5, y20=8x0,
于是有 x0=3,y20=24;
a2+b2=4, a92-2b42=1, 由此解得 a2=1,b2=3, 因此该双曲线的渐近线方程是 y=±bax=± 3x.
0 的距离等于 1,则半径 r 的取值范围是
(A )
A.(4,6)
B.[4,6)
C.(4,6]
D.[4,6]
解 析 因 为 圆 心 (3E,va-lu5)a到tio直n线on4lxy-. 3y - 2 = 0 的 距 离 为 eated|4×w3it-hC34oA×2+pspy-3ro2i5gs-eh.t2S|2l=i0d50e,4s -f2o0r1.N1EATsp3o.5seClPietyntLtPdr.ofile 5.2.0
新步步高北师大数学文大一轮复习文档:第六章 数列 64
求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式 (ⅰ)当q =1时,S n =na 1;(ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. 常见的裂项公式 ①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;③1n +n +1=n +1-n .(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( √ )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ )(3)求S n =a +2a 2+3a 3+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )1.(教材改编)数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1 B.56 C.16 D.130答案 B解析 ∵a n =1n (n +1)=1n -1n +1,∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=56.2.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400 D .-400 答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.3.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100答案 C解析 因为S n n =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.4.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为S n =________. 答案 2n +1-2+n 2解析 S n =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.5.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 017=________. 答案 1 008解析 因为数列a n =n cos n π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4.故S 4=a 1+a 2+a 3+a 4=2. ∴S 2 017=S 2 016+a 2 017 =2 0164×2+2 017·cos 2 0172π =1 008.题型一 分组转化法求和例1 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N +.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 解 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n , 故b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 引申探究例1(2)中,求数列{b n }的前n 项和T n . 解 由(1)知b n =2n +(-1)n ·n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ] =2-2n +11-2+n 2=2n +1+n2-2.当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ]=2n +1-2+n -12-n =2n +1-n 2-52. ∴T n=⎩⎨⎧2n +1+n2-2, n 为偶数,2n +1-n 2-52, n 为奇数.思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)n n ln 3,求其前n 项和S n .解 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+…+(-1)n n ]ln 3,所以当n 为偶数时,S n =2×1-3n 1-3+n 2ln 3=3n +n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+(n -12-n )ln 3=3n-n -12ln 3-ln 2-1.综上所述,S n=⎩⎪⎨⎪⎧3n +n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.题型二 错位相减法求和例2 (2015·湖北)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .解 (1)由题意得⎩⎪⎨⎪⎧ 10a 1+45d =100,a 1d =2,即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2,解得⎩⎪⎨⎪⎧a 1=1,d =2,或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1,或⎩⎨⎧a n =19(2n +79),b n =9·⎝⎛⎭⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.思维升华 用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.(2015·天津蓟县第二中学第一次模拟)已知数列{a n }的各项均为正数,S n 是数列{a n }的前n 项和,且4S n =a 2n +2a n -3. (1)求数列{a n }的通项公式;(2)已知b n =2n ,求T n =a 1b 1+a 2b 2+…+a n b n 的值. 解 (1)当n =1时,a 1=S 1=14a 21+12a 1-34. 解得a 1=3.又∵4S n =a 2n +2a n -3,① 当n ≥2时,4S n -1=a 2n -1+2a n -1-3.②①-②,得4a n =a 2n -a 2n -1+2(a n -a n -1), 即a 2n -a 2n -1-2(a n +a n -1)=0.∴(a n +a n -1)(a n -a n -1-2)=0. ∵a n +a n -1>0,∴a n -a n -1=2 (n ≥2),∴数列{a n }是以3为首项,2为公差的等差数列. ∴a n =3+2(n -1)=2n +1.(2)T n =3×21+5×22+…+(2n +1)·2n ,③2T n =3×22+5×23+…+(2n -1)·2n +(2n +1)2n +1,④ ④-③,得T n =-3×21-2(22+23+…+2n )+(2n +1)2n +1 =-6+8-2·2n +1+(2n +1)·2n +1 =(2n -1)2n +1+2. 题型三 裂项相消法求和 命题点1 形如a n =1n (n +k )型例3 设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N +. (1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.(1)解 由题意知,S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N +.令n =1,有S 21-(12+1-3)S 1-3×(12+1)=0,可得S 21+S 1-6=0, 解得S 1=-3或2, 即a 1=-3或2, 又a n 为正数,所以a 1=2.(2)解 由S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N +可得,(S n +3)(S n -n 2-n )=0, 则S n =n 2+n 或S n =-3, 又数列{a n }的各项均为正数,所以S n =n 2+n ,S n -1=(n -1)2+(n -1).所以当n ≥2时,a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n . 又a 1=2=2×1,所以a n =2n . (3)证明 当n =1时, 1a 1(a 1+1)=12×3=16<13成立;当n ≥2时,1a n (a n +1)=12n (2n +1)<1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<16+12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =16+12⎝ ⎛⎭⎪⎫13-12n +1<16+16=13. 所以对一切正整数n , 有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.命题点2 形如a n =1n +n +k型例4 已知函数f (x )=x a 的图像过点(4,2),令a n =1f (n +1)+f (n ),n ∈N +.记数列{a n }的前n 项和为S n ,则S 2 017=________. 答案2 018-1解析 由f (4)=2可得4a =2, 解得a =12,则f (x )=x 12.∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)+( 2 018- 2 017)= 2 018-1.思维升华 (1)用裂项相消法求和时,要对通项进行变换,如:1n +n +k=1k(n +k -n ),1n (n +k )=1k (1n -1n +k)裂项后可以产生连续可以相互抵消的项.(2)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .解 (1)∵S 2n =a n⎝⎛⎭⎫S n -12,a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,① 由题意得S n -1·S n ≠0, ①式两边同除以S n -1·S n , 得1S n -1S n -1=2, ∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1, ∴S n =12n -1.(2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1.四审结构定方案典例 (12分)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N +),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .(1)S n =-12n 2+nk ――→S n 是关于n的二次函数n =k 时,S n 最大――→根据S n 结构特征确定k 的值k =4;S n =-12n 2+4n――→根据S n求a n a n =92-n (2)9-2a n 2n =n2n -1――→根据数列结构特征确定求和方法T n =1+22+322+…+n -12n -2+n 2n -1――→错位相减法求和 计算可得T n 规范解答解 (1)当n =k ∈N +时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分]当n ≥2时,a n =S n -S n -1=92-n .当n =1时,上式也成立, 综上,a n =92-n .[6分](2)因为9-2a n 2n =n2n -1,所以T n =1+22+322+…+n -12n -2+n2n -1,①2T n =2+2+32+…+n -12n -3+n2n -2.②[7分]②-①得:2T n -T n =2+1+12+…+12n -2-n 2n -1 =4-12n -2-n2n -1=4-n +22n -1.[11分] 故T n =4-n +22n -1.[12分] 温馨提醒 (1)根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据{9-2a n 2n }的结构特征确定利用错位相减法求T n .在审题时,要通过题目中数式的结构特征判定解题方案;(2)利用S n 求a n 时不要忽视n =1的情况;错位相减时不要漏项或算错项数.(3)可以通过n =1,2时的特殊情况对结论进行验证.[方法与技巧]非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法、并项法、数列的周期性等来求和.[失误与防范]1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.A 组 专项基础训练(时间:40分钟)1.已知S n 为数列{a n }的前n 项和,且满足a 1=1,a 2=3,a n +2=3a n ,则S 2 017等于( )A .31 009-2B .2×31 007 C.32 014-12D.32 014+12答案 A解析 由a n +2=3a n 可得数列{a n }的奇数项与偶数项分别构成等比数列,所以S 2 017=(a 1+a 3+…+a 2 017)+(a 2+a 4+…+a 2 016)=1-31 0091-3+3(1-31 008)1-3=31 009-2. 2.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n ) (n ∈N +)的前n 项和是( ) A.n n +1B.n +2n +1C.n n -1D.n +1n答案 A解析 f ′(x )=mx m -1+a ,∴a =1,m =2,∴f (x )=x 2+x , 1f (n )=1n (n +1)=1n -1n +1,∴S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=n n +1. 3.已知等差数列{a n }的前n 项和S n 满足S 3=6,S 5=252,则数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为( ) A .1-n +22n +1 B .2-n +42n +1 C .2-n +42n D .2-n +22n +1 答案 B解析 设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2d ,因为S 3=6,S 5=252,所以⎩⎪⎨⎪⎧ 3a 1+3d =6,5a 1+10d =252,解得⎩⎨⎧ a 1=32,d =12,所以a n =12n +1,a n 2n =n +22n +1,设数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为T n ,则T n =322+423+524+…+n +12n +n +22n +1,12T n =323+424+525+…+n +12n +1+n +22n +2,两式相减得12T n =34+⎝ ⎛⎭⎪⎫123+124+…+12n +1-n +22n +2=34+14⎝ ⎛⎭⎪⎫1-12n -1-n +22n +2, 所以T n =2-n +42n +1. 4.数列{a n }中,a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( )A .76B .78C .80D .82 答案 B解析 由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1·a n +1=2n +1,得a n +2+a n =(-1)n (2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.5.已知函数f (n )=⎩⎪⎨⎪⎧n 2 (当n 为奇数时),-n 2 (当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10 200答案 B解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-50×101+50×103=100.故选B.6.在数列{a n }中,若对任意的n 均有a n +a n +1+a n +2为定值,且a 4=1,a 12=3,a 95=5,则数列{a n }的前100项和S 100=________.答案 298解析 由题意可得a n +a n +1+a n +2=a n +1+a n +2+a n +3,则a n =a n +3,所以a 4=1=a 1,a 12=3=a 3,a 95=5=a 2,所以数列{a n }的前100项和S 100=33(a 1+a 2+a 3)+a 1=33×9+1=198.7.整数数列{a n }满足a n +2=a n +1-a n (n ∈N +),若此数列的前800项的和是2 013,前813项的和是2 000,则其前2 015项的和为________.答案 -13解析 由a n +2=a n +1-a n ,得a n +2=a n -a n -1-a n =-a n -1,易得该数列是周期为6的数列,且a n +2+a n -1=0,S 800=a 1+a 2=2 013,S 813=a 1+a 2+a 3=2 000,∴⎩⎪⎨⎪⎧ a 3=a 2-a 1=-13,a 2+a 1=2 013,∴⎩⎪⎨⎪⎧ a 1=1 013,a 2=1 000,∴⎩⎪⎨⎪⎧a 3=-13,a 4=-1 013,依次可得a 5=-1 000,a 6=13, 由此可知a n +1+a n +2+a n +3+a n +4+a n +5+a n +6=0,∴S 2 015=S 5=-13.8.已知数列{a n }满足:a 1=12,a n +1=a 2n +a n ,用[x ]表示不超过x 的最大整数,则⎣⎡⎦⎤1a 1+1+1a 2+1+…+1a 2 015+1的值等于________. 答案 1解析 由a n +1=a 2n +a n ,得1a n +1=1a n (a n +1)=1a n -1a n +1,所以1a n +1=1a n -1a n +1,所以1a 1+1+1a 2+1+…+1a 2 015+1=1a 1-1a 2+1a 2-1a 3+…+1a 2 015-1a 2 016=2-1a 2 016.又a n +1=a 2n +a n ,所以a n +1-a n =a 2n >0,所以{a n }是正项递增的数列.又因为a 3=2116>1,所以a 2 016>1,即0<1a 2 016<1,所以⎣⎡⎦⎤2-1a 2 016=1.9.(2015·玉林、贵港联考)已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列.(1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n .解 (1)∵{a n -1}是等比数列且a 1-1=2,a 2-1=4,a 2-1a 1-1=2, ∴a n -1=2·2n -1=2n ,∴a n =2n +1.(2)b n =na n =n ·2n +n ,故T n =b 1+b 2+b 3+…+b n =(2+2×22+3×23+…+n ·2n )+(1+2+3+…+n ).令T =2+2×22+3×23+…+n ·2n ,则2T =22+2×23+3×24+…+n ·2n +1.两式相减,得-T =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1, ∴T =2(1-2n )+n ·2n +1=2+(n -1)·2n +1.∵1+2+3+…+n =n (n +1)2, ∴T n =(n -1)·2n +1+n 2+n +42. 10.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N +,都有T n <564. (1)解 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0,由于{a n }是正项数列,所以S n +1>0.所以S n =n 2+n (n ∈N +).n ≥2时,a n =S n -S n -1=2n ,n =1时,a 1=S 1=2适合上式.所以a n =2n (n ∈N +).(2)证明 由a n =2n (n ∈N +),得b n =n +1(n +2)2a 2n=n +14n 2(n +2)2 =116⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2, T n =116⎣⎡⎝⎛⎭⎫1-132+⎝⎛⎭⎫122-142+⎝⎛⎭⎫132-152+…⎦⎥⎤+⎝ ⎛⎭⎪⎫1(n -1)2-1(n +1)2+⎝ ⎛⎭⎪⎫1n 2-1(n +2)2 =116⎣⎢⎡⎦⎥⎤1+122-1(n +1)2-1(n +2)2<116⎝⎛⎭⎫1+122 =564(n ∈N +).即对于任意的n ∈N +,都有T n <564. B 组 专项能力提升(时间:25分钟)11.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n 为( )A.n n +1B.4n n +1C.3n n +1D.5n n +1答案 B解析 ∵a n =1+2+3+…+n n +1=n 2, ∴b n =1a n a n +1=4n (n +1)=4⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =4⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =4⎣⎢⎡⎦⎥⎤1-1n +1=4n n +1. 12.已知数列2 008,2 009,1,-2 008,-2 009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 016项之和S 2 016等于( )A .2 008B .2 010C .1D .0答案 D解析 由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0.∵2 016=6×336,∴S 2 016=0.13.数列{a n }是等差数列,数列{b n }满足b n =a n a n +1a n +2(n ∈N +),设S n 为{b n }的前n 项和.若a 12=38a 5>0,则当S n 取得最大值时n 的值为________. 答案 16解析 设{a n }的公差为d ,由a 12=38a 5>0,得a 1=-765d ,d <0,所以a n =⎝⎛⎭⎫n -815d ,从而可知当1≤n ≤16时,a n >0;当n ≥17时,a n <0.从而b 1>b 2>…>b 14>0>b 17>b 18>…,b 15=a 15a 16a 17<0,b 16=a 16a 17a 18>0,故S 14>S 13>…>S 1,S 14>S 15,S 15<S 16,S 16>S 17>S 18>….因为a 15=-65d >0,a 18=95d <0,所以a 15+a 18 =-65d +95d =35d <0, 所以b 15+b 16=a 16a 17(a 15+a 18)>0,所以S 16>S 14,故当S n 取得最大值时n =16.14.在数列{a n }中,a n >0,a 1=12,如果a n +1是1与2a n a n +1+14-a 2n的等比中项,那么a 1+a 222+a 332+a 442+…+a 1001002的值是________. 答案 100101解析 由题意可得,a 2n +1=2a n a n +1+14-a 2n ⇒(2a n +1+a n a n +1+1)(2a n +1-a n a n +1-1)=0,又a n >0,∴2a n +1-a n a n +1-1=0,又2-a n ≠0,∴a n +1=12-a n ⇒a n +1-1=a n -12-a n,又可知a n ≠1,∴1a n +1-1=1a n -1-1,∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -1是以-2为首项,-1为公差的等差数列, ∴1a n -1=-2-(n -1)=-n -1⇒a n =n n +1⇒a n n 2=1n (n +1)=1n -1n +1,∴a 1+a 222+a 332+a 442+…+a 1001002=1-12+12-13+13-14+14-15+…+1100-1101=100101. 15.(2015·山东)已知数列{a n }是首项为正数的等差数列,数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前n 项和为n 2n +1. (1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . 解 (1)设数列{a n }的公差为d ,令n =1,得1a 1a 2=13,所以a 1a 2=3.令n =2,得1a 1a 2+1a 2a 3=25,所以a 2a 3=15.解得a 1=1,d =2,所以a n =2n -1.经检验,符合题意.(2)由(1)知b n =2n ·22n -1=n ·4n ,所以T n =1·41+2·42+…+n ·4n ,所以4T n =1·42+2·43+…+n ·4n +1,两式相减,得-3T n =41+42+…+4n -n ·4n +1 =4(1-4n )1-4-n ·4n +1=1-3n 3×4n +1-43.所以T n =3n -19×4n +1+49=4+(3n -1)4n +19.。
新步步高北师大数学文大一轮复习文档:第八章 立体几何 82
1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面). 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理4:平行于同一条直线的两条直线平行. 2.直线与直线的位置关系 (1)位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行直线相交直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. 3.直线与平面的位置关系有平行、相交、在平面内三种情况. 4.平面与平面的位置关系有平行、相交两种情况. 5.等角定理空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(√)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(×)(3)两个平面α,β有一个公共点A,就说α,β相交于A点,并记作α∩β=A.(×)(4)两个平面ABC与DBC相交于线段BC.(×)(5)经过两条相交直线,有且只有一个平面.(√)(6)没有公共点的两条直线是异面直线.(×)1.下列命题正确的个数为()①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A.0 B.1 C.2 D.3答案 C解析②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.2.已知a,b是异面直线,直线c平行于直线a,那么c与b()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线答案 C解析由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b,与已知a、b为异面直线相矛盾.3.在如图所示的几何体中,AA′∥BB′∥CC′,则由A、B、C、A′、B′、C′六点可确定的平面个数为()A.5 B.8C.11 D.12答案 C4.如图,正方体ABCD—A1B1C1D1中,PQ是异面直线A1D与AC的公垂线,则直线PQ与BD1的位置关系为()A.平行B .异面C .相交但不垂直D .垂直 答案 A解析 ∵A 1D ∥B 1C ,PQ ⊥A 1D ,∴PQ ⊥B 1C .又∵PQ ⊥AC ,∴PQ ⊥平面AB 1C .∵AC ⊥BD ,AC ⊥DD 1,∴AC ⊥BD 1,同理B 1C ⊥BD 1,∴BD 1⊥平面AB 1C ,∴PQ ∥BD 1. 5.如图所示,已知在长方体ABCD -EFGH 中,AB =23,AD =23,AE =2,则BC 和EG 所成角的大小是______,AE 和BG 所成角的大小是________. 答案 45° 60°解析 ∵BC 与EG 所成的角等于EG 与FG 所成的角即∠EGF ,tan ∠EGF =EF FG =2323=1,∴∠EGF =45°, ∵AE 与BG 所成的角等于BF 与BG 所成的角即∠GBF ,tan ∠GBF =GF BF =232=3,∴∠GBF=60°.题型一 平面基本性质的应用例1 如图所示,正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:(1)E 、C 、D 1、F 四点共面; (2)CE 、D 1F 、DA 三线共点. 证明 (1)如图,连接EF ,CD 1,A 1B . ∵E 、F 分别是AB 、AA 1的中点,∴EF ∥BA 1. 又A 1B ∥D 1C ,∴EF ∥CD 1, ∴E 、C 、D 1、F 四点共面. (2)∵EF ∥CD 1,EF <CD 1, ∴CE 与D 1F 必相交, 设交点为P ,如图所示.则由P ∈CE ,CE 平面ABCD ,得P ∈平面ABCD . 同理P ∈平面ADD 1A 1.又平面ABCD ∩平面ADD 1A 1=DA , ∴P ∈直线DA .∴CE 、D 1F 、DA 三线共点.思维升华 公理1是判断一条直线是否在某个平面的依据;公理2是判断或证明点、线共面的依据;公理3是证明三线共点或三点共线的依据.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC ∥AD 且BC =12AD ,BE ∥AF 且BE=12AF ,G 、H 分别为F A 、FD 的中点. (1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? (1)证明 由已知FG =GA ,FH =HD , 可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC .∴四边形BCHG 为平行四边形.(2)解 ∵BE 綊12AF ,G 是F A 的中点,∴BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綊CH ,∴EF ∥CH ,∴EF 与CH 共面. 又D ∈FH ,∴C 、D 、F 、E 四点共面.题型二 判断空间两直线的位置关系例2 (1)(2015·广东)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( ) A .l 与l 1,l 2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(3)在图中,G、N、M、H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有________.(填上所有正确答案的序号)答案(1)D(2)D(3)②④解析(1)若l与l1,l2都不相交,则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l至少与l1,l2中的一条相交.(2)连接B1C,B1D1,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,∵CC1⊥B1D1,AC⊥B1D1,BD∥B1D1,∴MN⊥CC1,MN⊥AC,MN∥BD.又∵A1B1与B1D1相交,∴MN与A1B1不平行,故选D.(3)图①中,直线GH∥MN;图②中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉面GMN,因此GH与MN异面.所以图②④中GH与MN异面.思维升华 空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决.如图是正四面体(各面均为正三角形)的平面展开图,G 、H 、M 、N 分别为DE 、BE 、EF 、EC 的中点,在这个正四面体中, ①GH 与EF 平行; ②BD 与MN 为异面直线; ③GH 与MN 成60°角; ④DE 与MN 垂直.以上四个命题中,正确命题的序号是________. 答案 ②③④解析 把正四面体的平面展开还原,如图所示,GH 与EF 为异面直线,BD 与MN 为异面直线,GH 与MN 成60°角,DE ⊥MN .题型三 求两条异面直线所成的角例3 (1)如图所示,在正三棱柱ABC -A 1B 1C 1中,D 是AC 的中点,AA 1∶AB =2∶1,则异面直线AB 1与BD 所成的角为________________. 答案 60°解析 取A 1C 1的中点E ,连接B 1E ,ED ,AE , 在Rt △AB 1E 中,∠AB 1E 即为所求, 设AB =1,则A 1A =2,AB 1=3,B 1E =32, 故∠AB 1E =60°.(2)空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,E 、F 分别为BC 、AD 的中点,求EF 与AB 所成角的大小. 解 如图,取AC 的中点G ,连接EG 、FG , 则EG 綊12AB ,FG 綊12CD ,由AB =CD 知EG =FG ,∴∠GEF (或它的补角)为EF 与AB 所成的角,∠EGF (或它的补角)为AB 与CD 所成的角. ∵AB 与CD 所成的角为30°,∴∠EGF=30°或150°.由EG=FG知△EFG为等腰三角形,当∠EGF=30°时,∠GEF=75°;当∠EGF=150°时,∠GEF=15°.故EF与AB所成的角为15°或75°.思维升华(1)求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)求异面直线所成的角的三步曲:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成的角,转化为解三角形问题,进而求解.(1)如图所示,在三棱柱ABC—A 1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,则直线EF和BC1所成的角是()A.45°B.60°C.90°D.120°(2)直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°答案(1)B(2)C解析(1)连接AB1,易知AB1∥EF,连接B1C,B1C与BC1交于点G,取AC的中点H,连接GH,则GH∥AB1∥EF.设AB=BC=AA1=a,连接HB,在△GHB中,易知GH=HB=GB=22a,故所求的两直线所成的角即为∠HGB=60°.(2)如图,可补成一个正方体,∴AC1∥BD1.∴BA1与AC1所成角的大小为∠A1BD1.又易知△A1BD1为正三角形,∴∠A1BD1=60°.即BA1与AC1成60°的角.14.构造模型判断空间线面位置关系典例已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m⊥α,n⊥β,m⊥n,则α⊥β;②若m∥α,n∥β,m⊥n,则α∥β;③若m⊥α,n∥β,m⊥n,则α∥β;④若m⊥α,n∥β,α∥β,则m⊥n.其中所有正确的命题是()A.①④B.②④C.①D.④思维点拨构造一个长方体模型,找出适合条件的直线与平面,在长方体内判断它们的位置关系.解析借助于长方体模型来解决本题,对于①,可以得到平面α,β互相垂直,如图(1)所示,故①正确;对于②,平面α、β可能垂直,如图(2)所示,故②不正确;对于③,平面α、β可能垂直,如图(3)所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图(4)所示,所以n与交线g平行,因为m⊥g,所以m⊥n,故④正确.答案 A温馨提醒(1)构造法实质上是结合题意构造合题意的直观模型,然后将问题利用模型直观地作出判断,这样减少了抽象性,避免了因考虑不全面而导致解题错误;(2)对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断.[方法与技巧]1.主要题型的解题方法(1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”).(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上,因此共线.2.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.3.求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为共面问题来解决.根据空间等角定理及推论可知,异面直线所成角的大小与顶点位置无关,往往可以选在其中一条直线上(线面的端点或中点)利用三角形求解.[失误与防范]1.正确理解异面直线“不同在任何一个平面内”的含义,不要理解成“不在同一个平面内”.2.不共线的三点确定一个平面,一定不能丢掉“不共线”条件.3.两条异面直线所成角的范围是(0°,90°].A组专项基础训练(时间:40分钟)1.在下列命题中,不是公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线答案 A解析选项A是面面平行的性质定理,是由公理推证出来的,而公理是不需要证明的.2.(2014·广东)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定 答案 D解析 在如图所示的长方体中, 不妨设l 2为直线AA 1,l 3为直线CC 1, 则直线l 1,l 4可以是AB ,BC ;也可以是AB ,CD ;也可以是AB ,B 1C 1; 这三组直线相交,平行,垂直,异面,故选D.3.已知直线a 和平面α,β,α∩β=l ,a ⃘α,a ⃘β,且a 在α,β内的投影分别为直线b 和c ,则直线b 和c 的位置关系是( ) A .相交或平行 B .相交或异面 C .平行或异面 D .相交、平行或异面答案 D解析 依题意,直线b 和c 的位置关系可能是相交、平行或异面,故选D.4.设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是( )A .(0,2)B .(0,3)C .(1,2)D .(1,3) 答案 A解析 此题相当于一个正方形沿着对角线折成一个四面体,长为a 的棱长一定大于0且小于2.故选A.5.四棱锥P -ABCD 的所有侧棱长都为5,底面ABCD 是边长为2的正方形,则CD 与P A 所成角的余弦值为( ) A.255 B.55 C.45 D.35答案 B解析 因为四边形ABCD 为正方形,故CD ∥AB ,则CD 与P A 所成的角即为AB 与P A 所成的角,即为∠P AB .在△P AB 内,PB =P A =5,AB =2,利用余弦定理可知cos ∠P AB =P A 2+AB 2-PB 22×P A ×AB =5+4-52×5×2=55,故选B.6.给出以下四种说法:(设α、β表示平面,l 表示直线,A 、B 、C 表示点)①若A ∈l ,A ∈α,B ∈l ,B ∈α,则l α;②A ∈α,A ∈β,B ∈α,B ∈β,则α∩β=AB ;③若l ⃘α,A ∈l ,则A ∉α;④若A 、B 、C ∈α,A 、B 、C ∈β,且A 、B 、C 不共线,则α与β重合.则上述说法中正确的个数是________.答案 3解析 ①②④正确;如图所示,可知③错误.7.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,则直线EF 与正方体的六个面所在的平面相交的平面个数为________.答案 4解析 EF 与正方体左、右两侧面均平行.所以与EF 相交的侧面有4个.8.(2015·浙江)如图,三棱锥ABCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.答案 78 解析 如图所示,连接DN ,取线段DN 的中点K ,连接MK ,CK .∵M 为AD 的中点,∴MK ∥AN ,∴∠KMC 为异面直线AN ,CM 所成的角.∵AB =AC =BD =CD =3,AD =BC =2,N 为BC 的中点,由勾股定理求得AN =DN =CM =22,∴MK = 2.在Rt △CKN 中,CK =(2)2+12= 3.在△CKM 中,由余弦定理,得cos ∠KMC =(2)2+(22)2-(3)22×2×22=78.9.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点,则在空间中与三条直线A 1D 1,EF ,CD 都相交的直线有________条.答案 无数解析 方法一 在EF 上任意取一点M ,直线A 1D 1与M 确定一个平面,这个平面与CD 有且仅有1个交点N ,M 取不同的位置就确定不同的平面,从而与CD 有不同的交点N ,而直线MN 与这3条异面直线都有交点.如图所示.方法二 在A 1D 1上任取一点P ,过点P 与直线EF 作一个平面α,因CD 与平面α不平行,所以它们相交,设它们交于点Q ,连接PQ ,则PQ 与EF 必然相交,即PQ 为所求直线.由点P 的任意性,知有无数条直线与三条直线A 1D 1,EF ,CD 都相交.10.如图,空间四边形ABCD 中,E 、F 、G 分别在AB 、BC 、CD 上,且满足AE ∶EB =CF ∶FB =2∶1,CG ∶GD =3∶1,过E 、F 、G 的平面交AD 于点H .(1)求AH ∶HD ;(2)求证:EH 、FG 、BD 三线共点.(1)解 ∵AE EB =CF FB =2,∴EF ∥AC , ∴EF ∥平面ACD ,而EF 平面EFGH ,平面EFGH ∩平面ACD =GH ,∴EF ∥GH ,∴AC ∥GH .∴AH HD =CG GD=3.∴AH ∶HD =3∶1. (2)证明 ∵EF ∥GH ,且EF AC =13,GH AC =14, ∴EF ≠GH ,∴四边形EFGH 为梯形.令EH ∩FG =P ,则P ∈EH ,而EH 平面ABD ,又P ∈FG ,FG 平面BCD ,平面ABD ∩平面BCD =BD ,∴P ∈BD .∴EH 、FG 、BD 三线共点.B 组 专项能力提升(时间:25分钟)11.以下四个命题中,①不共面的四点中,其中任意三点不共线;②若点A、B、C、D共面,点A、B、C、E共面,则点A、B、C、D、E共面;③若直线a、b共面,直线a、c共面,则直线b、c共面;④依次首尾相接的四条线段必共面.正确命题的个数是()A.0 B.1 C.2 D.3答案 B解析①中显然是正确的;②中若A、B、C三点共线,则A、B、C、D、E五点不一定共面;③构造长方体或正方体,如图显然b、c异面,故不正确;④中空间四边形中四条线段不共面,故只有①正确.12.(2015·福建六校联考)设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a平面α,b平面β,则a,b一定是异面直线.上述命题中正确的命题是________(写出所有正确命题的序号).答案①解析由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错;当a 与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错;aα,bβ,并不能说明a与b“不同在任何一个平面内”,故④错.13.如图,正方体ABCD-A1B1C1D1的棱长为1,黑、白二蚁都从点A出发,沿棱向前爬行,每走一条棱称为“走完一段”.白蚁爬行的路线是AA1→A1D1→…,黑蚁爬行的路线是AB→BB1→….它们都遵循如下规则:所爬行的第i+2段所在直线与第i段所在直线必须是异面直线(其中i∈N+).设黑、白二蚁走完第2 015段后,各停止在正方体的某个顶点处,这时黑、白蚁的距离是________.答案 2解析白蚁走的路程为AA1→A1D1→D1C1→C1C→CB→BA,完成一个循环,黑蚁走的路程为AB→BB1→B1C1→C1D1→D1D→DA, 完成一个循环,2 015=6×335+5,则白蚁走到B点,黑蚁走到D 点,B 、D 间的距离为 2. 14.已知正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为BB 1、CC 1的中点,求异面直线AE 与D 1F 所成角的余弦值.解 如图,连接DF ,则AE ∥DF ,∴∠D 1FD 即为异面直线AE 与D 1F 所成的角. 设正方体棱长为a ,则D 1D =a ,DF =52a ,D 1F =52a ,∴cos ∠D 1FD =(52a )2+(52a )2-a 22·52a ·52a=35.15.如图,在正方体ABCD —A 1B 1C 1D 1中,O 为正方形ABCD 的中心,H 为直线B 1D 与平面ACD 1的交点.求证:D 1、H 、O 三点共线. 证明 连接BD ,B 1D 1,如图. 则BD ∩AC =O ,∵BB 1綊DD 1,∴四边形BB 1D 1D 为平行四边形, 又H ∈B 1D ,B 1D 平面BB 1D 1D ,则H ∈平面BB 1D 1D ,∵平面ACD 1∩平面BB 1D 1D =OD 1, ∴H ∈OD 1.即D 1、H 、O 三点共线.。
新步步高高考数学北师大理一轮复习 第章 系列4选讲 1 课时1相似三角形的判定及有关性质 课件
解析答案
返回
题型分类 深度剖析
题型一 平行截割定理的应用
例1 如图,在四边形ABCD中,AC,BD交于点O, 过点O作AB的平行线,与AD,BC分别交于点E,F, 与CD的延长线交于点K.求证:KO2=KE·KF.
解析答案
(1)如图,在梯形ABCD中,AD∥BC,BD与AC相交于
点O,过点O的直线分别交AB,CD于E,F,且 EF∥BC,若AD=12,BC=20,求EF的长度. 解 ∵AD∥BC, ∴OODB=BACD=2102=53, ∴OBDB=58. ∵OE∥AD,∴OADE=OBDB=58. ∴OE=58AD=58×12=125, 同理可求得 OF=38BC=38×20=125,∴EF=OE+OF=15.
答案
2
考点自测
1.如图,在四边形ABCD中,△ABC≌△BAD. 求证:AB∥CD.
证明 由△ABC≌△BAD得∠ACB=∠BDA, 故A,B,C,D四点共圆,从而∠CAB=∠CDB. 由△ABC≌△BAD得∠CAB=∠DBA, 因此∠DBA=∠CDB,所以AB∥CD.
123
解析答案
2.如图,BD⊥AE,∠C=90°,AB=4,BC=2,AD=3,求EC的长度.
§14.1 几何证明选讲
课时1 相似三角形的判定及有关性质
内容 索引
基础知识 自主学习 题型分类 深度剖析 思想方法 感悟提高 练出高分
基础知识 自主学习
1
知识梳理
1.平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的 线段也 相等 . 推论1:经过三角形一边的中点与另一边平行的直线必平分第三边 . 推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰 . 2.平行线分线段成比例定理 三条平行线截两条直线,截得的对应线段成比例. 推论:平行于三角形一边的直线截其他两边(或两边的延长线),截得的对 应线段成比例 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考中的导数应用问题
u 考点自测1 ?若函数心)在R 上可导,月?满足■代Q_xf (x)>0,贝%
A.3Al)</(3)
C.3A1)=A3) 答案B
解析由于./W>h ⑴,则[竽]丄 Qfr/(0<0恒成立,因此学在R 上是单调递减函数, ???警坪,即3/(1)>/(3).故选B.
2.若函数Av)=^-lnx 在区间(1, +<-)上单调递增,则k 的取值范围是()
A.(——2]
C.[2, +oo)
答案D
解析由于/' (x)=k —^ Xx)=hr —lnx 在区间(1, +°°)上单调递增0广(x)=£—0在(1, A A + oo)上恒成立.
由于k £,而0<,1,所以
即A 的取值范围为[1, +8).
3.函数Av)=3x 2 + lnx-2x 的极值点的个数是()
A.O
B.l
C.2
D.无数个
答案A 解析函数定义域为(0, +8),
由于x>0, g(x) = 6,—2x+1 中力=一20<0,
所以g(x)>0恒成立,故.广(兀)>0恒成立,即./(X )在定义域上单调递增,无极值点.
4.(2015?课标全国
I)已知函数J(x)=ax 3+x+l 的图像在点(1,如))处的切线过点(2,7),则答案1
解析f (x)=3tzx 2+l, / (l)=l + 3a, ./(1)=仇+2.
(1, ./(I))处的切线方程为y-(a+2)=(\+3a)(x-\).
将(2,7)代入切线方程,得7 — (a + 2)=l+3a,
解得Q=l. 快速解答自查自纠
D :A1)=A3)
B ?(一— 1] D.[l, +oo)。