2011CB012800-G多时空脉冲强磁场成形制造基础研究.
'第九部份[郭达志教授主要科研成果简介]
!['第九部份[郭达志教授主要科研成果简介]](https://img.taocdn.com/s3/m/3c6a6551b84ae45c3b358cb9.png)
'第九部份:[郭达志教授主要科研成果简介]笫一篇:千米竖井激光指向仪“千米竖井激光指向仪”是国家科委通过原煤炭工业部于1985年10月向中国矿业大学(原中国矿业学院)下达的国家“六五”科技攻关项目。
该项目研究组在对国内外相关情况进行充分调研的基础上,经过近二年的努力于1987年8月设计、研制出了样机,并首先在地面进行不同大气条件下的激光传输模拟试验。
试验结果表明,夜间激光束的投射距离均大于1500米,在1030米处光斑直径不超过30毫米。
根据在地面的初步测试情况,对样机做了局部改进,进而仪器于1988年4月起在山东新汶矿务局孙村煤矿的新建北风井进行工业性试验,前后历时五个多月,于1988年10月8日结束现场试验。
试验工作是在压入式通风,且井筒淋水、水汽、烟尘较大的条件下进行的,属于测试条件较差的情况。
结果表明,激光束在井筒中的投射深度为984米(井深所限),实际光斑直径为25毫米,满足小于30毫米的要求,且光斑周边清晰、亮度均匀、明显可见。
该仪器主要适用于竖井掘进施工,矿井指向测量及垂直投点测量,也可用于斜井施工、平峒和长隧道施工。
自20世纪70年代以后,我国开始在竖井建设施工中推广应用激光指向仪,这种技术方法指向速度快、精度高、作业效率高,优越性明显。
当时我国上海、西安、江苏等地的几个光电仪器厂研制了不同型号的激光指向仪,激光器均采用波长为0.6328μm的氦氖光源。
其中,以上海物理光学仪器厂生产的DJZ—1型指向仪性能最好,在抽出式通风、井筒中空气清洁的条件下,激光投射深度可达800米。
但在有淋水、雾气及烟尘较大的实际施工环境下,光束的穿透能力大为减弱,在压入式通风条件下该仪器的投射深度仅能达到300米左右,远远不能满足施工要求。
而在我国竖井施工中绝大部分都采用压入式通风方式。
井筒内的炮烟和粉尘可以通过改善通风条件、适当增加通风时间加以解决,但淋水和水雾大是施工地点水文条件本身所致,极难靠改善通风来解决。
2011CB012800-G多时空脉冲强磁场成形制造基础研究解析

项目名称:多时空脉冲强磁场成形制造基础研究首席科学家:李亮华中科技大学起止年限:2011.11-2016.8依托部门:教育部一、关键科学问题及研究内容2.1 拟解决的关键科学问题本项目针对航空航天领域中关键复杂板金构件精确塑性流动控制成形、多层空心板结构的强磁场扩散与胀形、壁板结构强磁场诱导成形、复杂管件成形与连接等共性关键技术问题,以多时空脉冲强磁场的调控规律、耦合高能磁场与温度场条件下的高应变速率对组织结构演变和内应力分布的影响、时空分布的力场-热场-应变场耦合作用及其对材料成形成性控制为探索和认识的突破点,揭示基于多时空脉冲强磁场的成形制造过程的科学规律,建立和发展控形与控性相结合的柔性成形制造新原理和核心技术体系。
1)多级多向脉冲强磁场的时空分布规律及其成形力场的调控传统电磁成形技术所使用设备存在能量低、磁场低、线圈强度低、线圈结构单一,无法满足复杂结构工件的成形成性要求,为此提出多级多向脉冲强磁场电磁成形系统方案,以实现工件多级加载、分区成形以及模具夹具电磁一体化设计。
其面临的主要难点和拟解决的关键科学问题包括:研究多级多向线圈系统磁场与电磁力时空分布,解决电磁场、力场、温度场和位移场间耦合分析难题;研究高场强磁体线圈结构优化设计与增强技术,解决特定空间分布磁场的实现、线圈结构与布局最优化等难题;研究多模块脉冲电源协同充放电与时序控制控制技术,解决模块化电源与多时序控制的难题。
在解决上述关键科学的基础上,建立多级多向线圈高速电磁成形系统理论与方法。
2)多时空脉冲强磁场作用下材料流动规律及成形成性控制在多时空脉冲强磁场作用下,金属材料不仅产生高应变速率变形,同时还存在着时空分布的力场-温度场-应变场间的相互作用,这将使金属材料的塑变流动行为及性能发生显著的变化,并存在着与准静态变形不同的缺陷生成和湮灭机制,是一个高度非线性的瞬态问题。
揭示这一过程的科学规律,是实现轻金属材料的成形成性制造的基础。
仪器网信息

2011年国家重大科学仪器设备开发专项获批项目汇总(更新中)仪器信息网 2012-2-4 10:27:50 点击3522次为贯彻落实《国家中长期科学和技术发展规划纲要(2006- 2020年)》和《国家“十二五”科学和技术发展规划》,提高我国科学仪器设备的自主创新能力和自我装备水平,支撑科技创新,服务经济和社会发展,科技部、财政部2011年首次启动“国家重大科学仪器设备开发专项”。
该专项强调面向市场、面向应用、面向产业化,重点支持具有市场推广前景的重大科学仪器设备开发。
面向科学研究本身的单台(几台)套仪器研发不在此次支持范围,由基金委组织的重大科研仪器设备研制专项负责。
申报项目要突出重大的特点,集成度高,投入较大,经费原则上不低于2000万。
重大科技基础设施、生产性设备、重大研究和中试平台的升级改造、大型仪器共享平台等不在支持范围。
该专项以项目方式、分年度实施,项目周期一般不超过五年。
“国家重大科学仪器设备开发专项”获批项目为了方便广大网友更清楚直观的了解各立项项目的基本情况,即日起仪器信息网将对已发布的专项信息进行汇总,并持续更新,敬请关注。
欲了解下表中各立项项目的详细信息,可查看“聚焦2011年度国家重大仪器设备专项”新闻专题。
2011年度国家重大科学仪器设备开发专项获批项目汇总(更新中)“国家重大科学仪器设备开发专项”支持范围(一)基于新原理、新方法和新技术的重大科学仪器设备的开发。
主要支持已突破新原理、新方法和新技术,通过集成研究和应用开发,形成能够在世界上有特色、有影响的科学仪器设备。
(二)基于已有重大科学仪器设备(装置)创新成果的工程化开发。
主要支持国家科技计划(专项)或其他渠道已形成的,对相关科学研究、经济发展和民生改善具有明显带动和支撑作用的重大科学仪器设备(装置)的工程技术和产业化技术开发和应用开发。
(三)重要通用科学仪器设备(含核心基础器件)的开发。
主要支持市场上虽已有成熟产品,但能提升我国科学仪器设备产业技术等级和核心竞争力的通用科学仪器设备的开发和应用;支持科学仪器设备共性、核心关键部件的开发和应用。
科技部公布973计划立项项目清单 共批准94个项目

中国人民解放军国防科学技术大学
中国人民解放军国防科学技术大学
2011CB013300
人体运动功能重建的生机电一体化科学基础
朱向阳
上海交通大学
上海市科学技术委员会教育部
2011CB013400
机械装备再制造的基础科学问题
张洪潮
大连理工大学
教育部
2011CB013500
大型水利水电工程高陡边坡全生命周期性能演化与安全控制
教育部浙江省科学技术厅
2012CB719900
高分辨率遥感数据精处理和空间信息智能转化的理论与方法
单杰
武汉大学
教育部
2012CB720000
行星表面精确着陆导航与制导控制问题研究
崔平远
北京理工大学
工业和信息化部
2012CB720100
大型客机座舱内空气环境控制的关键科学问题研究
陈清焰
天津大学
教育部天津市科学技术委员会
祝之明
中国人民解放军第三军医大学
中国人民解放军总后勤部卫生部重庆市科学技术委员会
2012CB517900
儿童孤独症的遗传基础及其致病的机制研究
夏昆
中南大学
湖南省科学技术厅教育部
2012CB518000
重大心血管疾病相关GPCR新药物靶点的基础研究
肖瑞平
北京大学
教育部
2012CB518100
严重创伤重要组织器官修复再生的细胞与分子机制研究
付小兵
中国人民解放军总医院
中国人民解放军总后勤部卫生部
2012CB518200
高原低氧环境的快速习服与长期适应机制研究
范明
中国人民解放军军事医学科学院基础医学研究所
2011国家科学技术进步二等奖

2011国家科学技术进步二等奖
2011年,获得国家科学技术进步二等奖的项目有很多,以下是其中的一些项目:
1. "无损检测技术与装置",由中国航空工业集团公司提出。
该项目主要研究了利用电磁波、超声波等技术,在航空航天和工程中实现对材料和结构的无损检测,为飞机和航天器的维修和安全提供了重要的技术支持。
2. "环境友好型建筑材料与结构体系",由清华大学提出。
该项目致力于研发和应用环保型建筑材料和结构体系,通过优化建筑材料的性能和结构设计,减少了建筑物对环境的污染和资源的消耗,推动了建筑业向可持续发展的方向转变。
3. "大型气体涡轮发电机组综合优化与关键技术",由中国船舶重工集团公司提出。
该项目主要针对大型气体涡轮发电机组的综合优化和关键技术进行了深入研究,提高了发电机组的效率和可靠性,为能源的高效利用和减少碳排放做出了重要贡献。
4. "人类遗传疾病诊断与治疗技术",由复旦大学提出。
该项目主要研究了人类遗传疾病的诊断和治疗技术,通过基因测序和基因编辑等技术手段,为遗传疾病的早期诊断和精准治疗提供了重要的科学依据。
这些项目在各自领域具有重要的科学和技术意义,对社会和经济的发展起到了积极的促进作用。
电火花修整超硬磨料砂轮技术发展现状

电火花修整超硬磨料砂轮技术发展现状余剑武1,2何利华1,2 黄 帅1 尚振涛2 吴 耀2 段 文11.湖南大学,长沙,4100822.国家高效磨削工程技术研究中心,长沙,410082摘要:电火花加工技术的发展带动了电火花修整超硬磨料砂轮技术,改变了传统砂轮 硬接触”修整方法㊂近年来,许多学者致力于研究超硬磨料砂轮的电火花修整方法,为提高磨削效率和磨削精度做了大量有意义的研究㊂基于大量文献的论述与研究,回顾了近三十年来电火花修整超硬磨料砂轮技术发展过程的各种研究内容以及取得的成果,完整地阐述了电火花修整金属基超硬磨料砂轮技术的基本原理㊂以立方氮化硼(C B N )和金刚石磨料砂轮修整为主要应用,对不同电极㊁不同放电介质㊁不同放电参数以及现代工程理论辅助下的建模分析方法等方面做了介绍,分析了现有电火花修整技术发展中存在的问题,探讨了未来发展的方向及趋势㊂关键词:电火花修整;金属结合剂;超硬磨料砂轮;发展现状中图分类号:T G 661;T G 580 D O I :10.3969/j.i s s n .1004132X.2015.16.022S t a t e ‐o f ‐t h e ‐A r t o fE l e c t r i c a l D i s c h a r g eD r e s s i n g T e c h n o l o g y f o r S u p e r a b r a s i v eG r i n d i n g Wh e e l Y u J i a n w u 1,2 H eL i h u a 1,2 H u a n g S h u a i 1 S h a n g Zh e n t a o 2 W uY a o 2 D u a n W e n 21.H u n a nU n i v e r s i t y ,C h a n gs h a ,4100822.N a t i o n a l E n g i n e e r i n g R e s e a r c hC e n t e r f o rH i g hE f f i c i e n c y G r i n d i n g ,C h a n gs h a ,410082A b s t r a c t :E D Do f s u p e r a b r a s i v e g r i n d i n g w h e e l w a s d e v e l o p i n g w i t h e l e c t r i c a l d i s c h a r g em a c h i n i n g(E D M )t e c h n o l o g y ,c h a n g i n g t h e t r a d i t i o n a l w h e e l d r e s s i n g me t h o d s b a s e d o nh a r d c o n t a c t .I n r e c e n t y e a r s ,m a n y r e s e a r c h e r sw e r ew o r k i n g o nE D Md r e s s i n g m e t h o d s of s u p e r a b r a s i v eg r i n d i n g wh e e l a n d a c hi e v i n g a l o t o f s i g n i f i c a n t r e s u l t s t o c o n t r i b u t e t o t h e e f f i c i e n c y a n d p r e c i s i o n g r i n d i n g .B a s e d o n n u -m e r o u s l i t e r a t u r e s ,t h e r e s e a r c hf r u i t so nt h ed e v e l o p m e n to fE D Dt e c h n o l o g y w i t h i nt h e l a s t t h i r t yy e a r sw e r e r e v i e w e d .T h e b a s i c p r i n c i p l e s o fE D Md r e s s i n g t e c h n o l o g y o fm e t a l ‐b o n d e d s u p e r a b r a s i v e g r i n d i n g w h e e lw e r e i n t r o d u c e d .A c c o r d i n g t o t h e d r e s s i n g a p p l i c a t i o n s o f C B Na n dd i a m o n d g r i n d i n gw h e e l s ,t h ee f f e c t so fd i f f e r e n te l e c t r o d e s ,d i f f e r e n td i e l e c t r i c s ,d i f f e r e n te l e c t r i c a l p a r a m e t e r sa n dm o d e l i n g w i t hm o d e r nd e s i g n t h e o r i e sw e r e p r e s e n t e d .T h e e x i s t i n gp r o b l e m s i n t h ed e v e l o p i n g ED D t e c h n o l o g y w e r e a n a l y z e d ,a n d t h e f u t u r e d e v e l o p i n g di r e c t i o n sw e r e a l s od i s c u s s e d .K e y w o r d s :e l e c t r i c a l d i s c h a r g e d r e s s i n g (E D D );m e t a l ‐b o n d e d ;s u p e r a b r a s i v e g r i n d i n g w h e e l ;d e -v e l o pm e n t s t a t e 收稿日期:20141110基金项目:国家科技重大专项(2012Z X 04003‐101)0 引言近年来,光学㊁电子㊁通信㊁航空航天等领域的高科技产业飞速发展,特别是光学玻璃㊁碳化硅㊁碳化钨等先进材料的广泛应用,对零件的加工效率和加工精度提出了更高的要求[1]㊂为了达到这一要求,以磨削为代表的机械制造加工技术得到了高度关注,它反映了一个国家机械制造业的水平[2]㊂精密加工脆硬材料等难加工材料的传统工艺 精磨㊁研磨和抛光,存在许多缺点,如工序繁多,工具耐磨性差,抛光液的处理比较麻烦,零件机械损伤比较严重等[3],故最实用的加工方法仍是用超硬磨料砂轮(立方氮化硼和金刚石砂轮)进行粗磨㊁精磨,然而超硬磨料砂轮由于价格高㊁难修整[4‐6]而使得其应用受到阻碍㊂因此,国内外许多学者开始对超硬磨料砂轮精密修整技术进行研究,该技术成为精密加工技术领域最重要的课题之一㊂电火花加工(e l e c t r i c a l d i s c h a r g em a c h i n i n g,E D M )起源于20世纪40年代苏联科学家拉扎连科夫妇的研究[7],它是利用电能和热能来熔化甚至气化传统切削方法难以加工的超硬材料的加工方法[8‐9]㊂另外,E D M 过程中电极和工件之间不会直接接触,因此避免了传统机械加工中的应力㊁振动等问题[10]㊂在20世纪80年代末,S u z u k i 等[11]首先提出电火花修整砂轮(e l e c t r i c a ld i s -c h a r g ed re s s i n g,E D D )技术,将E D M 技术完美地融合到了磨削领域㊂现在这项技术开始向加工精密㊁操作简易㊁成本低廉等方向发展[12]㊂E D D 技术修整砂轮过程中,由于砂轮自身存在旋转运动,且只作为磨削加工过程的重要组成部分,其应用仍存在一定的局限性,但通过对E D D 的实验研究以及实际应用,其修整原理以及修整效果已经得到人们的广泛认同㊂㊃4522㊃中国机械工程第26卷第16期2015年8月下半月Copyright ©博看网. All Rights Reserved.1 E D D技术原理E D D技术一般将工具电极作为加工工具(负极),金属结合剂砂轮作为被加工工件(正极),两极之间产生火花放电和无序电弧放电[13],利用电能的瞬时局部高温将砂轮的金属结合剂熔化㊁气化或软化以达到砂轮的整形和修锐要求[14]㊂金属基砂轮通过不断腐蚀金属结合剂使磨粒重新突出㊂E D D工作机理如图1所示:(1)当脉冲电压施加于工具电极与工件之间时,两极间立刻形成一个电场,使得极间介质发生电离,形成放电通道[15]㊂(2)脉冲电源驱使通道内的电子高速奔向金属结合剂(正极),正离子奔向电极(负极),两种电荷不断冲击电极和金属结合剂㊂(3)电极和金属结合剂表面放电点的瞬时高温使得金属材料熔化甚至气化[8]㊂被蚀除的材料在通道中凝聚,形成蚀除产物㊂(4)在电火花修整过程中,有的嵌装在结合剂中的磨料会自行脱落,或使旧磨料出刃高度增大[15]㊂该过程被循环进行㊂电极与砂轮之间的电压和电流脉冲随时间变化的波形特征如图2所示㊂电脉冲中起决定性作用的参数有:U0(开路电压),U e(瞬时电压), i e(瞬时电流),τd(放电延迟时间),τo n(放电持续时间),τo f f(脉冲间隔时间),τc(脉冲周期)㊂图1 E D D工作机理示意图图2 极间电压和电流脉冲波形特征 修整过程中单个脉冲电火花放电能量为[16]E e=∫τo n0U e i e d t(1)式中,E e为单个脉冲放电能量㊂在一定加工条件下,单个脉冲电火花瞬间产生,且不受其他参数影响[17]㊂当两极之间施加连续脉冲电压时,其放电能量为E=∑n i=1E e(i)(2)n=T/τc(3)式中,T为电火花修整过程中的实际加工时间㊂㊃5522㊃电火花修整超硬磨料砂轮技术发展现状 余剑武 何利华 黄 帅等Copyright©博看网. All Rights Reserved.放电能量理论上正比于加工量[18],即m ∝E e(4)式中,m 为每单个脉冲放电能量所对应的加工量,g ㊂故金属结合剂总蚀除量为m T =K c E e(5)式中,m T 为总的蚀除量;K c 为蚀除量与电能之间的转换系数㊂2 E D D 技术研究现状E D D 技术保持了E D M 技术的基本原理,但由于加工对象不同,仍存在很多差异㊂图3所示为近十年国内外在E D D 技术领域所出版的文献统计(检索并统计于‘科学引文索引(S C I )“㊁‘工程索引(E V 2-E I )“㊁‘中国知网(C N K I )“),可见利用E D D 技术修整超硬磨料砂轮的方法已受到一定的关注㊂根据研究结果,其主要表现为以下几个方面㊂图3 近十年E D D 应用研究出版文献统计2.1 电极选择E D M 技术中所用的电极同样适用于E D D技术㊂S u z u k i 等[11]首先采用ϕ0.5mm 的黄铜丝电极对砂轮进行电火花修整,并将其与磨石修整后的砂轮进行对比,两者对氮化硅陶瓷的磨削力几乎无差别,这说明黄铜丝电极电火花修整效果显著;当然丝电极效率低,成形精度受丝电极直径影响大,为此S u z u k i 等[11]又采用成形石墨电极进行砂轮修整,同时切削刀具对磨损严重的石墨电极进行在线修形,确保砂轮修整精度高,利用修整后的砂轮对陶瓷进行磨削,成形结果好㊁精度高㊂在不同材料电极修整效率的比较中,W a n g等[19]将石墨电极和铜电极进行实验对比,结果显示铜电极的修整效率高于石墨电极的修整效率,但是修整过程中铜电极不可避免会发生电解,使得铜电极表面损耗严重,影响砂轮修整精度,故石墨电极更适合实验使用㊂然而,S a n c h e z 等[20]在利用石墨电极和铜电极修整大粒度磨粒砂轮后提出,石墨颗粒容易在磨料之间发生堵塞,影响磨粒出露,因此实际使用中更趋向于使用铜电极㊂L e e [21]也对铜电极修整砂轮进行了研究,采用1/3砂轮大小99%纯度的铜作为电极,修整的同时加工锰锌铁磁体,与无E D D 修整情况相比,加工效率和加工精度明显提高㊂2.2 放电介质选择采用E D D 技术对金属结合剂超硬磨料砂轮进行修整时,不同的放电介质对修整过程有不同的影响,许多学者在这方面也进行了研究㊂与E D M 技术相似,在实验中研究者们大多采用传统液体作为放电介质㊂S u z u k i 等[11]采用的是J a h n s o n 公司生产的磨削液[11]作为放电介质,其电阻率为83.2Ω㊃c m ,砂轮直接安装在磨床主轴上,避免离线修整后二次安装误差,实现了高精度整形㊂王先逵等[22]采用普通乳化液作为介质在磨床上进行在线修整,取得了满意的修整效果㊂S a n c h e z a 等[23]在实验中采用喷射液体介质方式对超硬磨料砂轮进行修整,并规划喷射路径与电极运动轨迹保持一致,以确保材料去除区域始终存在液体喷射,以防堵塞㊂除传统介质以外,王艳等[24]分别进行了气中电火花放电修整金刚石砂轮和气介质下电火花线切割修整金刚石砂轮的实验研究,证明了气中放电修整㊁修锐金刚石砂轮的可行性㊂C a i 等[25]提出了一种在雾气中放电修整金刚石砂轮的技术,其中介质分别采用了雾状乳化液㊁煤油和离子水,得出利用专用煤油的喷雾修整效率最高,雾状乳化液修锐的砂轮表面形貌最佳的结论㊂洪建军等[26]比较和研究了压缩空气㊁水雾气㊁雾状乳化油三种放电介质对修整过程的影响㊂试验结果表明:压缩空气为介质的修整速度最慢,表面质量最差;雾状乳化油为介质的修整效率及效果最好;水雾气为介质的修整效率与效果接近雾状乳化油㊂2.3 放电参数设计E D D 过程中的热特性问题存在很大的随机性,从某种程度上来说,每个实验存在独立性以及实验参数的复杂耦合性等原因,使得这种热特性现象很难通过确定的电参数来解释㊂W a n g 等[19]对ED D 过程进行了实验分析,得出选择适当的实验电参数可获得高修整效率的结论,适当的电参数一般为较大电流㊁较高电压㊁较低砂轮转速和低脉冲频率,占空比选为50%㊂L e e 等[21]在E D D 过程中设定了峰值电流㊁脉冲持续时间和脉冲间隔,进行持续修整,金属结合剂不断被去除,修整间隙变大,绝缘程度不断提高,电极和砂轮之间的电流不断减小而电压不断增大㊂X i e 等[27]通过不同介质下对比实验研究,发现放电间隙随开路电压的增大而增大,但增大速㊃6522㊃中国机械工程第26卷第16期2015年8月下半月Copyright ©博看网. All Rights Reserved.度非常缓慢;放电去除量也随开路电压的增大而增大,且去除速度快㊂结合统计学的方法,S a n c h e z等[20]根据阿达玛矩阵设计方法进行了20组试验,将峰值电流㊁脉冲持续时间㊁修整持续时间等电参数设定在一定的范围内,利用标准误差和t分布建立了回归方程,使用该方程仅用放电电流和脉冲持续时间就可计算并测定电极磨损量与砂轮材料去除量之间的比值㊂2.4 E D D技术与现代工程理论结合E D D技术作为一个复杂的工程问题,已经不能仅仅依靠传统的分析方法了㊂将E D D技术加以数学描述,形成一组可编程计算的数学模型,再将该模型在计算机中可视化,直观地分析大量物理数据,这一过程已得到学者们的认可并进行了深入研究㊂S a n c h e z等[20]通过测试磨削力的变化情况对粗磨粒砂轮的结合剂电火花去除机理进行了理论建模和分析㊂X u等[28]根据修整参数变量建立了电极补偿模型公式,分析了砂轮形貌与轮廓,并用实验方法测量了磨削力和表面粗糙度,以评估修整后的砂轮㊂E D D作为一种热去除工艺,在修整超硬砂轮时,必须防止超硬磨粒发生碳化或石墨化㊂W e-i n g a r t n e r等[29]建立了一个热电模型,用于计算金刚石内部温度分布情况,结果显示,E D D过程金刚石石墨化不容易发生,只有当磨粒周边被集中放电时金刚石才会被损伤㊂W a n g等[30]在进行气中电火花修整金刚石砂轮时,为了在特定条件(如电压㊁温度㊁热对流一定等)下选择最优参数,利用A N S Y S对温度分布作有限元分析,当切削深度和火花放电点与金刚石修整器之间的距离都在热影响区内时,修整器可以去除软化的金属结合剂㊂3 E D D技术应用不同超硬磨料的砂轮其应用范围也不同, C B N砂轮主要用于黑色金属材料磨削,而金刚石砂轮主要用于脆硬材料磨削㊂传统的金刚石笔修整法[31]或滚轮(C杯形砂轮㊁D C杯形砂轮)修整法[32]都会产生修整器的高磨损率,从而引起砂轮尺寸精度和轮廓精度的降低[33],使得整形㊁修锐工艺成为一个难题[34],限制了金属结合剂超硬磨粒砂轮的使用㊂E D D技术改变了传统修整方法并得到应用㊂3.1 C B N砂轮的修整实际生产中,一般有超过60%的结构零部件为圆柱形零部件,其中不乏一些精密部件,如滚轴㊁推杆和纤维套管等,这些零部件外表面要求精密高效处理㊂针对这一问题,O h m o r i等[35]利用电火花整形技术进行加工使得磨粒明显突出砂轮表面,该技术在无心磨床上进行了测试㊂经过电火花整形,得到了800号青铜铸铁混合结合剂C B N砂轮高精度轮廓,其直线度误差为6μm/ W50mm,圆度误差为2μm/ϕ150mm㊂为得到更高的修整精度,E D D技术很少应用于大粒度C B N砂轮,这是由于砂轮和电极之间的放电间隙小于磨粒突出高度,在修整过程中,很容易引起非导电磨粒与电极的接触㊂O r t e g a等[36]提出了一套修整大粒度磨粒的专有技术,并将E D D修整完的砂轮与机械修整砂轮的方法作比较,前者可将磨削力降低50%,同时磨粒的较高突出使得进给切削深度加大㊂3.2 金刚石砂轮的修整脆硬材料的磨削首先考虑使用金刚石砂轮,但是金属结合剂砂轮用S i C滚轮法修整,效率极低,精度又差㊂王先逵等[37]用E D D技术对ϕ200 mm青铜结合剂金刚石微粉砂轮进行修整,部分磨粒在电火花爆炸力作用下或在周围金属熔化状态下脱落,修锐过程不氧化表面磨粒,修锐后仍能获得较好的磨削工件表面㊂在研究超细磨粒金刚石砂轮中,Z h a n g等[38]采用烧结方式制作500号铸铁基金刚石砂轮并进行E D D整形,能达到较高的修整效率和相对高的修整精度,用修整后的砂轮对氧化铝陶瓷进行孔加工,磨削过程稳定㊂L e e[39]利用E D D技术对4000号铸铁基金刚石砂轮修整进行了研究,并在修整的同时加工锰锌铁磁体,可以降低砂轮表面粗糙度和磨削力㊂C h e n 等[40]采用E D D方法将ϕ4mm圆柱形金刚石砂轮制成半球头形砂轮来磨削石英玻璃,并用该方法来保证磨削后砂轮的半球形几何精度㊂近几年也有学者开始研究大粒度金刚石砂轮的E D D修整㊂W a n g等[30]选用120号~140号金属结合剂金刚石砂轮进行E D D修整,修整效率是机械修整效率的两倍,且修整质量较高㊂3.3 E D D技术的衍生应用E D M作为非传统材料去除的典型方式,被不断深入研究,发展至今日趋成熟,已被应用于非导电超硬材料领域㊂K o n i g等[41]利用在非导电工程陶瓷上涂覆的方法使其导电值达到约100Ω㊃c m㊂类似地,许明明等[42‐43]在非金属基金刚石砂轮表面涂覆导电介质,达到了满意的修整效果㊂I w a i等[44]则在实验中将超细铜粉混入陶瓷结合剂,同时与金刚石颗粒一起制成砂轮毛坯,并㊃7522㊃电火花修整超硬磨料砂轮技术发展现状 余剑武 何利华 黄 帅等Copyright©博看网. All Rights Reserved.成功利用E D D技术将其修整成精密陶瓷结合剂砂轮㊂一些基于电火花原理的新的加工方式也不断出现,其中,线切割电火花(w i r e‐c u t E D M, W E D M)技术是E D M技术应用拓展最为成功的一种技术[45],这种技术同样也符合一种工具电极对金属结合剂砂轮放电的形式,所以也被称为丝电极放电修整技术(w i r ee l e c t r i c a ld i s c h a r g e d r e s s i n g,W E D D)[46]㊂R h o n e y等[47]利用W E D D 技术修整砂轮并同时加工陶瓷材料,修整后砂轮中的金刚石保持性好,磨削力减小20%~40%㊂K o n r a d等[48]提出应用W E D D技术的主要优点是修整切削深度小,金属结合剂去除率高,电极丝和砂轮的相对运行速度大并使热损伤尽量降低㊂T a m a k i等[49]提出了基于电火花原理的新的修整方式 接触式放电修整(e l e c t r o c o n t a c t d i s c h a r g ed r e s s i n g,E C D D)技术,舍去了脉冲电源和自动控制放电间隙装置㊂X i e等[50]利用E C-D D技术实现了脆硬材料的有效磨削,并指出砂轮磨粒的突出受放电电流和放电脉冲的影响很大㊂L u等[51]采用实验验证了E C D D的修整效率在很大程度上依赖于修整参数和放电效率㊂4 E D D存在的问题及发展趋势磨削技术正朝着高效率㊁高精度以及超高精度方向深入,因此对磨床㊁砂轮㊁磨削工艺提出了高要求㊂超硬磨料的出现一方面为高精度磨削提供了一种思路,推动了磨削行业的发展,另一方面也带来了不可忽视的问题 超硬磨料砂轮修整㊂利用E D D技术修整砂轮在应用方面取得的成果在一定程度上得到了认可,其研究的主要领域如图4所示㊂目前的E D D技术还有很多的局限性㊂例如:以电火花腐蚀砂轮金属结合剂,在保证高修整精度的同时修整效率不高;基于热能的作用来蚀除金属结合剂,那么热能同样会作用到电极和磨粒,因此如何保证电极损耗小㊁磨粒无损伤以及金属结合剂的高去除率是需解决的问题;修整过程是一个动态随机过程,电极和砂轮之间存在电场㊁流场,且放电间隙不均匀,因而对修整过程实时监测的辅助性要求高;该技术需要专门的修整装置,在现有的数控磨床上加装电火花放电装置,虽然避免了偏心和砂轮不平衡问题,但是还不能达到工业生产的要求,失去了其实现企业需求的意义㊂因此,为使E D D技术适应现代机床发展的要求(高效㊁高精㊁自动化),可从以下几个方面作为问图4 E D D主要研究领域(括号内数字对应本文章节号)题解决的突破口㊂4.1 砂轮组织研究砂轮是由多种材料经烧结而成的复合体,其中最重要的部分就是结合剂和磨粒㊂E D D技术适用于导电金属结合剂砂轮,但受限于弱导电甚至非导电结合剂砂轮,如树脂结合剂砂轮㊁陶瓷结合剂砂轮等㊂在实际应用中,一般通过检测砂轮表面磨粒的有效出刃高度来评价E D D技术㊂因此,不同于电火花直接加工工件,E D D技术更需要分析并认识砂轮修整后磨粒有效出刃高度及其分布与金属结合剂类型之间的内在关系,以及两者在电参数作用下的热影响,开展并深入对现有砂轮材料的特性研究,包括导电㊁导热等问题,寻找并确定砂轮旋转运动下合理的材料去除机理,为探索高效㊁高精㊁低成本㊁工业应用性强的放电修整技术做好理论准备㊂4.2 新型智能电源研究电源是实现E D D技术的重要硬件之一,而目前在E D D技术的实际应用中仍然沿用非常简单的E D M电源㊂与E D M加工工件不同,E D D加工中砂轮作为被加工对象,在蚀除金属结合剂的同时应使磨粒不受损伤㊂为此,探索砂轮在不同的组织结构㊁不同的金属结合剂类型等情况下的修整电参数设置,根据修整精度和修整效率设计和细分放电回路,修整中在线检测修整过程,自动反馈并调整电参数设置,进一步提高砂轮修整的质量与效率,实现操作简易方便与自动化,是目前E D D技术电源研究的重要方向㊂㊃8522㊃中国机械工程第26卷第16期2015年8月下半月Copyright©博看网. All Rights Reserved.4.3 E D D工艺数据库研究超硬磨料价格昂贵,砂轮修整时间长,这些因素都会使砂轮修整过程投入大量人力㊁物力㊁财力㊂合理选择和优化修整工艺参数是提高修整精度和效率的关键㊂计算机所提供的虚拟环境和数据存储功能为砂轮修整研究提供了便利㊂针对电火花修整砂轮技术,首先需要对已经积累的数据工艺参数进行分析,通过机器学习方法对修整工艺建模并优化工艺参数,以此为基础建立电火花修整工艺数据库㊂在数据库的支撑下,修整系统能推理出合适的放电参数,指导电火花修整超硬砂轮㊂随着计算机的发展,自适应控制功能以及图形化的人机交互系统越来越被重视,数据存储㊁提取和管理等操作变得更容易㊂因此,E D D工艺数据库的研究为实现超硬砂轮电火花修整自动控制软件开发打下了基础㊂虚拟计算环境建立不同于实际问题,它是通过经验积累来自动提高工作性能的,因此参数设置应尽可能符合实际情况,以确保修整过程的可靠性,提高具体实验结论的参考价值㊂4.4 小型智能化修整装置研究砂轮修整的目的是使被磨损的磨粒重新突出,恢复或保持砂轮原来较好的形貌㊂大多数研究人员将砂轮安装到磨床主轴上再进行结合剂去除,这样可以实现高精度,避免了离线修整后砂轮二次安装出现偏心与不平衡㊂然而实验室装置大多为研究人员自主配置加装,还未达到工业生产所要求的自动化水平,因此,需要开发电火花修整在线或在机修整装置㊁检测装置,实现砂轮边磨削边修整或磨削与修整都基于同一次砂轮安装,提高修整效率㊁修整精度,同时实时监测砂轮形貌㊁火花放电间隙㊁磨削力等参数,保证修整质量并对修整质量实时评价,及时修正㊂装置应小型化㊁集成化㊁智能化,通用性强,安装与卸载方便㊂5 结语超硬磨料砂轮传统修整方法已经很难适应现代高效㊁高精以及超高精磨削技术的发展,产品精度要求的提高迫使研究人员实现技术革新㊂E D M技术的发展带动了E D D技术的发展㊂然而超硬磨料砂轮作为被加工对象,以及E D D技术作为辅助装置作用于砂轮,需要进行新的探索㊂砂轮作为复合材料,其物理化学特性受到高温㊁挤压等多种因素的影响,研究适用于旋转砂轮的新的电气或非电气工艺参数,通过仿真预测和实验验证相结合手段分析砂轮结合剂的放电通道㊁去除机理,优化不同的工艺参数使得修整效率和修整精度得到改善是十分必要的㊂现代数控技术的发展给E D D技术自动化发展增加了可行性,大大提高了E D D技术的可控性㊂但是超硬磨料砂轮的电火花加工修整技术还需要更加深入细致的研究,实现高效㊁高精㊁智能㊁工业性强的修整装置是今后超硬磨料砂轮电火花修整技术发展的方向㊂参考文献:[1] 郭东明,刘战强,蔡光起,等.中国先进加工制造工艺与装备技术中的关键科学问题[J].数字制造科学,2005,3(4):1‐36.G u oD o n g m i n g,L i uZ h a n q i a n g,C a iG u a n g q i,e t a l.C r u c i a lT e c h n i c a lP r o b l e m si n C h i n a’s A d v a n c e dm a c h i n i n g,M a n u f a c t u r i n g a n dR e l e v a n tE q u i p m e n tT e c h n o l o g i e s[J].M a n u f a c t u r e S c i e n c e,2005,3(4):1‐36.[2] 雷源忠,黎明.关于发展先进制造技术基础性研究的策略构想[J].中国科学基金,1996(1):27‐30.L e iY u a n z h o n g,L iM i n g.S t r a t e g y f o r t h eB a s i cR e-s e a r c h o n D e v e l o p i n g A d c a n c e d M a n u f a c t u r i n gT e c h n o l o g y[J].B u l l e t i no fN a t i o n a lS c i e n c eF o u n-d a t i o no fC h i n a,1996(1):27‐30.[3] S a l e hT,R a h m a n M S,L i m H S,e t a l.D e v e l o p-m e n t a n dP e r f o r m a n c eE v a l u a t i o no f a n U l t r a p r e c i-s i o n E L I D G r i n d i n g M a c h i n e[J].M a t e r i a l s P r o-c e s s i n g T e c h n o l o g y,2007,192‐193:287‐291.[4] 胡德金,蔡兰蓉,贾妍.超硬磨料砂轮电加工修整技术及其最新进展[C]//2007年中国机械工程学会年会之第12届全国特种加工学术会议论文集.长沙:中国机械工程学会特种加工分会,2007:142‐146.[5] T o n s h o f fH K,K a r p u s c h e w s k i B,M a n d r y s cT,e ta l.G r i n d i n g P r o c e s sA c h i e v e m e n t sa n dT h e i rC o n-s e q u e n c e s o n M a c h i n eT o o l sC h a l l e n g e s a n dO p p o r-t u n i t i e s[J].C I R PA n n a l s‐M a n u f a c t u r i n g T e c h n o l o-g y,1998,47(2):651‐668.[6] 陈根余,谢小柱,李力钧,等.超硬磨料砂轮修整与激光修整新进展[J].金刚石与磨料磨具工程, 2002(2):8‐12.C h e nG e n y u,X i eX i a o z h u,L iL i j u n,e t a l.S u p e r a-b r a‐s i v eG r i n d i n g W h e e l D r e s s i n g a n dL a s e rT r u i n gP r o g r e s s[J].D i a m o n d&A b r a s i v e s E n g i n e e r i n g, 2002(2):8‐12.[7] 今井祥人.电火花加工 学以致用[M].郭常宁,译.北京:机械工业出版社,2012.[8] 刘志东.特种加工[M].北京:北京大学出版社,2013.[9] T s a iH C,Y a nB H,H u a n g F Y.E D M P e r f o r m-a n c e o fC r/C u‐b a s e dC o m p o s i t eE l ec t r ode s[J].I n t.㊃9522㊃电火花修整超硬磨料砂轮技术发展现状 余剑武 何利华 黄 帅等Copyright©博看网. All Rights Reserved.J.o f M a c h i n e T o o l sa n d M a n u f a c t u r e,2003,43(3):245‐252.[10] K a l p a j i a n sS,S c h m i d s rSR.M a n u f a c t u r i n g P r o-c e s s e df o r E n g i n e e r i n g M a t e r i a l s[M].4t h e d.N e wJ e r s e y:P r e n t i c eH a l l,2003. [11] S u z u k iK,U e m a t s u T,N a k a g a w aT.O n‐m a c h i n eT r u e i n g/D r e s s i n g o f M e t a lB o n d G r i n d i n g w h e e l sb y E l ec t r o‐d i s c h a r g eM a c h i n i n g[J].C I R PA n n a l s‐M a n u f a c t u r i n g T e c h n o l o g y,1987,36(1):115‐118.[12] C h e nD Z,T i a n Y Y.F o r m D r e s s i n g o f M e t a l‐b o n d e dD i a m o n d W h e e l[C]//P r oc e ed i n g so ft h eI n t e r n a t i o n a lS y m p o s i u m o n E l e c t r o‐m a c h i n i n g(I S E M)I X.N a g o y a:J a p a nS o c i e t y o fE l e c t r i c a l‐M a c h i n i n g E n g i n e e r s,1989:18‐21. [13] K i mJD,L e eES,L e eCY.C r a c kG e n e r a t i o n a n dt h eE f f e c t o f I n‐p r o c e s sE l e c t r o‐d i s c h a r g eD r e s s i n gi nG r i n d i n g S i n g l eC r y s t a lM g O[J].I n t e r n a t i o n a lJ o u r n a l o fM e c h a n i c a l S c i e n c e s,1995,37(6):569‐583.[14] M o h r iN,S a i t oN,H i g a s h iM,e t a l.AN e wP r o c e s so fF i n i s h M a c h i n i n g o nF r e eS u r f a c eb y E D M M e t h-o d s[J].C I R P A n n a l s‐M a n u f a c t u r i n g T e c h n o l o g y,1991,40(1):207‐210.[15] L e eES,A h nSO.P r e c i s i o nS u r f a c eG r i n d i n g o fM n‐Z nF e r r i t ew i t hI n‐p r o c e s sE l e c t r o‐d i s c h a r g eD r e s s i n g(IE D D)[J].I n t e r n a t i o n a l J o u r n a l o fM a-c h i n eT o o l s&M a n u f a c t u r e,1999,39(10):1655‐1671.[16] 黄兆祥,熊天渝,王世民.电火花放电能量测量及放电过程分析[J].工程热物理学报,1982,3(4):394‐399.H u a n g Z h a o x i a n g,X i o n g T i a n y u,W a n g S h i m i n g.S p a r kE n e r g y M e a s u r i n g T e c h n o l o g y a n dP e r f o r m-a n c eA n a l y s i s o f S p a r kD i s c h a r g eP r o c e s s f o rE l e c-t r i c S p a r k I g n i t i o n[J].J o u r n a lo f E n g i n e e r i n gT h e r m o p h y s i c s,1982,3(4):394‐399.[17] M a r i nG,P a v e lK,M i l e n k oS,e t a l.I n f l u e n c eo fD i s c h a r g eE n e r g y o n M a c h i n i n g C h a r a c t e r i s t i c s i nE D M[J].J o u r n a l o fM e c h a n i c a l S c i e n c e a n dT e c h-n o l o g y,2012,26(1):173‐179.[18] S h a oJ,Z h a n g Y Q.S t u d y o nt h eP o s i t i v eE D MB a s e do nt h eF i e l dE m i s s i o nT h e o r y[J].A p p l i e dM e c h a n i c s a n d M a t e r i a l s,2014,494/495:424‐427.[19] W a n g X K,Y i n g B G,L i u W G.E D M D r e s s i n go fF i n eG r a i nS u p e rA b r a s i v eG r i n d i n g W h e e l[J].J o u r n a l o f M a t e r i a l s P r o c e s s i n g T e c h n o l o g y,1996,62(4):299‐302.[20] S a n c h e zJ A,O r t e g a N,L o p e z D L N,e ta l.A n a l y s i s o f t h eE l e c t r oD i s c h a r g eD r e s s i n g(E D D)P r o c e s so fL a r g e‐g r i tS i z eC B N G r i n d i n g W h e e l s[J].A d v a n c e d M a n u f a c t u r i n g T e c h n o l o g y,2006,29(7/8):688‐694.[21] L e eES.S u r f a c eC h a r a c t e r i s t i c s i nt h eP r e c i s i o nG r i n d i n g o fM n‐Z nF e r r i t ew i t h I n‐p r o c e s sE l e c t r o‐d i s c h a r g eD re s s i n g[J].J o u r n a lof M a t e r i a l sP r o-c e s s i n g T e c h n o l o g y,2000,104(3):215‐225.[22] 王先逵,应宝阁,刘为刚,等.金属结合剂金刚石砂轮的电火花整形[J].航空精密制造技术,1995(2):19‐23.W a n g X i a n k u i,Y i n g B a o g e,L i u W e i g a n g,e ta l.M i c r o s c o p i cS t u d y o fE D M D r e s s i n g f o rD i a m o n dP o w d e r G r i n d i n g W h e e l[J].A v i a t i o n P r e c i s i o nM a n u f a c t u r i n g T e c h n o l o g y,1995(2):19‐23.[23] S a n c h e z a JA,P o m b o I,C a b a n e s I,e t a l.E l e c t r i-c a lD i s c h a r g eT r u i n g o fM e t a l‐b o nde dC B N W h e e l-s u s i n g S i n g l e‐p o i n t E l e c t r o d e[J].I n t e r n a t i o n a lJ o u r n a l o f M a c h i n eT o o l s&M a n u f a c t u r e,2008,48(3/4):362‐370.[24] 王艳,邓琦林,胡德金,等.金刚石砂轮修整新技术的研究[J].电加工与模具,2003(5):1‐5.W a n g Y a n,D e n g Q i l i n,H uD e j i n,e ta l.S t u d y o nN e w T e c h n o l o g y o fD i a m o n d W h e e lD r e s s i n g[J].E l e c t r o‐m a c h i n i n g&M o u l d,2003(5):1‐5.[25] C a iL R,L i M,Y a n g H,e ta l.E l e c t r i c a lD i s-c h a r g eD r e s s i n g M e t a l‐b o nde d D i a m o n d G r i n d i n gW h e e l sw i t hV a r i o u sM e d i u m s[J].J o u r n a l o fE n-g i n e e r i n g M a n u f a c t u r e,2013,227(1):102‐108.[26] 洪建军,蔡兰蓉,胡德金.不同介质中电火花修整金属基金刚石砂轮的研究[J].电加工与模具,2008(6):27‐30.H o n g J i a n j u n,C a iL a n r o n g,H uD e j i n.A nE x p e r i-m e n t a lC o m p a r eo nD i s c h a r g e M e d i u m s U s e df o rE l e c t r i c a lD i s c h a r g e M a c h i n i n g(E D M)o f M e t a l‐b o n d e dD i a m o n d G r i n d i n g W h e e l[J].E l ec t r o m a-c h i n i n g&M o u l d,2008(6):27‐30.[27] X i e J,T a m a k i J.A nE x p e r i m e n t a l S t u d y o nD i s-c h a r g e M ed i u m s U se df o r E l e c t r o‐c o n t a c t D i s-c h a r g eD r e s s i n g o fM e t a l‐b o nde dD i a m o n dG r i n d-i n g W h e e l[J].J o u r n a lo f M a t e r i a l s P r o c e s s i n gT e c h n o l o g y,2008,208(1/3):239‐244. [28] X u M M,L i DD,H uDJ,e t a l.L a m i n a t e dM a n-u f a c t u r i n g a n d M i l l i n g E l e c t r i c a lD i s c h a r g eD r e s s-i n g o f M e t a l‐b o n d e d D i a m o n d G r i n d i n g W h e e l s[J].J o u r n a lo fE n g i n e e r i n g M a n u f a c t u r e,2012,226(B1):137‐144.[29] W e i n g a r t n e rE,R o t hR,K u s t e rF,e t a l.E l e c t r i-c a lD i s c h a r g eD r e s s i n g a n dI t s I n f l u e n c eo n M e t a lB o n d e dD i a m o n d W h e e l s[J].C I R P A n n a l s‐M a n u-f a c t u r i ng T e ch n o l o g y,2012,61(1):183‐186.[30] W a n g Y,Z h o uXJ,H uDJ.A nE x p e r i m e n t a l I n-v e s t i g a t i o no fD r y‐e l e c t r i c a l D i s c h a r g eA s s i s t e d t r u-㊃0622㊃中国机械工程第26卷第16期2015年8月下半月Copyright©博看网. All Rights Reserved.。
2015年纳入973计划(含重大科学研究计划)结题验收项目清单

人多能干细胞多能性维持和发育潜能差异的 系统研究
康九红
2011CB965300
干细胞分化与重新编程中蛋白质的结构与功 能研究
2011CBA00300 全量子网络
2011CBA01000
诱导多功能干细胞(iPS)猪与小型猪疾病 模型
孙方霖 姚期智 刘忠华
孟安明
2011CB944500
雌性生育力维持调节机制研究及生殖资源库 建立
乔杰
2011CB944600
植物减数分裂过程中染色体相互作用的分子 机理
马红
2011CB946100 胸腺的起源、发生、维持与退化
2011CB952000
大尺度土地利用/覆盖变化对区域气候影响 的研究
张毓 郭维栋
2011CB965100
庞雄奇
2011CB201200 深部煤炭开发中煤与瓦斯共采理论
谢和平
2011CB201300
中低阶煤分级转化联产低碳燃料和化学品的 基础研究
刘振宇
2011CB201500
可燃固体废弃物能源化高效清洁利用机理研 究
严建华
2011CB301700
超高速低功耗光子信息处理集成芯片与技术 基础研究
陈建平
2011CB301900
2011CB932500
ቤተ መጻሕፍቲ ባይዱ
功能导向的纳米超分子组装体结构调控与可 控制备
刘育
2011CB932900
新型图像传感器及并行图像处理芯片的研究 与集成
2011CB933000 碳基无掺杂纳电子器件和集成电路
2011CB933300
基于纳米结构的新型柔性纤维基可编织光伏 器件重要基础问题研究
郑厚植 彭练矛 邹德春
中枢神经损伤修复与功能重建中胶质细胞的 作用及意义
973计划2011-2012年项目清单

附件:973计划2011-2012年项目清单项目编号项目名称项目首席科学家项目第一承担单位项目依托部门2011CB012800多时空脉冲强磁场成形制造基础研究李亮华中科技大学教育部2011CB012900 新型能源装备中大型锻件均质化热制造的科学基础李建国上海交通大学上海市科学技术委员会教育部2011CB013000激光微纳制造新方法和尺度极限基础研究姜澜北京理工大学工业和信息化部2011CB013100 高性能LED制造与装备中的关键基础问题研究刘岩深圳清华大学研究院深圳市科技工贸和信息化委员会2011CB013200 空间光学先进制造基础理论及关键技术研究李圣怡中国人民解放军国防科学技术大学中国人民解放军国防科学技术大学2011CB013300 人体运动功能重建的生机电一体化科学基础朱向阳上海交通大学上海市科学技术委员会教育部2011CB013400机械装备再制造的基础科学问题张洪潮大连理工大学教育部2011CB013500 大型水利水电工程高陡边坡全生命周期性能演化与安全控制周创兵武汉大学教育部湖北省科学技术厅2011CB013600 近海重大交通工程地震破坏机理及全寿命性能设计与控制杜修力广州大学广东省科学技术厅中国地震局—1—项目编号项目名称项目首席科学家项目第一承担单位项目依托部门2011CB013700深海工程结构的极端环境作用与全寿命服役安全滕斌大连理工大学教育部2011CB013800 城市轨道交通地下结构性能演化与感控基础理论朱合华同济大学上海市科学技术委员会教育部2012CB113900 主要蔬菜重要品质性状形成的遗传机理与分子改良黄三文中国农业科学院蔬菜花卉研究所农业部2012CB114000主要粮食作物重大病害控制的基础研究彭友良中国农业大学教育部2012CB114100害虫暴发成灾的遗传与行为机理康乐中国科学院动物研究所中国科学院2012CB114200作物应答盐碱胁迫的分子调控机理郭岩中国农业大学教育部2012CB114300作物水分高效利用机理与调控的基础研究宋纯鹏河南大学河南省科学技术厅2012CB114400 海水养殖动物主要病毒性疫病爆发机理与免疫防治的基础研究宋林生中国科学院海洋研究所山东省科学技术厅中国科学院2012CB114500木材形成的调控机制研究卢孟柱中国林业科学研究院国家林业局2012CB114600 家蚕关键品质性状分子解析及分子育种基础研究夏庆友西南大学重庆市科学技术委员会教育部2012CB214700 中国南方古生界页岩气赋存富集机理和资源潜力评价肖贤明中国科学院广州地球化学研究所中国科学院—2—项目编号项目名称项目首席科学家项目第一承担单位项目依托部门2012CB214800 中国早古生代海相碳酸盐岩层系大型油气田形成机理与分布规律刘文汇中国石油化工股份有限公司石油勘探开发研究院中国石油化工集团公司2012CB214900低品质煤大规模提质利用的基础研究刘炯天中国矿业大学江苏省科学技术厅2012CB215000 绿色低碳导向的高效炼油过程基础研究卢春喜中国石油大学(北京)中国石油天然气集团公司2012CB215100大规模风力发电并网基础科学问题研究袁小明华中科技大学教育部2012CB215200 智能电网中大规模新能源电力安全高效利用基础研究刘吉臻华北电力大学教育部2012CB215300 草本能源植物培育及化学催化制备先进液体燃料的基础研究马隆龙中国科学院广州能源研究所中国科学院广东省科学技术厅2012CB215400碳基燃料固体氧化物燃料电池体系基础研究韩敏芳中国矿业大学(北京)教育部2012CB215500 基于贵金属替代的新型动力燃料电池关键技术和理论基础研究孙公权中国科学院大连化学物理研究所中国科学院2012CB315600 新型宽带大动态毫米波器件及应用中的微波光子学基础研究郑小平清华大学教育部2012CB315700 面向宽带泛在接入的微波光子器件与集成系统基础研究纪越峰北京邮电大学教育部2012CB315800 面向服务的未来互联网体系结构与机制研究刘韵洁中国科学院计算技术研究所中国科学院—3—项目编号项目名称项目首席科学家项目第一承担单位项目依托部门2012CB315900 可重构信息通信基础网络体系研究兰巨龙中国人民解放军信息工程大学河南省科学技术厅2012CB316000能效与资源优化的超蜂窝移动通信系统基础研究牛志升清华大学教育部2012CB316100 高移动性宽带无线通信网络重点理论基础研究范平志西南交通大学教育部四川省科学技术厅2012CB316200海量信息可用性基础理论与关键技术研究李建中哈尔滨工业大学工业和信息化部2012CB316300面向公共安全的社会感知数据处理谭铁牛中国科学院自动化研究所中国科学院2012CB316400 面向公共安全的跨媒体计算理论与方法庄越挺浙江大学教育部浙江省科学技术厅2012CB316500基于新一代测序的生物信息学理论与方法张学工清华大学教育部2012CB416600 华北克拉通前寒武纪重大地质事件与成矿翟明国中国科学院地质与地球物理研究所中国科学院2012CB416700华夏地块中生代陆壳再造与巨量金属成矿蒋少涌南京大学教育部2012CB416800 我国富铁矿形成机制与预测研究张招崇中国地质科学院矿产资源研究所国土资源部2012CB416900 我国主要人工林生态系统结构、功能与调控研究朱教君中国科学院沈阳应用生态研究所中国科学院—4—项目编号项目名称项目首席科学家项目第一承担单位项目依托部门2012CB417000 长江中游通江湖泊江湖关系演变及环境生态效应与调控杨桂山中国科学院南京地理与湖泊研究所水利部中国科学院2012CB417100 典型流域陆地生态系统-大气碳氮气体交换关键过程、规律与调控原理郑循华中国科学院大气物理研究所中国科学院2012CB417200 我国持续性重大天气异常形成机理与预测理论和方法研究翟盘茂中国气象科学研究院中国气象局2012CB417300 西南印度洋洋中脊热液成矿过程与硫化物矿区预测周怀阳同济大学教育部上海市科学技术委员会2012CB417400 热带太平洋海洋环流与暖池的结构特征、变异机理和气候效应王凡中国科学院海洋研究所中国科学院山东省科学技术厅2012CB517500脂代谢紊乱导致脂肪肝及高脂血症发生的机制管又飞北京大学教育部2012CB517600 常见肾小球疾病发病机制及其早期诊断刘志红中国人民解放军南京军区南京总医院中国人民解放军总后勤部卫生部江苏省科学技术厅2012CB517700慢性肾脏病进展的机制研究侯凡凡南方医科大学广东省科学技术厅2012CB517800 环境代谢因素致高血压机制及其干预措施的研究祝之明中国人民解放军第三军医大学中国人民解放军总后勤部卫生部重庆市科学技术委员会2012CB517900 儿童孤独症的遗传基础及其致病的机制研究夏昆中南大学湖南省科学技术厅教育部—5—项目编号项目名称项目首席科学家项目第一承担单位项目依托部门2012CB518000 重大心血管疾病相关GPCR新药物靶点的基础研究肖瑞平北京大学教育部2012CB518100 严重创伤重要组织器官修复再生的细胞与分子机制研究付小兵中国人民解放军总医院中国人民解放军总后勤部卫生部2012CB518200 高原低氧环境的快速习服与长期适应机制研究范明中国人民解放军军事医学科学院基础医学研究所中国人民解放军总后勤部卫生部2012CB518300 前列腺癌分子机制与干预的研究孙颖浩中国人民解放军第二军医大学中国人民解放军总后勤部卫生部上海市科学技术委员会2012CB518400 治疗心血管疾病有效方剂组分配伍规律研究张伯礼天津中医药大学国家中医药管理局天津市科学技术委员会2012CB518500 经穴效应循经特异性规律及关键影响因素基础研究梁繁荣成都中医药大学国家中医药管理局四川省科学技术厅2012CB518600 基于微血管病变性疾病的营卫“由络以通、交会生化”研究吴以岭河北以岭医药研究院有限公司国家中医药管理局河北省科学技术厅2012CB518700 重要病原菌与宿主相互作用分子机制的研究戈宝学同济大学教育部上海市科学技术委员会2012CB518800 动物重要病原菌功能基因组与分子致病机理研究周锐华中农业大学教育部湖北省科学技术厅2012CB518900病毒与细胞相互作用导致炎症的基础研究吴建国武汉大学教育部—6—项目编号项目名称项目首席科学家项目第一承担单位项目依托部门2012CB519000 重要病毒持续性感染形成和维持的分子机制研究袁正宏复旦大学教育部上海市科学技术委员会2012CB619100 新型医用材料的功能化设计及生物适配基础科学问题研究王迎军华南理工大学教育部2012CB619200 高性能近红外InGaAs探测材料基础研究及其航天应用验证龚海梅中国科学院上海技术物理研究所中国科学院上海市科学技术委员会2012CB619300 全组分可调III族氮化物半导体光电功能材料及其器件应用沈波北京大学教育部2012CB619400铁性智能材料的高性能化研究任晓兵西安交通大学教育部2012CB619500 航空高性能铝合金材料的基础研究张新明中南大学湖南省科学技术厅教育部2012CB619600 先进金属基复合材料制备科学基础张荻上海交通大学上海市科学技术委员会2012CB719700城市高层建筑重大火灾防控关键基础问题研究孙金华中国科学技术大学中国科学院公安部2012CB719800 城市固体废弃物填埋孕育环境灾害与可持续防控的基础研究陈云敏浙江大学教育部浙江省科学技术厅2012CB719900 高分辨率遥感数据精处理和空间信息智能转化的理论与方法单杰武汉大学教育部2012CB720000行星表面精确着陆导航与制导控制问题研究崔平远北京理工大学工业和信息化部—7—项目编号项目名称项目首席科学家项目第一承担单位项目依托部门2012CB720100 大型客机座舱内空气环境控制的关键科学问题研究陈清焰天津大学教育部天津市科学技术委员会2012CB720200大型客机主要气动噪声机理及先进控制方法研究孙晓峰北京航空航天大学工业和信息化部2012CB720300 乙炔法聚氯乙烯生产过程的高效、节能、减排科学基础张金利石河子大学新疆生产建设兵团科学技术局2012CB720400钢铁生产过程高效节能基础研究张欣欣北京科技大学教育部2012CB720500 化工过程物质与能量高效利用的集成优化基础研究钱锋浙江大学教育部浙江省科学技术厅2012CB720600基于核酸的重大疾病诊断新策略和新技术研究周翔武汉大学教育部2012CB720700 中国语言相关脑功能区与语言障碍的关键科学问题研究谭力海香港大学深圳研究院深圳市科技工贸和信息化委员会2012CB720800 食品加工过程安全控制理论与技术的基础研究陈坚江南大学教育部江苏省科学技术厅2012CB720900 脆弱性硅酸盐质文化遗产保护关键科学与技术基础研究罗宏杰中国科学院上海硅酸盐研究所上海市科学技术委员会中国科学院国家文物局2012CB721000微生物药物创新与优产的人工合成体系冯雁上海交通大学教育部—8—项目编号项目名称项目首席科学家项目第一承担单位项目依托部门2012CB721100 新功能人造生物器件的构建与集成赵国屏中科院上海生科院中国科学院上海市科学技术委员会2012CB821200 空间合作目标运动再现中跨尺度控制的前沿数学问题贾英民北京航空航天大学工业和信息化部2012CB821300 光频标关键物理问题与技术实现高克林中国科学院武汉物理与数学研究所中国科学院2012CB821400 高通量中子散射在凝聚态物质磁相互作用方面的前沿研究戴鹏程中国科学院物理研究所中国科学院2012CB821500 高分子非晶液-固转变的基本问题研究安立佳中国科学院长春应用化学研究所中国科学院2012CB821600 若干重要元素的有机化学前沿周其林南开大学教育部天津市科学技术委员会2012CB821700有机分子基框架多孔材料的前沿研究苏成勇中山大学教育部2012CB821800 射电波段的前沿天体物理课题及FAST早期科学研究李菂中国科学院国家天文台中国科学院2012CB821900 四亿年以来中国陆地生物群演变及其与环境的关系周忠和中国科学院古脊椎动物与古人类研究所中国科学院2012CB822000晚中生代温室地球气候-环境演变王成善中国地质大学(北京)教育部2012CB822100肿瘤的糖化学生物学前沿研究叶新山北京大学教育部—9—。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
项目名称:多时空脉冲强磁场成形制造基础研究首席科学家:李亮华中科技大学起止年限:2011.11-2016.8依托部门:教育部一、关键科学问题及研究内容2.1 拟解决的关键科学问题本项目针对航空航天领域中关键复杂板金构件精确塑性流动控制成形、多层空心板结构的强磁场扩散与胀形、壁板结构强磁场诱导成形、复杂管件成形与连接等共性关键技术问题,以多时空脉冲强磁场的调控规律、耦合高能磁场与温度场条件下的高应变速率对组织结构演变和内应力分布的影响、时空分布的力场-热场-应变场耦合作用及其对材料成形成性控制为探索和认识的突破点,揭示基于多时空脉冲强磁场的成形制造过程的科学规律,建立和发展控形与控性相结合的柔性成形制造新原理和核心技术体系。
1)多级多向脉冲强磁场的时空分布规律及其成形力场的调控传统电磁成形技术所使用设备存在能量低、磁场低、线圈强度低、线圈结构单一,无法满足复杂结构工件的成形成性要求,为此提出多级多向脉冲强磁场电磁成形系统方案,以实现工件多级加载、分区成形以及模具夹具电磁一体化设计。
其面临的主要难点和拟解决的关键科学问题包括:研究多级多向线圈系统磁场与电磁力时空分布,解决电磁场、力场、温度场和位移场间耦合分析难题;研究高场强磁体线圈结构优化设计与增强技术,解决特定空间分布磁场的实现、线圈结构与布局最优化等难题;研究多模块脉冲电源协同充放电与时序控制控制技术,解决模块化电源与多时序控制的难题。
在解决上述关键科学的基础上,建立多级多向线圈高速电磁成形系统理论与方法。
2)多时空脉冲强磁场作用下材料流动规律及成形成性控制在多时空脉冲强磁场作用下,金属材料不仅产生高应变速率变形,同时还存在着时空分布的力场-温度场-应变场间的相互作用,这将使金属材料的塑变流动行为及性能发生显著的变化,并存在着与准静态变形不同的缺陷生成和湮灭机制,是一个高度非线性的瞬态问题。
揭示这一过程的科学规律,是实现轻金属材料的成形成性制造的基础。
其面临的主要难点和拟解决的关键科学问题包括:材料特性、工件形状、成形力及成形速度等都会影响塑性流动的均匀性,研究金属材料的本构模型、塑变流动规律、金属材料连接的界面扩散机制、以及金属材料成形过程中的缺陷生成和湮灭机制;探讨成形过程中残余应力的分布与控制方法、材料均匀性流动控制方法、以及成形精度控制方法;研究多时空脉冲对成形构件服役性能的影响;构建高应变速率及多场耦合下的金属材料成形过程的物理模型,并通过数值模拟技术,实现电磁成形工艺的优化。
3)脉冲强磁场驱动下材料高速变形的微观结构演变与控制材料在脉冲强磁场作用下成形是在电磁场、涡流场、温度场和力场的交互作用下的高速变形,材料的变形行为既不同于准静态下的低速变形,也不同于常规的由单一力场作用的高速变形(如Hopkinson杆实验),特别是对于高温变形,强磁场具有促进固态相变和增强原子固态扩散过程的效应。
因此,在多场作用下,金属材料高速变形会将产生不同常规的结构变化,这些结构变化进而影响电磁成形后零部件的服役性能。
因此需要研究材料在脉冲强磁场作用下的微结构特征,成形工艺对材料组织结构的影响,如位错的萌生与运动、孪晶、剪切带、亚结构的形成条件与影响因素;研究电磁高速变形下残余应力形成机理、影响因素、及其在服役过程中的稳定性;研究电磁连接过程中的原子扩散行为及异类材料的复合机理;研究电磁成形中材料的断裂行为与失效机制。
通过对典型结构件在电磁高速变形下组织结构的系统分析,揭示金属材料在脉冲强磁场作用下的变形机理。
通过对在不同工艺下成形,具有不同微结构特征的成形件的力学性能测试,建立电磁成形工艺-微观结构-宏观力学性能三者之间的关系,为脉冲强磁场成形系统设计及成形工艺的优化提供理论指导。
2.2 主要研究内容1)多级多向脉冲强磁场系统结构布局优化及设计准则研究传统电磁成形能量低、成形能力有限,难以实现大尺度、复杂构件的高精度成形,为此,提出建立多级多向脉冲强磁场电磁成形系统。
针对不同成形结构,研究磁场与电磁力时空分布规律,提出磁场与电磁力特定时空分布的实现方法;研究在不同材质与不同结构中,磁场穿透与涡流在工件及模具中的分布规律;揭示工件运动及变形过程中磁能与动能转换关系;研究实现上述功能的多级多向脉冲强磁场系统建模,提出高场强电磁线圈以及高功率密度、高可靠性模块化脉冲电源与时序控制系统设计;建立多级多向线圈高速电磁成形系统理论与方法。
具体研究内容包括:多级多向线圈系统及磁场时空分布与电磁力的调控复杂结构中磁场穿透、涡流分布以及能量转换规律多级多向脉冲强磁场系统建模与设计准则高性能、轻量化构件多时空脉冲强磁场可工程应用的集成科学基础研究2)多时空脉冲强磁场作用下的材料宏观成形过程的基础问题研究针对航空航天领域轻质合金板管零件变形量大、材料成形性能差,导致常规成形方法难以精确成形等问题,系统开展轻合金在多时空脉冲强磁场下快速成形的机理、特点、性能影响机制和影响规律等基本问题的研究。
围绕关键科学问题,建立金属材料在高速变形下的本构模型,揭示塑变流动规律,掌握金属材料连接的界面扩散机制、以及金属材料成形过程中的缺陷生成和湮灭机制;研究脉冲强磁场作用下的构件内应力演化及残余应力分布规律,建立壁板脉冲强磁场强化、调形与成形及其路径规划的理论方法;研究多时空脉冲对成形构件服役性能的影响,探索高速成形过程控制方法,实现成形工艺优化。
具体研究内容如下: 多时空脉冲强磁场作用下的材料塑性流动行为及其精确成形控制多时空脉冲强磁场驱动材料超塑性流动及超塑/扩散连接机理时空脉冲强磁场诱导材料流动的精确调形与调性多时空脉冲强磁场驱动材料局部流动行为及复合界面控制3)电磁驱动高速变形下材料的微观结构演变规律及性能研究针对我国航空航天运载器常用的典型铝合金及钛合金,系统研究这两类材料在电磁高速变形条件下微结构特征及变形机理,以及微观结构对材料力学性能的影响规律。
重点研究典型铝合金和钛合金在电磁高速变形作用下不同晶体缺陷(位错、孪晶、绝热剪切带)的形成条件及影响因素,研究电磁驱动下涡流和温度的交互作用对材料的变形行为和微观组织结构的影响;研究电磁高速变形作用下材料的断裂行为失效机制。
此外,通过对在不同工艺下成形,具有不同微结构特征的成形件的力学性能测试,建立成形工艺-组织结构-材料性能之间的关系。
主要研究内容包括:电磁驱动高速变形下的材料微结构演变规律及变形机理电磁驱动高速变形下材料微结构的温度响应规律电磁驱动高速变形下材料的断裂行为及失效准则电磁高速成形后材料的力学性能与微观结构的关系二、预期目标3.1 总体目标针对脉冲强磁场成形技术在板管零件制造方面的巨大技术优势和基础薄弱的现状,围绕我国航空航天运载器对高性能、高可靠性板管构件重大需求,通过对多级多向脉冲强磁场成形技术装备原型的创新设计,全面揭示多时空脉冲强磁场作用下的塑性流动、扩散复合及组织结构演变等科学规律,建立以控形与控性相结合的脉冲强磁场柔性成形制造新原理和核心技术体系,实现传统电磁成形的辅助成形向超常能场驱动下的精确塑性流动控制的直接成形的跃升,实现我国板管零件成形制造能力的突破与跨越,适应复杂、高性能、大尺寸以及难变形材料板管零件的成形成性要求,强有力地支撑国家安全与国民经济的可持续发展。
3.2 五年预期目标1)理论研究方面:完善并建立多时空脉冲强磁场成形制造的理论体系,解决复杂板管零件成形制造过程的科学问题,揭示电磁驱动高速变形下材料的微观结构演变规律及变形机制,使我国的多时空脉冲强磁场成形制造研究水平跻身国际前列。
(1)建立多时空脉冲电磁力场的设计理论与方法,在多场耦合分析及特定成形力场的设计、高强度磁体设计与结构优化、多模块电源与时序控制等理论分析与设计方面取得突破;(2)揭示多时空脉冲强磁场对材料大变形过程的塑性流动及其缺陷形成的影响规律,揭示成形零件形状与质量与电磁成形工艺参数和电磁力场时空分布间规律,发展一种复杂板金构件精确塑性流动控制成形方法。
(3)揭示多时空脉冲强磁场的加载作用与路径对小变形过程的变形几何学规律的影响规律,阐明脉冲强磁场作用下的构件内应力演化及残余应力分布规律,建立基于误差补偿反馈的零件外形调控方法,发展一种基于调形调性的壁板和蒙皮结构的抗疲劳制造方法。
(4)揭示强磁场驱动作用下材料超塑性流动规律和界面扩散行为规律,阐明磁场、温度场和力场耦合作用下的超塑性变形微观组织和缺陷演变规律,揭示多场耦合作用对超塑变形机制和扩散动力学的影响,提出利用强磁场驱动作用下的空心结构制造新方法。
(5)揭示脉冲强磁场对材料局部塑性流动及其缺陷形成的影响规律,提出异型管材零件脉冲强磁场成形制造新方法。
(6)阐明电磁驱动高速变形下材料的微观结构演变规律,揭示材料在多场交互作用下的高速变形机理和断裂失效机制。
2)技术应用方面:为我国航空航天运载器中的一些关键板管零件的高性能、高效率和高品质制造提供核心技术,建立复杂板管零件多时空脉冲强磁场制造技术体系,取得原创性的研究成果。
(1)建立多级多向电磁成形系统理论与方法,突破多级多向脉冲强磁场设计与制造的关键技术,创建多级多向脉冲强磁场成形技术装备原型,可提供大于40特斯拉的磁场强度,电源能量不低于1000 kJ,能实现三级以上脉冲强磁场的控制,并具有电磁辅助加热、电磁成形、电磁压边和工装一体化功能,实现对高性能复杂板管零件的成形制造试验及控制,为开展脉冲强磁场成形技术研究奠定基础。
(2)突破多时空脉冲强磁场作用下大尺寸、高深径比、强塑性流动的筒形结构零件成形制造的关键技术,并在某导弹蒙皮制造中获得验证。
(3)突破多时空脉冲强磁场作用下大尺寸、小曲率、弱塑性流动的壁板或蒙皮构件成形成性制造的关键技术,并在大型客机机身蒙皮制造中获得验证。
(4)突破强磁场与电场交互作用下多层空心结构制造的关键技术,并在某飞机舱门结构单元件的制造中获得验证。
3)论文、人才方面:(1)发表论文180篇以上,其中SCI和EI收录100篇以上,撰写专著1~3本,申报专利15~25项。
(2)培养一批在脉冲强磁场成形及相关领域的中青年学术带头人,涌现出一批优秀中青年人才,包括博士后、博士和硕士100名左右,造就一支具有重要国际影响的成形制造研究队伍,在此基础上,争取1个国家创新团队。
三、研究方案4.1 总体研究思路总体研究思路如图1 所示。
图1 总体研究思路项目针对航空航天用轻质合金深冲型构件、壁板类构件、管类构件和空心构件等关键零件成形制造的科学问题,建立多时空脉冲强磁场成形制造装备原型,围绕复杂板金结构精确塑性流动控制成形、多层空心结构超塑扩散连接与胀形一体化制造、蒙皮壁板结构控形控性、异型管材零件成形等关键共性技术研究,在多级多向脉冲强磁场的时空分布规律及其成形力场的调控、多时空脉冲强磁场作用下的金属材料流动规律及成形成性控制、金属材料在电磁成形过程中的微观结构演变及性能变化规律等基础科学问题方面取得突破,揭示基于多时空脉冲强磁场的成形制造过程的科学规律,建立和发展控形与控性相结合的柔性成形制造新原理和核心技术体系,增强航空航天板管类关键零件的成形制造能力,提高我国的高端成形加工技术水平,满足国家重大战略工程发展的需要。